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 Abstract 

 Prediction  of  proteins  stability  change  (∆∆G)  due  to  single  mutation  is  important  for 
 biotechnology,  medicine,  and  our  understanding  of  physics  underlying  protein  folding.  Despite 
 the  recent  tremendous  success  in  3D  protein  structure  prediction,  the  apparently  simpler 
 problem  of  predicting  the  effect  of  mutations  on  protein  stability  has  been  hampered  by  the  low 
 amount  of  experimental  data.  With  the  recent  high-throughput  measurements  of  mutational 
 effects  in  ‘mega’  experiment  for  ~850,000  mutations  [Tsuboyama  et  al.,  bioRxiv,  2022]  it 
 becomes  possible  to  apply  the  state-of-the-art  deep  learning  methods.  Here  we  explore  the 
 ability  of  ESM2  deep  neural  network  architecture  with  added  Light  Attention  mechanism  to 
 predict  the  change  of  protein  stability  due  to  single  mutations.  The  resulting  method  ABYSSAL 
 predicts  well  the  data  from  the  ‘mega’  experiment  (Pearson  correlation  0.85)  while  the 
 prediction  of  ∆∆G  values  from  previous  experiments  is  more  modest  (Pearson  correlation  0.50). 
 ABYSSAL  also  shows  a  perfect  satisfaction  of  the  antisymmetry  property.  The  ABYSSAL 
 training  demonstrated  that  the  dataset  should  contain  around  ~100,000  data  points  for  taking 
 advantage  of  the  state-of-the-art  deep  learning  methods.  Overall,  our  study  shows  great 
 perspectives for developing the deep learning ∆∆G predictors. 
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 Introduction 

 Prediction  of  protein  stability  change  (∆∆G)  upon  mutation  is  one  of  the  most  important 
 unsolved  problems  of  structural  bioinformatics  (Toplak  et  al.,  2021;  Kalman  et  al.,  2020;  Wang 
 et  al.,  2020;  Pancotti  et  al.,  2022;  Pak  &  Ivankov,  2022).  The  recent  success  of  AlphaFold  in 
 predicting  3D  protein  structure  at  near-to-experimental  accuracy  showed  the  perspectives  of 
 deep  learning  techniques  for  solving  biological  problems  (Jumper  et  al.,  2021).  The  vast 
 amount  of  known  protein  sequences  (Uniprot  Consortium,  2012)  and  known  crystallographic 
 structures  (Berman  et  al.,  2000)  played  a  crucial  role  in  AlphaFold’s  success.  Field  of  ∆∆G 
 prediction  always  suffered  from  the  lack  of  data:  by  the  middle  of  the  year  2022  only  ~14k 
 experimental  records  were  collected  (Xavier  et  al.,  2021)  which  may  be  too  low  to  learn  the 
 ∆∆G prediction by a deep neural network. 

 Recently,  Tsuboyama  et  al.  published  the  experimentally  measured  ∆∆G  values  for  851,552 
 mutations,  with  376,918  of  them  being  high-quality  single  mutations  (Tsuboyama  et  al.,  2022). 
 The  dataset  is  much  larger  than  any  dataset  used  before  and  has  no  bias  towards  ‘truncating’ 
 mutations  to  smaller  amino  acids,  especially  to  alanine.  Thus,  it  provides  a  unique  opportunity 
 to  develop  an  unbiased  state-of-the-art  ∆∆G  predictor  using  one  of  the  powerful  deep  learning 
 models developed recently (Lin et al., 2022). 

 Here  we  present  ABYSSAL  (  Mega  dataset  and  Deep  neural  network  with  a  ttention-  l  ike 
 mechanism),  the  first  predictor  of  protein  stability  change  due  to  single  mutation  trained  on 
 such  a  big  amount  of  data.  ABYSSAL  takes  advantage  of  the  state-of-the-art  deep  neural 
 network  model  ESM2  (Lin  et  al.,  2022).  ABYSSAL  predicts  experimental  ∆∆G  values  at  the  level 
 of  Pearson  correlation  coefficient  (PCC)  equal  to  0.85,  which  amounts  to  near-to-experimental 
 quality  (Tsuboyama  et  al.,  2022;  Potapov  et  al.,  2009;  Xavier  et  al.,  2021).  We  have  shown  that  a 
 training  dataset  should  contain  around  ~100,000  data  points  is  enough  to  take  full  advantage 
 of the current state-of-the-art deep neural network models like ESM2 (Lin et al., 2022). 

