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Abstract

Background: Massive amounts of data are produced by combining
next-generation sequencing (NGS) with complex biochemistry techniques to
characterize regulatory genomics profiles, such as protein-DNA interaction and
chromatin accessibility. Interpretation of such high-throughput data typically
requires different computation methods. However, existing tools are usually
developed for a specific task, which makes it challenging to analyze the data in
an integrative manner.

Results: We here describe the Regulatory Genomics Toolbox (RGT), a
computational library for the integrative analysis of regulatory genomics data.
RGT provides different functionalities to handle genomic signals and regions.
Based on that, we developed several tools to perform distinct downstream
analyses, including the prediction of transcription factor binding sites using
ATAC-seq data, identification of differential peaks from ChIP-seq data, and
detection of triple helix mediated RNA and DNA interactions, visualization, and
finding an association between distinct regulatory factors.

Conclusion: We present here RGT; a framework to facilitate the customization
of computational methods to analyze genomic data for specific regulatory
genomics problems. RGT is a comprehensive and flexible Python package for
analyzing high throughput regulatory genomics data and is available at:
https://github.com/CostaLab/reg-gen. The documentation is available at:
https://reg-gen.readthedocs.io

Keywords: Regulatory genomics; Motif analysis; Intersection algebra;
Visualization; Footprinting; Differential peaks

Background

The combination of next-generation sequencing (NGS) with complex biochemistry

techniques enables profiling of distinct epigenetic and regulatory features of cells in

a genome-wide manner. Two examples are chromatin immunoprecipitation followed

by sequencing (ChIP-seq) for protein-DNA interaction [1] and assay for transposase-

accessible chromatin using sequencing (ATAC-seq) for open chromatin [2]. These

techniques allow the studying of epigenetic dynamics in cellular processes such as

cell differentiation [3, 4] and the characterization of the regulatory landscape of

diseases such as human cancers [5]. Analysis of such data typically requires multi-

step computational pipelines that usually include:

• low-level methods (read alignment, quality control),
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Figure 1 Example of a typical pipeline for the analysis of a transcription factor ChIP-seq
experiment. First, the reads are aligned to the genome (step 1, low-level analysis). A peak caller
receives these aligned reads as input and typically creates an intermediary representation called
genomic signal. Based on this genomic signal, the peak caller then detects regions with a higher
value than the background. These candidate peaks represent the regions with DNA-protein
interaction sites (steps 2 and 3, medium level). Several downstream analyses are then performed,
such as the detection of motif-predicted binding sites inside the peaks (step 4, high-level analysis)
or line plots displaying average genomic signals of other ChIP-seq experiments around the
predicted peaks or binding sites (step 5, high-level analysis).

• medium-level methods for detection of genomic regions with relevant epige-

netic signals (processing of genomic profiles, peak calling, differential peak

calling, computational footprinting), and

• high-level methods for visual representation and integrative analysis with fur-

ther genomic data (association with gene expression and further epigenetic

data, detection of transcription factor binding sites, and functional enrich-

ment analysis).

Figure 1 gives an example of a common ChIP-seq data analysis pipeline. It in-

cludes on the low level the use of a read aligner, such as BWA [6]; on the medium

level a peak calling method, such as MACS2 [7], for the detection of regions with

the presence of potential protein-DNA interactions; and on the high level a motif

match procedure, such as FIMO [8], to find transcription factor binding sites in-

side peaks as well as R functions for the visualization of genomic signals, such as

Genomics Ranges [9]. A similar pipeline for ATAC-seq data analysis is described in

Supplementary Figure 1.

The definition of analysis pipelines depends on the biological study as well as on

the used NGS technique. Its complexity, which includes the use of several bioinfor-

matics tools that may require command-line usage and/or scripting skills, makes the

analysis of epigenomics data so far inaccessible for non-bioinformatics specialists.

Moreover, the development of bioinformatics tools for medium-level analysis needs

to take into account specific characteristics of the used NGS protocols [10, 11].
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Figure 2 Overview of RGT core classes and tools. RGT provides three core classes to handle
the genomic regions and signals. Each genomic region is represented by GenomicRegion class and
multiple regions are represented by GenomicRegionSet class. The genomic signals are represented
CoverageSet class. These classes serve as the core data structures of RGT for handling genomic
regions and signals. Based on these classes, we developed several tools for analyzing regulatory
genomics data as represented by different colors, namely, HINT for footprinting analysis of
ATAC/DNase-seq data; RGT-viz for finding associations between chromatin experiments; TDF for
DNA/RNA triplex domain finder; THOR for differential peak calling of ChIP-seq data; Motif
analysis for transcription factor binding sites matching and enrichment.

