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Analyzing  biological  data  using  pathways helps identify trends in  data  tied  to  the  function  of a 
network. A large  number of pathway-based  analysis tools have  been  developed  toward  this 
goal. These  pathways are  often  manually curated  and  thus associations are  subject to  the 
biases of the  curator. A potentially attractive  alternative  is to  define  pathways based  on  the 
inherent functionality and  connectivity of the  network itself. Within  metabolism, functionality is 
defined  by the  production  and  consumption  of metabolites, and  connectivity by metabolites 
participating  in  reactions through  common  enzymes. In  this work, we  present an  algorithm, 
termed  MetPath, that calculates pathways for production  and  consumption  of metabolites. We 
show how these  pathways have  attractive  properties, such  as the  ability to  integrate  multiple 
data  types and  weight contribution  of genes within  the  pathway by their functional  contribution  to 
metabolite  production/consumption. Pathways calculated  in  this manner are  condition-specific 
and  thus are  custom tailored  to  the  system of interest, in  contrast to  curated  pathways. We  find 
that these  pathways predict gene  expression  correlation  better compared  to  manually-curated 
pathways. Additionally, we  find  that these  pathways can  be  used  to  understand  gene  expression 
changes between  growth  conditions and  between  cell  types. This work serves to  better 
understand  the  functional  pathway structure  underlying  cell  metabolism and  helps to  enable 
systems analyses of high-throughput data. 
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Introduction 
 

In  the  modern  era  of biology, high-throughput molecular data  such  as genome-scale 
gene  expression  measurements are  ubiquitous. However, this abundance  of data  comes with 
the  challenge  of extracting  knowledge  from the  data, which  is largely responsible  for the  rise  of 
systems biology. As cells are  fundamentally composed  of networks of interacting  molecules, the 
data  analysis challenge  comes down  to  obtaining  an  understanding  of how each  of the  data 
points interacts in  the  context of the  underlying  biochemical  network. Systems biology methods 
of data  analysis can  be  roughly grouped  into  network topology, ontology, and  pathway-based 
methods. Within  metabolism specifically, pathway analysis has played  a  particularly important 
role (Khatri, Sirota, and  Butte  2012), as connections between  enzymes have  clear functional 
objectives in  conversion  of molecules to  energy and  biomass. However, identifying  pathway 
structures that are  best used  to  interpret high-throughput data  remains an  open  challenge. 

Metabolic pathways have  historically been  defined  manually based  on  an  intuitive 
understanding  of the  relationship  and  function  of particular sets of enzymes. Classical  examples 
such  as glycolysis and  the  TCA cycle  appear in  textbooks and  databases with  well-established 
structure  and  content(Kanehisa  et al. 2017; Subramanian  et al. 2005). However, 
canonically-defined  pathways are  not necessarily the  most optimal  pathways for the  purpose  of 
understanding  organism function, and  they do  not generally take  into  account the  myriad 
variations of pathways that exist across the  phylogenetic tree  nor the  condition-specific use  of 
pathways. As an  alternative  to  manually-defined  pathways, a  number of methods have  been 
developed  to  algorithmically calculated  pathways from the  metabolic network structure 
directly(Bordbar et al. 2014). These  algorithmic methods often  have  a  strict numerical  objective, 
such  as the  extreme  pathways that are  a  non-negative  basis for the  nullspace  of the 
stoichiometric matrix of the  metabolic network(Wiback, Mahadevan, and  Palsson  2003). Still, 
these  numerical  objectives may not be  the  most practical  nor the  most effective  pathways to 
interpret high-throughput data. 

The  function  of a  metabolic network can  reasonably be  defined  as the  production  and 
degradation  of metabolites. To  more  rigorously define  the  machinery that accomplishes these 
functions in  a  systems context, we  can  define  pathways, or sequential  sets of enzymes, that are 
involved  in  the  production  and/or degradation  of each  metabolite  under a  defined  metabolic flux 
state. An  intuitive  definition  of a  metabolic pathway thus is a  series of consecutive  reactions that 
result in  the  production  of a  metabolite  or consumption  of a  metabolite. This definition  inherently 
assumes that the  flux directions through  the  network are  defined, but in  fact these  are  not fixed 
across conditions. A set of reactions may be  involved  in  consumption  of a  metabolite  under one 
condition, and  production  of the  metabolite  under another condition, for example  the  relationship 
between  reactions in  glycolysis and  glucose  under glycolytic compared  to  gluconeogenic 
conditions. Thus, the  functional  interpretation  of changes in  enzyme  levels depends on  the  flux 
directions in  the  network. Furthermore, the  relative  importance  of enzyme  changes depends on 
the  contribution  of a  pathway to  a  metabolic function. As an  example, the  pathways of glycolysis 
and  glycogen  synthesis both  consume  glucose. However, glycolysis operates at a  rate 
approximately 100x that of glycogen  synthesis. Thus, a  10% increase  in  expression  of glycolytic 
enzymes would  greatly outweigh  a  10% decrease  in  glycogen  synthesis, resulting  in  an 
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estimated  net decrease  in  the  metabolic capability to  consume  glucose. We  can  use  this type  of 
analysis to  examine  how gene  expression  has changed  in  these  pathways in  order to  to  identify 
coordinated  expression  shifts that serve  specific metabolic functions in  terms of increased  or 
decreased  capacity for production  or degradation  of specific metabolites. 