 Materials and Methods 

 Dataset 

 We  took  the  experimental  data  on  protein  stability  changes  (∆∆G)  upon  mutations  from 
 (Tsuboyama  et  al.,  2022)  where  ∆∆G  values  were  estimated  from  cleavages  by  proteases.  We 
 downloaded  the  file  “K50_dG_Dataset1_Dataset2.csv”  from  the  Zenodo  repository 
 https://zenodo.org/record/7401275#.Y6st59JBxD_  associated  with  the  paper  (Tsuboyama  et 
 al.,  2022).  Out  of  851,552  stability  change  data  for  542  reference  proteins,  we  removed  records 
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 (i)  having  tag  ‘unreliable’,  (ii)  when  no  mutation  was  introduced,  (iii)  associated  with  insertions 
 and/or  deletions,  (iv)  associated  with  multiple  mutations.  The  filtered  dataset  contained  data  on 
 376,918  single  mutations  from  396  proteins.  We  reconstructed  the  sequences  of  the  wild  type 
 proteins  from  the  mutated  sequence  in  the  "aa_seq"  column  and  the  mutation  in  the  column 
 "mut_type"  of  the  original  dataset.  The  effect  of  mutation  from  the  column  “ddG_ML”  was 
 multiplied  by  -1  to  convert  the  values  into  folding  free  energy  changes  (negative  values  denote 
 stabilization). We called the resulting filtered and processed dataset Mega dataset. 

 Mega dataset split into training, testing, and validation datasets. 

 We  used  two  approaches  for  splitting  the  Mega  dataset  into  training,  testing,  and  validation 
 sets.  The  first  approach  is  based  on  protein  sequence  identity  cutoffs.  Firstly,  we  performed 
 all-against-all  protein  BLAST  (Altschul  et  al.,  1997)  of  protein  sequences  of  the  Mega  dataset 
 with  the  E-value  of  10  -5  .  The  smallest  sequence  identity  cutoff  we  could  use  to  have  sufficient 
 data  in  the  test  and  validation  sets  was  35%.  We  split  the  data  in  such  a  way  that  proteins  from 
 the  testing  and  validation  sets  were  similar  to  the  proteins  of  the  training  set  at  maximum  by 
 35%  of  sequence  identity.  The  remaining  367,858  mutations  comprised  the  training  dataset. 
 From  the  remaining  9,060  mutations  aimed  to  test  and  validate  the  results  we  assigned 
 randomly  6,043  (two  thirds)  to  the  test  set  while  the  other  3,017  mutations  (one  third) 
 comprised  the  validation  test.  The  resulting  sets  are  denoted  as  MegaTrain,  MegaTest  and 
 MegaValidation,  respectively.  The  second  approach  is  a  straightforward  naive  approach  –  a 
 random  split  into  train  and  test  by  0.8/0.2  ratio;  it  was  used  to  explore 
 sequence-identity-unaware  DDG  prediction.  In  addition  we  have  trained  our  model  on  a 
 popular training set S2648 (Dehouck et al., 2009). 

 The  sizes  and  the  number  of  proteins  in  the  training,  testing  and  validation  sets  are  represented 
 in  Table  S1.  All  data  sets  were  symmetrized  by  adding  the  reverse  mutations  which  doubled  the 
 sizes of every dataset. 