For example, ChIP-seq experiments require the computational estimation of the

read extension sizes [11]. It also requires a signal correction with control exper-

iments, as the local chromatin structure may influence the ChIP-seq signal [12].

In contrast, footprint analysis of ATAC-seq data does not require the estimation

of read extension sizes, as the start of the read corresponds to the cleavage po-

sition. However, ATAC-seq analysis demands the correction of Tn5 cleavage bias

[13]. Moreover, some aspects, such as PCR amplification artifacts, are shared by

ChIP-seq and ATAC-seq experiments [11]. Clearly, the development of tools for the

analysis of epigenetic data is greatly facilitated by a flexible and easy-to-handle

computational library. This library should support genomic data I/O as well as

usual pre-processing methods, such as fragment size estimation and the correction

of sequence bias. Regarding high-level tasks, the library should provide structure

to allow sequence analysis (i.e. motif matching), interval algebra (i.e. measuring

overlap between peaks), or associating signals with regions (i.e. line plots showing

signal strength around peaks).
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Implementation
We developed RGT in Python by following the object-oriented approach. The core

classes provide functionalities for handling data structures that are related to ques-

tions about regulatory genomics. Based on the cores, we implemented several com-

putational tools to perform various downstream analyses (Fig. 2). These include

previously described HINT tools for ATAC-seq/DNase-seq footprinting [13–15], the

differential peak caller THOR [16] and a library to characterize triple helix medi-

ated RNA-DNA interactions [17]. RGT also includes some functionalities such as

motif binding sites prediction and enrichment analysis (Motif Analysis), as well as

methods for association and visualization of genomic signals (RGT-Viz). We de-

scribe below the basic structures and the novel Motif Analysis and the RGT-Viz

frameworks.

Core classes

Analysis of high-throughput regulatory genomics data is mostly based on the ma-

nipulation of two common data structures: genomic signals which represent the

abundance of sequencing reads on the genome and genomic regions which repre-

sents candidate regions. In RGT, we implemented three classes, i.e., GenomicRe-

gion, GenomicRegionSet, and CoverageSet, to represent a single region, multiple

regions, and genomic signals, respectively. In each of the classes, we implemented

several functions to perform basic data processing. For example, CoverageSet pro-

vides functions for fragment extension estimation, signal smoothing, GC-content

bias correction, and input DNA normalization. These procedures are crucial for the

particular downstream analysis of chromatin sequencing data, such as peak calling

and footprinting. For computational efficiency, functions related to GenomicRe-

gionsSet and interval-related algebra have been implemented in C. Moreover, RGT

contains I/O functions of common genomic file formats such as Binary Alignment

Map (BAM) files for alignments of reads, (big)wig files for genomic profiles, and

bed files for genomic regions by exploring pysam [18, 19] related functions.

These core classes provide a powerful infrastructure for the development of meth-

ods dealing with regulatory genomics data. As an example of the simplicity, ver-

satility, and power of RGT, we include a tutorial on how to build a simple peak caller

with less than 50 lines of codes: https://reg-gen.readthedocs.io/en/latest/rgt/tutorial-

peak-calling.html.

Finding associations between chromatin experiments with RGT-viz

A typical problem in regulatory genomics is to associate results of distinct ex-

periments, i.e. overlap between distinct histone marks or a given histone mark in

distinct cells. RGT-viz provides a collection of statistical tests and tools for the

association and visualization of genomic data such as genomic regions and genomic

signals (Fig. 3a).

In the tests of regions versus regions, a set of reference and query regions, both in

BED format, are required as inputs. The aim is to evaluate the association between

the reference and the query. For this, RGT-viz provides the following tests:

• Projection test: This test compares a query set, i.e. ChIP-seq of transcription

factors with a larger reference set, i.e. ChIP-seq peaks of a regulatory region
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(H3K4me3 or H3K4me1 marks). It estimates the overlap of the query to the

reference and contrasts with the coverage of the reference in the complete

genome. A binomial test is then used to indicate if the coverage of the query

in the reference is higher than the reference of the reference to the genome [20]

( Supplementary Fig. 2a).