 ∆∆G validation datasets 

 In  addition  to  the  MegaValidation  dataset  we  used  popular  datasets  of  experimental  ∆∆G  data: 
 p53  (Pires  et  al.,  2014)  (42  mutations),  Myoglobin  (Kepp,  2015)  (134  mutations),  and  Ssym 
 (Pucci  et  al.,  2018)  (342  mutations).  We  have  also  used  a  recently  developed  dataset  S669 
 (Pancotti  et  al.,  2022)  (669  mutations).  It  includes  curated  data  dissimilar  at  25%  of  sequence 
 identity  to  widely  used  training  sets  S2648  (Dehouck  et  al.,  2009)  and  VariBench  (Nair,  Vihinen, 
 2012).  From  all  validation  datasets  we  excluded  mutations  in  proteins  that  are  similar  to  the 
 proteins  in  Mega  dataset  at  sequence  identity  cutoff  of  25%.  This  resulted  in  420  mutations 
 comprising  the  filtered  version  of  the  S669  dataset.  The  description  of  validation  datasets  is 
 presented in Table S2. 
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 Metrics 

 We  used  six  metrics  for  assessment  of  ΔΔG  prediction:  the  Pearson  and  Spearman  correlation 
 coefficients  between  true  ΔΔG  values  and  predicted  values  (PCC,  SCC),  mean  standard  error 
 (MSE),  the  accuracy  of  predicting  a  class  of  mutation  (ΔΔG  <  0  –  stabilizing,  ΔΔG  ≥  0  – 
 destabilizing),  and  antisymmetry  metrics  PCC(f-w)  and  the  bias  <δ>.  PCC(f-w)  is  the  Pearson 
 correlation  coefficient  between  the  forward  and  the  reverse  mutations  (Usmanova  et  al.,  2018; 
 Pancotti et al., 2022): 

 , 

 where cov is the covariance and σ is the standard deviation. 

 The  bias  <δ>  is  the  average  bias  toward  either  forward  or  reverse  mutations  (Usmanova  et  al., 
 2018;  Pancotti et al., 2022): 

 . 

 Training procedure 

 Training  on  MegaDataset  with  random  split  was  performed  in  two  steps.  At  first  step  the  model 
 learned  for  50  epochs  with  learning  rate  10  -4  ;  after  that  the  resultant  model  was  fine-tuned  for 
 another  50  epochs  with  learning  rate  10  -5  .  For  the  split  based  on  sequence  identity  cutoffs, 
 training  took  place  for  72  epochs  with  an  initial  learning  rate  of  10  -4  decaying  by  a  factor  of  0.97 
 every epoch. 

 Neural network architecture 

 Embeddings 

 To  provide  sequence  representations  we  have  used  an  ESM2  (esm2_t33_650M_UR50D)  model 
 (Lin  et  al.,  2022)  which  was  shown  to  be  a  state-of-the-art  solution  in  a  number  of  sequence 
 analysis-related  tasks  (Lin  et  al.,  2022).  In  current  analysis,  we  have  used  two  embeddings  per 
 sequence:  one  for  the  original  sequence  and  one  for  the  mutated  one.  Moreover,  to  underline 
 the  effect  of  a  given  position  and  given  amino  acid  mutation,  instead  of  whole  sequence 
 representation,  embeddings  for  the  specific  token  (amino  acid)  both  for  the  original  amino  acid 
 and mutated one from the last ESM2 layer were extracted. 
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 ABYSSAL general description 

 The  proposed  model  (Fig  1c)  represents  a  variation  of  the  Siamese  network  types  of  networks 
 (Bromley  et  al.,  1993).  It  has  two  inputs  which  are  preprocessed  inside  the  model  (see  Light 
 Attention  trick  section  and  Fig  1a)  and  then  both  outputs  are  concatenated.  We  believe  that  the 
 concatenation  of  both  outputs  in  combination  with  providing  both  directions  of  mutations 
 within  the  dataset  (original  amino  acid  →  mutated  amino  acid  and  mutated  amino  acid  → 
 original  amino  acid  within  the  train  dataset)  essentially  helps  the  model  to  learn  the  physical 
 property  of  antisymmetry  of  ∆∆G.  Obtained  concatenated  vector  then  is  fed  into  several  fully 
 connected layers (Fig 1b) and output of the last layer is the predicted ∆∆G (Fig 1c). 