• Intersection Test: This test is based on measuring the intersection between

a pair of genomic regions and comparing it to the expected intersection on

random region sets. Random regions are obtained by evaluating permutations

(with size equal to the input regions) of the union of regions in the pair of

queries [21] (Supplementary Fig. 2b). The statistical test is based on empirical

p−values.

• Combinatorial Test: The combinatorial test is appropriate for two-way com-

parisons. For example, you want to check the proportion of peaks of two (or

more) transcription factors on two (or more) cell types. For this, it creates a

background distribution per reference sets (cells) by considering the union of

all query sets (TFs) in that cell. It then creates count statistics per cell and

compares if the number of binding sites in a cell for a given TF is higher than

in another cell by using a Chi-squared test (Supplementary Fig. 2c).

• Jaccard Measure: This measures the amount of overlap between the reference

and the query using the Jaccard index (also called Jaccard similarity coeffi-

cient) [22]. Given two region sets A and B, it measures the ratio of intersecting

base pairs in relation to the regions associated with the union of A and B.

Through this Jaccard index, the amount of intersection can be expressed by a

value between zero to one (Supplementary Fig. 2d). This test explores a ran-

domization approach, i.e. random selection of genomic region sets with the

same number/size regions, to estimate empirical p−values.

Another important functionality is the visualization of distinct genomic signals,

as described below. To visualize the signals in different regions, the following tools

are provided:

• Boxplot: It compares the number of fragments from different ChIP-seq exper-

iments on the given region set. This can be used for example to contrast the

signal of distinct ChIP-seq TFs over promoter regions (H3K4me3 peaks). Con-

ceptually, the generation of a boxplot is simply counting the number of reads

within the region set and then plotting these counts in boxplot (Supplemen-

tary Fig. 3a). RGT-Viz provides functionalities to normalize the individual

libraries regarding library sizes.

• Lineplot and heatmap: Line plot and heatmap are used to display the dis-

tribution of reads within a given region set. Specifically, each region is first

extended with the given window size which defines the boundaries for plot-

ting. Next, the coverage of reads on the given regions is calculated based on

the given bin size and step size. Finally, the line plot or heatmap is generated.

The line plot shows average signals over all regions in the region set while the

heatmap displays the signals of all regions (Supplementary Fig. 3b-c).

We here provided a case study using RGT-viz to investigate dendritic cell (DC)

development (Fig. 3b). We collected ChIP-seq data of the transcription factors PU.1

and IRF8, and five histone modifications (i.e., H3K4me1, H3K4me3, H3K9me3,
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Figure 3 Overview and case study of RGT-viz. a, RGT-viz provides several tests for regions
versus regions and visualization tools for regions versus signals by taking BED and BAM files as
input. b, Dendritic cell development. DCs develop from multipotent progenitors (MPPs), which
commit into DC-restricted common dendritic cell progenitors (CDPs). CDPs differentiate into
classical DCs (cDCs) and plasmacytoid DCs (pDCs). c, Intersection test shows that the IRF8
binding sites in cDC and pDC are associated with the PU.1 binding sites in MPP, CDP, cDC, and
pDC. d, Line plots showing genomic signals of different histone modifications on the PU.1/IRF8
peaks in cDC.

H3K27me3, and H3K27ac) for each of the cell types [4, 16, 23, 24] (Supplementary

Table 1). PU.1 is one of the master regulators of hematopoiesis and is expressed by

all hematopoietic cells [25] and IRF8 is believed to co-bind with PU.1 to control

the differentiation of DC progenitors (DCP) towards specific DC sub-types [4, 26].

We mapped the sequencing reads to mm9 using BWA [6] and called the peaks with

MACS2 [7].

We performed an intersection test between PU.1 and IRF8 peaks from different

cell types to check for if PU.1 and IRF8 co-binding during DC differentiation. Of

note, IRF8 ChIP-seq only detected peaks in classic and plasmacytoid DC (cDC

and pDC, respectively), as this TF is not expressed in multipotent DC (MPP) and

expressed only at low levels in common DC progenitors (CDP).