 Light Attention trick 

 It  is  usually  a  good  decision  to  allow  a  network  to  reweight  incoming  embedding  vectors  so  the 
 relevant  data  could  gain  more  attention  and  thus  the  network  would  converge  better.  Light 
 attention  (Stärk  et  al.,  2021)  is  one  of  the  proposed  tricks  which  was  shown  to  be  helpful  in 
 such  tasks;  therefore,  we  incorporated  it  into  the  ABYSSAL.  In  the  Light  Attention  trick  (fig  1a) 
 two  vectors  of  the  same  shape  are  created  by  two  1d  convolutions  (kernel  size  was  set  to  9, 
 stride  to  1  and  padding  was  set  to  4).  One  of  the  obtained  vectors  serves  as  an  inner  model 
 embedding  representation  and  the  other  (by  applying  softmax)  helps  to  reweight  obtained 
 representation  in  a  attention-like  manner.  Both  vectors  are  then  multiplied  in  an  element-wise 
 manner (Hadamard product). 
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 Figure  1.  General  scheme  of  the  ABYSSAL:  a)  scheme  of  Light  Attention  (Stärk  et  al.,  2021) 
 block;  b)  scheme  of  fully  connected  (FC)  block  which  consists  of  several  fully  connected  layers; 
 c)  general  scheme  of  ABYSSAL  and  flow  of  data:  at  first  step  we  obtain  embeddings  for  both 
 mutated  and  original  amino  acid  by  using  ESM2  [Language  models  of  protein  sequences  at  the 
 scale  of  evolution  enable  accurate  structure  prediction]  general  language  model,  than  both 
 embeddings  do  serve  as  an  input  into  ABYSSAL.  Both  embeddings  are  preprocessed  through 
 Light  Attention  block  (subfigure  “a”)  in  a  siamese  network  fashion.  Preprocessed  by  the  Light 
 Attention  block,  both  embeddings  are  concatenated  and  fed  in  a  FC  block  (subfigure  “b”) 
 which represents a set of several fully connected layers which outputs a predicted ddg. 
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 Results and Discussion 

 ABYSSAL learning design 

 The  aim  of  our  study  is  to  explore  perspectives  of  deep  learning  to  the  problem  of  predicting 
 change  of  protein  stability  (∆∆G)  upon  single  mutation  in  globular  proteins,  the  conceptually 
 simplest  task  of  protein  design.  For  that,  we  developed  ABYSSAL,  a  method  for  ∆∆G  prediction 
 trained  on  the  data  from  the  recently  published  dataset  (Tsuboyama  et  al.,  2022).  After  filtering, 
 the  dataset  contained  376,918  high-quality  single  mutations  in  396  small  single-domain 
 globular  proteins,  see  Methods.  The  big  size  of  the  dataset  allows  using  the  most  advanced 
 deep  learning  techniques,  so  we  chose  ESM2,  a  language  model,  which  showed  previously  its 
 usability  in  the  protein  structure  prediction  (Lin  et  al.,  2021).  Additionally,  we  used  Light 
 Attention  mechanism  which  proved  to  be  useful  in  previous  biological  research  (Stärk  et  al., 
 2021). 

 To  follow  the  best  practices  in  machine  learning,  we  divided  the  dataset  into  training  set 
 (MegaTrain),  test  set  (MegaTest),  and  validation  set  (MegaValidation)  as  described  in  Methods. 
 This  is  useful  when  the  best  model  is  selected  out  of  many  developed  models  based  on  the 
 performance  on  the  test  set  while  the  actual  performance  is  reported  for  the  validation  set. 
 Although  we  developed  only  one  model,  we  split  the  Mega  dataset  into  training,  test,  and 
 validation sets for future investigations. 

 Another  thing  to  address  is  the  similarity  between  test/validation  and  training  sets.  Indeed,  too 
 high  similarity  of  the  test/validation  sets  with  the  training  set  may  lead  to  overestimating  the 
 performance  of  the  method  and  compromising  the  overall  results.  Obviously,  one  must  avoid 
 same  mutations  being  present  in  the  test/validation  and  the  training  sets.  However,  little  is 
 known  about  the  similarity  parameters  between  mutations  to  avoid  overlearning  of  statistical 
 and  machine  learning  methods.  To  be  on  the  safe  side,  we  used  the  rules  established  for 
 protein  sequence-to-structure  relationship  where  sequence  identity  higher  than  the  twilight 
 zone  ~20-40%  usually  results  in  highly  similar  protein  3D  structures.  Specifically,  we 
 constructed  the  MegaTest  and  MegaValidation  sets  so  that  they  contain  proteins  that  are 
 dissimilar  to  those  from  the  MegaTrain  set.  At  the  same  time,  we  have  checked  that  the  number 
 of  mutations  in  the  MegaTest  and  MegaValidation  sets  was  large  enough  to  estimate  reliably  of 
 the  ABYSSAL  performance.  This  resulted  in  the  sequence  identity  threshold  of  35%,  i.e.,  any 
 protein  from  the  MegaTest  and  MegaValidation  sets  has  the  sequence  identity  less  than  35%  to 
 any  protein  in  the  MegaTrain  set  (see  Methods).  After  the  split,  MegaTrain  set  was  represented 
 by  367,858  mutations  from  388  proteins;  from  the  remaining  9060  mutations  in  8  proteins  3017 
 were  randomly  chosen  mutations  and  assigned  to  MegaValidation  set,  see  Table  S1.  To 
 understand  the  performance  of  the  model  in  sequence-identity-unaware  regime,  we  trained  the 
 model  using  naive  straightforward  approach  of  split  in  0.8/0.2  proportion.  This  resulted  in  a 
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 significantly  higher  performance  without  overfitting.  However,  since  it  is  unknown  about 
 similarities rules for mutation, we do not show these preliminary data. 

 One  of  the  main  pitfalls  of  constructing  most  of  the  ∆∆G  prediction  methods  in  the  past  was 
 their  violation  of  the  antisymmetry  property:  the  effects  of  the  forward  and  reverse  mutations 
 must  be  exactly  opposite  to  each  other,  i.e.,  their  average  sum  <  δ  >  must  sum  up  to  zero  while 
 the  correlation  between  the  forward  and  reverse  subsets  must  be  -1  (Fariselli  et  al.,  2015; 
 Usmanova  et  al.,  2018;  Pucci  et  al.,  2018).  To  avoid  antisymmetry  property  violation,  we 
 followed  the  best  machine  learning  practice  and  symmetrized  the  MegaTrain,  MegaTest,  and 
 MegaValidation  set,  i.e.,  for  every  mutation  in  a  dataset  we  added  the  corresponding  reverse 
 mutation,  which  resulted  in  doubling  the  sizes  of  all  sets  (we  name  further  these  combined  sets 
 as  ‘symmetric’).  Additionally,  we  used  special  neural  network  architecture  to  complement 
 model  (introduced  by  dataset  modifications)  to  antisymmetry  property  (see  Methods)  in  a 
 manner similar to (Benevenuta et al., 2021). 

 Performance of ABYSSAL 

 We  trained  ESM2  model  (Lin  et  al.,  2021)  with  Light  Attention  trick  (Stärk  et  al.,  2021)  on  the 
 MegaTrain  dataset  as  described  in  Methods.  The  performance  of  the  model  on  MegaTest  set  is 
 shown  in  Table  1.  The  PCC  was  0.85  which  approaches  the  agreement  to  PCC  =  0.91  between 
 trypsin-  and  chymotrypsin-based  data  from  the  Mega  dataset  (Tsuboyama  et  al.,  2022).  For  the 
 MegaValidation  dataset  ABYSSAL  showed  the  same  PCC  =  0.85,  see  upper  panel  of  Fig.  2. 
 The  antisymmetry  property  was  satisfied  perfectly,  with  PCC  between  forward  and  reverse 
 mutations being -0.98 and <δ> of just 0.01 kcal/mol. 

 Table 1. Performance metrics of ABYSSAL on MegaTest. 