This test reveals that PU.1 and IRF8 are significantly associated in all cell types,

while the co-binding was two times higher as measured by χ2 statistics in cDCs

than pDCs. Moreover, we observed that a high overlap of binding sites of cDC

IRF8 peaks is already quite high with CDP PU.1 peaks. This indicates that PU.1
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binding prepares the chromatin for IRF8 binding already CDP, showing DC priming

in CDP (Fig. 3c and Supp. Table 2).

We next asked if the co-binding regions are associated with different regulatory

regions (enhancers vs. promoters). For this, we defined the set of peaks with both

PU.1. and IRF8 binding, or only with PU.1. or only IRF8 binding in cDC and

pDC cells by using intersect and subtracting functions from the core class Genomi-

cRegionSet of RGT. We then generated line plots of PU.1, IRF8, H3K4me1, and

H3K4me3 on these three sets of regions in cDC (Figure 3d). We observed that peaks

with PU.1-IRF8 co-binding have higher ChIP-seq peaks for either factor indicating

that co-binding strengthens the binding affinity of both TFs. Moreover, H3K4me1

signals are strong for PU.1 and IRF8 co-binding, while IRF8 only has stronger

H3K4me3 marks. This suggests an association of PU.1 and IRF8 co-binding with

enhancers, while IRF8 exclusive binding is more associated with promoters. These

examples demonstrate how RGT-Viz can be used to explore associations and inter-

pretation of genomic data.

Transcription factor motif matching and enrichment with motif analysis

Motif analysis is a framework to perform transcription factor motif matching

and motif enrichment. Motif matching aims to find transcription factor binding

sites (TFBSs) for a set of TFs in a set of genomic regions of interest (Figure 4a).

For this, RGT has its own class, i.e., MotifSet for storing TF motifs from known

repositories, such as UniPROBE [27], JASPAR [28] and HOCOMOCO [29]. In ad-

dition, users are also allowed to add new motif repositories. RGT uses an efficient

Motif Occurrence Detection Suite (MOODS) algorithm to find binding site loca-

tions and bit-scores [30]. Note that MOODS was originally implemented in C++

and we have adapted it to a Python package (https://pypi.org/project/MOODS-

python/). Next, RGT uses a dynamic programming algorithm [31] to determine a

bit-score cut-off threshold based on the false positive rate of 10−4. The predicted

binding sites can be obtained with p-values between 10−5 to 10−3.

The motif enrichment module evaluates which transcription factors are more likely

to occur in certain genomic regions than in ”background regions” based on the motif-

predicted binding sites (MPBS) from motif matching (Figure 4b). To determine

the significance, we performed Fisher’s exact test for each transcription factor and

corrected the p-values with the Benjamini-Hochberg procedure. More specifically,

we provided three types of tests:

• Input regions vs. Background regions: In this test, all input regions are verified

against background regions that are either user-provided or randomly gener-

ated with the same average length distribution as the original input regions.

• Gene-associated regions vs. Non-gene-associated regions: In this test, we would

like to check whether a group of regions that are associated with genes of in-

terest (e.g. up-regulated genes) is enriched for some transcription factors vs.

regions that are not associated with those genes. The input regions are di-

vided into two groups by performing gene-region association that considers

promoter-proximal regions, gene body, and distal regions. After the associa-

tion, we perform a Fisher’s exact test followed by multiple testing corrections

as mentioned in the previous analysis type.
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Figure 4 Schematics of motif matching and enrichment analysis. a, Motif matching detects
binding sites for a set of TFs against multiple genomic regions. The motifs were collected from
public repositories such as UniPROBE, JASPAR, and HOCOMOCO. The position weight
matrix (PWM) for each TF is used to calculate a binding affinity score per position. The genomic
regions are usually obtained by peak calling based on ChIP-seq or ATAC-seq data. b, Screenshot
showing the top 5 TFs identified by motif enrichment analysis from the overlapping peaks
between PU.1 and IRF8 in cDC cells.

• Promoter regions of input genes vs. Background regions: In this test, we take

all provided genes, find their promoter regions in the target organism, and

create a “target regions” BED file from those. A background file is created by

using the promoter regions of all genes not included in the provided gene list.

Next, motif matching is performed on the target and background regions and

a Fisher’s exact test is executed.

Finally, the enrichment regions are provided in an HTML interface. An example

of motif enrichment analysis on the PU.1 and IRF8 co-binding peaks in cDC is

provided in Fig. 4b). We observed that PU.1 (and ETS family) motifs were ranked

at the top and an IRF family motif at fifth (IRF1; MA0050.2.IRF1). This again

demonstrates how Motif Matching can recover expected regulatory players from

regulatory sequences.