 Metrics  Symmetric  Forward  Reverse 
 Antisymmetry 

 PCC(f-w)  <δ> 

 PCC 
 SCC 
 MSE, kcal/mol 
 Accuracy 

 0.85±0.00 
 0.81±0.01 

 0.89 
 0.79 

 0.77±0.01 
 0.73±0.01 

 0.89 
 0.79 

 0.77±0.01 
 0.73±0.01 

 0.88 
 0.79 

 -0.98  -0.01 

 It  should  be  noted  that  in  the  Mega  paper  ∆∆G  values  were  estimated  from  proteins’ 
 propensities  to  be  cleaved  by  trypsin/chemotrypsin  proteases.  The  agreement  between  the 
 ∆∆G  estimations  and  previous  ∆∆G  values  from  literature  was  in  the  range  of  PCC  between 
 0.72  and  0.96  (Tsuboyama  et  al.,  2022),  which  is  very  high  but  not  ideally  perfect.  This  means 
 that  ∆∆G  estimations  from  the  Mega  paper  appear  as  close  proxies  of  the  actual  ∆∆G  values. 
 Since  the  declared  problem  of  structural  bioinformatics  is  the  prediction  of  ∆∆G  values,  we  are 
 interested  in  how  our  ABYSSAL  method  performs  on  the  previously  measured  ∆∆G  values.  We 
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 therefore  assessed  the  ABYSSAL’s  performance  on  the  ∆∆G  datasets  ‘p53’  (Pires  et  al.,  2014), 
 ‘myoglobin’  (Kepp,  2015),  ‘ssym’  (Pucci  et  al.,  2018),  and  ‘s669’  (filtered  versions,  see  below) 
 (Pancotti  et  al.,  2022)  previously  widely  used  in  literature.  Since  the  ∆∆G  data  from  previous 
 publications  were  not  used  for  training  ABYSSAL,  the  datasets  act  as  a  completely 
 independent  check  of  the  ABYSSAL’s  ability  to  predict  the  ∆∆G  values.  The  performance  of 
 ABYSSAL is given in Fig.2, lower panels. 

 To  compare  the  ABYSSAL  performance  with  that  of  previously  developed  ∆∆G  predictors  we 
 chose  the  biggest  dataset  available  for  such  comparison,  the  recently  combined  dataset  ‘s669’ 
 (Pancotti  et  al,  2022).  To  avoid  testing  of  ∆∆G  predictors  on  the  mutations  in  homologous 
 proteins  presented  in  the  training  sets  of  ∆∆G  predictors  we  removed  from  ‘s669’  dataset 
 mutations  that  were  part  of  any  ∆∆G  predictor’s  train  set.  It  turned  out  that  the  arbitrary  chosen 
 sequence  identity  cut-off  of  25%  retains  420  out  of  669  mutations  (comprising  63%  of  the 
 original  ‘s669’  dataset).  The  results  of  the  comparison  are  given  in  Table  2.  ABYSSAL  and 
 INPS-Seq  demonstrated  the  best  performance  of  PCC  =  0.50;  ABYSSAL,  INPS-Seq,  and 
 ACDC-NN  showed  best  MSE  of  1.74  kcal/mol.  As  for  other  metrics,  SCC,  accuracy,  and 
 antisymmetry,  ABYSSAL  was  consistently  among  the  best  4-5  predictors.  For  smaller  datasets 
 (Myoglobin,  p53,  and  ssym)  ABYSSAL  performed  sometimes  better,  sometimes  worse  than  the 
 other methods (data not shown). 

 We  were  surprised  that  ABYSSAL  did  not  show  significant  improvement  on  the  S669  dataset. 
 We  did  not  perform  a  thorough  study  of  that  result  yet;  however,  we  can  speculate  and  the 
 reasons  might  be  following.  ABYSSAL  was  trained  to  predict  ∆∆G  estimates  measured  from 
 cleavage  by  proteases  (‘proxies’  to  actual  ∆∆G  values),  see  PCC  =  0.85  above.  On  the 
 contrary,  the  other  methods  do  predict  the  actual  ∆∆G  values;  the  S669  dataset  contains  the 
 actual ∆∆G values, too. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2022.12.31.522396doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.522396
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Figure  2.  Performance  on  validation  sets  (from  top  to  bottom):  for  MegaValidation,  Myoglobin, 
 p53,  Ssym,  and  S669  datasets.  In  every  row  the  results  are  given  for  full  dataset  containing 
 both  forward  and  reverse  mutations  (left),  for  forward  mutations  only  (middle),  for  reverse 
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 mutations  only  (right).  The  following  metrics  are  given  in  the  plots:  number  of  points  (‘entries’), 
 PCC,  SCC,  Accuracy  and  asymmetry  metrics  (PCC  between  forward  and  reverse  mutations 
 and  average  bias  <  δ  >)  for  full  dataset.  Line  y  =  x  is  drawn  in  gray.  The  best  fit  is  drawn  as 
 dashed  line.  Note  that  S669  dataset  was  filtered  for  mutations  in  proteins  homologous  to  that 
 in  proteins  from  the  training  dataset  of  ABYSSAL  so  it  contains  420  mutations.  See  text  for 
 details. 

 Table 2.  Performance of  ∆∆G  predictors on S669 dataset. 

 Predictor  PCC  SCC  MSE, kcal/mol  Accuracy  PCC(f-r)  <δ> 

 ABYSSAL  0.50±0.03  0.47±0.03  1.74  0.63  -0.98  0.02 

 INPS-Seq  0.50±0.03  0.51±0.03  1.74  0.66  -0.99  0.00 

 PremPS  0.49±0.03  0.48±0.03  1.75  0.67  -0.84  0.06 

 ACDC-NN  0.49±0.03  0.47±0.03  1.74  0.65  -0.98  -0.02 

 ACDC-NN-Seq  0.47±0.03  0.45±0.03  1.76  0.64  -1.00  0.00 

 DDGun3D  0.44±0.03  0.38±0.03  1.87  0.62  -0.96  -0.04 

 INPS3D  0.44±0.03  0.44±0.03  1.85  0.63  -0.45  -0.41 

 DDGun  0.43±0.03  0.42±0.03  2.07  0.62  -0.95  -0.04 

 ThermoNet  0.38±0.03  0.31±0.03  1.84  0.58  -0.84  -0.04 

 Dynamut  0.37±0.03  0.34±0.03  1.86  0.61  -0.56  -0.05 

 PopMusic  0.37±0.03  0.33±0.03  2.00  0.57  -0.33  -0.73 

 MAESTRO  0.36±0.03  0.30±0.03  1.96  0.58  -0.15  -0.57 

 DUET  0.32±0.03  0.31±0.03  2.02  0.56  -0.08  -0.68 

 mCSM  0.29±0.03  0.27±0.03  2.10  0.53  0.01  -0.84 

 I-Mutant3.0-Seq  0.26±0.03  0.26±0.03  2.04  0.51  -0.46  -0.72 

 I-Mutant3.0  0.25±0.03  0.21±0.03  2.09  0.51  0.01  -0.83 

 FoldX  0.24±0.03  0.33±0.03  2.70  0.60  -0.21  -0.53 

 SDM  0.24±0.03  0.21±0.03  2.09  0.56  -0.46  -0.40 

 MuPro  0.20±0.03  0.19±0.03  2.16  0.50  -0.25  -0.93 

 SAAFEC-Seq  0.20±0.03  0.14±0.03  2.13  0.49  -0.03  -0.83 

 The  values  in  Table  1  were  calculated  from  data  presented  in  (Pancotti  et  al.,  2022).  The  data 
 are symmetrical and sorted by PCC in descending order. 
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 Influence of training set size on the ABYSSAL performance 

 One  of  the  known  limitations  of  neural  networks  is  that  they  require  a  lot  of  data  for  their 
 training.  Thank  to  the  Mega  dataset  containing  376,918  mutations  we  could  train  the  ABYSSAL 
 on  367,858  single  mutations  to  near-to-experimental  accuracy  of  the  ∆∆G-estimates-producing 
 method  (Tsuboyama  et  al.,  2022).  However,  we  wonder  about  the  minimal  dataset  size  for 
 training  the  deep  learning  model  we  chose  here.  To  investigate  the  effect  of  the  training  dataset 
 size,  we  repeated  the  learning  of  our  model  using  smaller  subsets  of  the  original  training 
 dataset  covering  the  wide  range  of  data  points  from  2,441  to  367,858.  The  number  2,441  was 
 chosen  because  it  is  close  to  the  number  of  mutations  in  the  dataset  S2648  containing  2648 
 points, which was very widely used for developing DDG predictors. 