Additional Tools based on RGT

Several additional tools that explored and extended classes from RGT to tackle

specific regulatory genomics problems are available. HINT is a framework that uses

open chromatin data to identify the active transcription factor binding sites (TFBS).

We originally developed this method for DNase-seq data [14, 15] and later extended

it to ATAC-seq data by taking the protocol-specific artifacts into account [13].

Footprint analysis requires base pair resolution signals in contrast to peak calling

problems, which are based on signals on windows with more than 50bps. There-

fore, HINT has a GenomicSignal class, which deals with ATAC-seq, and DNA-seq

signals such as cleavage bias correction, base pair counting, and signal smoothing.
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Moreover, HINT makes use of the previously described motif-matching functionality

provided by RGT to characterize motifs related to ATAC-seq footprints. These can

be explored in differential footprinting analysis to detect relevant TFs associated

with different biological conditions. This method has been widely used to study,

among others, cell differentiation [13, 32] and diseases [33–36].

THOR is a Hidden Markov Model-based approach to detect and analyze differ-

ential peaks in two sets of ChIP-seq data from distinct biological conditions with

replicates [16]. As a first step, THOR needs to create and normalize ChIP-seq sig-

nals from distinct experiments. Among others, THOR extended functionalities of

the base class CoverageSet to a MultipleCoverageSet class to deal with multiple

signals at a time and to provide global normalization methods, such as trimmed

means of M-values (TMM). Finally, Triplex Domain Finder (TDF) characterizes

the triplex-forming potential between RNA and DNA regions [17]. TDF explores

functionality provided by RGT/RGT-viz to build statistical tests for characterizing

DNA binding domains in lncRNAs.

Discussion
We here presented the regulatory genomics toolbox (RGT), a versatile toolbox for

the analysis of high-throughput regulatory genomics data. RGT was programmed

in an oriented-object fashion and its core classes provided functionalities to handle

typical regulatory genomics data: regions and signals. Based on these core classes,

RGT built distinct regulatory genomics tools, i.e., HINT for footprinting analysis,

TDF for finding DNA-RNA triplex, THOR for ChIP-seq differential peak calling,

motif analysis for TFBS matching and enrichment, and RGT-viz for regions as-

sociation tests and data visualization. These tools have been used in several of

epigenomics and regulatory genomics works to study cell differentiation and reg-

ulation [32, 35, 37–42]. We envision that RGT can facilitate the development of

computational methods for the analysis of high-throughput regulatory genomics

data as a powerful and flexible framework in the future.
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16. Allhoff, M., Seré, K., F. Pires, J., Zenke, M., G. Costa, I.: Differential peak calling of ChIP-seq signals with

replicates with THOR. Nucleic acids research 44(20), 153–153 (2016)

17. Kuo, C.-C., Hänzelmann, S., Sentürk Cetin, N., Frank, S., Zajzon, B., Derks, J.-P., Akhade, V.S., Ahuja, G.,

Kanduri, C., Grummt, I., et al.: Detection of RNA–DNA binding sites in long noncoding RNAs. Nucleic acids

research 47(6), 32–32 (2019)

18. Bonfield, J.K., Marshall, J., Danecek, P., Li, H., Ohan, V., Whitwham, A., Keane, T., Davies, R.M.: Htslib: C

library for reading/writing high-throughput sequencing data. Gigascience 10(2), 007 (2021)

19. Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T.,

McCarthy, S.A., Davies, R.M., et al.: Twelve years of samtools and bcftools. Gigascience 10(2), 008 (2021)

20. Favorov, A., Mularoni, L., Cope, L.M., Medvedeva, Y., Mironov, A.A., Makeev, V.J., Wheelan, S.J.: Exploring

massive, genome scale datasets with the genometricorr package. PLoS computational biology 8(5), 1002529
(2012)

21. Pape, U.J., Klein, H., Vingron, M.: Statistical detection of cooperative transcription factors with similarity

adjustment. Bioinformatics 25(16), 2103–2109 (2009)

22. Real, R., Vargas, J.M.: The probabilistic basis of jaccard’s index of similarity. Systematic biology 45(3),
380–385 (1996)
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