 The  resulting  dependence  of  model’s  performance  on  the  MegaValidation  dataset  and  ∆∆G 
 validation  datasets  are  given  in  Fig.3.  We  see  that  the  performance  on  the  MegaValidation 
 dataset  clearly  improves  with  the  size  reaching  plateau  value  of  0.85  after  87,773  dataset  size. 
 This  means  that  at  35%  sequence  identity  cut-off  our  model  successfully  extracted  all  possible 
 information  already  from  ‘only’  87,773  (24%  of  the  MegaTrain  dataset)  mutations.  Importantly, 
 the  model  trained  on  the  dataset  size  of  2,441  shows  good  (PCC  =  0.80)  but  statistically 
 significantly  lower  performance.  This  should  be  kept  in  mind  when  trying  to  learn 
 state-of-the-art deep learning models on datasets containing low number of mutations. 

 Figure 3  . Dependence of the model performance as a function of the training dataset size. 

 Interestingly,  the  performance  of  ∆∆G  predictions  in  other  datasets  showed  completely  random 
 behavior.  This  could  be  an  extra  sign  that  actual  ∆∆G  values  are  of  different  nature  from  the 
 ∆∆G  estimates  obtained  in  the  Mega  experiment  (Tsuboyama  et  al.,  2022).  However,  the  small 
 sizes  of  the  independent  ∆∆G  datasets  do  not  allow  to  make  any  statistically  justified 
 conclusions (Fig.3). 
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 S2648 

 To  explore  the  perspectives  of  training  our  model  on  small  datasets  for  the  problem  of  ∆∆G 
 prediction  we  trained  our  model  directly  on  the  S2648  dataset.  We  then  made  the 
 cross-validation  of  the  model’s  performance  on  the  MegaValidation  dataset,  and  validations  for 
 the  non-homologous  part  of  the  S669  dataset  containing  411  data  points,  see  Fig.4.  We  see 
 that  the  trained  model,  indeed,  is  performing  worse  on  the  MegaValidation  data  (PCC  =  0.71 
 compared  to  PCC  =  0.80,  see  above),  which  confirms  the  slight  intrinsic  differences  between 
 ∆∆G  estimates  measured  in  the  Mega  dataset  and  actual  ∆∆G  values  measured  directly  by 
 biophysical  methods.  We  also  see  that  the  trained  model  shows  on  S669  dataset  lower  but 
 statistically  indistinguishable  correlation  from  ABYSSAL  (0.48±0.03  vs.  0.50±0.03,  see  Table  2, 
 p-value  of  Fisher  r-to-z  test  0.31).  This  may  mean  that  if  the  amount  of  actual  ∆∆G  values 
 would  be  higher,  our  model  might  achieve  much  better  performance  (compare  with  the  training 
 dataset size dependence in Fig.4). 

 In  the  present  study  we  explored  perspectives  of  the  training  state-of-the-art  deep  learning 
 methods  We  developed  the  method  ABYSSAL  which  shows  the  near-to-experimental 
 performance  for  ∆∆G  prediction  (PCC  =  0.85).  On  the  previous  data  ABYSSAL  shows  lower 
 correlation  (PCC  =  0.50).  We  showed  that  around  ~100,000  data  points  for  taking  advantage  of 
 the  state-of-the-art  deep  learning  methods.  Overall,  our  study  shows  great  perspectives  for 
 developing the deep learning ∆∆G predictors. 
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 Figure  4  .  Performance  of  the  model  trained  on  S2648  (pink)  dataset  and  performance  of  the 
 model trained on MegaTrain (blue) dataset. Same subsets of validation datasets. 
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 Supplementary Tables 
 Table S1.  Training and testing datasets used in the study. The values stated for the dataset 

 before symmetrization. 

 Dataset name  Size 
 Number of 

 proteins 
 Portion of the 
 Mega dataset 

 MegaTrain  367858  388  0.980 

 MegaTest  6043  8  0.016 

 Table S2.  Validation datasets used in the study. The values stated for the dataset before 
 symmetrization. 

 Name 

 Original 
 25% cutoff with 
 Mega dataset 

 25% cutoff with 
 Mega dataset and S2648 

 Size 
 Number of 

 proteins 
 Size 

 Number of 
 proteins 

 Size 
 Number of 

 proteins 

 MegaValidation  3017  8  3017  8  1749  5 

 Myoglobin  134  1  134  1  0  0 

 p53  42  1  42  1  0  0 

 Ssym  342  15  342  15  0  0 

 S669  669  94  420  86  411  84 
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