In  this work, we  develop  a  constraint-based  modeling  method, termed  MetPath, to 
calculate  condition-specific production  and  consumption  pathways for the  purpose  of differential 
analysis of gene  expression  data. Using  metabolic modeling, we  can  calculate  metabolic 
pathways for specific flux conditions, defining  weighted, context-specific pathways defined  in 
terms of metabolic functions, i.e. production/consumption  of specific metabolites. We  compare 
this method  qualitatively and  quantitatively to  existing  pathway databases, most notably KEGG, 
and  find  that MetPath  pathways show higher intergene  correlation  within  pathways across 
conditions in  E. coli K12  MG1655. We  examine  the  performance  of MetPath  on  two  case 
studies in  E. coli, looking  at the  tryptophan  pathway during  aerobic growth  on  glucose  with  and 
without tryptophan  supplementation  as well  as glucose  growth  in  the  aerobic-anaerobic shift. 
Finally, we  look at the  ability of MetPath  pathways to  interpret cell-specific differences in  gene 
expression, examining  specifically neurotransmitter pathway expression  in  human  neural  cell 
subtypes based  on  single  cell  transcriptomics data. 
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Results 
 
Calculation of condition-specific pathways for production and consumption of metabolites 
 

The  MetPath  computational  workflow to  analyze  the  change  in  metabolic production  and 
degradation  pathways in  the  network is as follows (Figure  1). First, we  define  an  estimated 
metabolic state  based  on  established  metabolite  uptakes and  energy production  estimates. We 
then  define  production  and  degradation  pathways for each  metabolite  in  the  network using  the 
network structure  and  constraint-based  pathway definition  algorithms(Orth, Thiele, and  Palsson 
2010). Finally, we  create  an  aggregate  perturbation  score  for each  production  and  degradation 
pathway based  on  the  fold  change  of significantly changed  metabolic genes within  each 
pathway. Perturbed  pathways thus represent network-integrated  gene  expression  changes in 
production  or degradation  potential  of specific metabolites. 

As the  definition  of a  metabolic state  depends on  the  condition  of interest, we  defined  a 
set of standard  conditions that may be  of interest to  users and  calculated  MetPath  pathways for 
each  of these. We  utilized  the  iJO1366  E. coli  genome-scale  metabolic network(Orth  et al. 
2011) and  calculate  flux states for 40  conditions, altering  carbon  and  nitrogen  source  as well  as 
terminal  electron  acceptor. We  combined  the  MetPath  pathways for each  metabolite  in  the 
network for these  conditions into  a  single  database, combining  pathways that were  shared 
between  conditions (MCC between  the  pathways greater than  a  cutoff) and  leaving  dissimilar 
pathways separate. The  resulting  pathway database  consists of a  set of condition-specific 
production  and  consumption  pathways for each  metabolite  in  the  network. This database  serves 
as a  basis for pathway-based  analysis of gene  expression  data  across diverse  conditions. 

 
Comparison of pathway behavior to  other pathway databases 

 
To  assess the  ability of the  MetPath  E. coli pathway database  to  interpret differential 

gene  expression, we  gathered  213  gene  expression  samples from E. coli K12  MG1655  grown 
under various conditions and  genetic perturbations. We  mapped  this gene  expression  data  onto 
the  pathway database  and  examined  co-expression  of genes within  pathways. We  calculated 
the  correlation  of genes within  pathways compared  to  genes that do  not share  pathways (Figure 
2A) and  compared  to  pathways extracted  from the  KEGG database. We  found  that genes within 
MetPath  pathways are  substantially more  correlated. This correlation  is dependent upon  the 
pre-defined  length  of MetPath  pathway, with  shorter distances associated  with  higher 
correlations. This indicates that co-expression  of genes along  metabolic pathways tends to  be 
highly colocalized. As KEGG pathways tend  to  be  significantly longer than  MetPath  pathways, 
this colocalization  bias leads to  a  lower total  co-expression  of genes in  KEGG pathways. 
Additionally, we  found  that higher expressed  genes tended  to  be  more  co-expressed  within 
pathways (Figure  2B). This could  indicate  either tighter gene  expression  regulation  of highly 
expressed  genes, or clearer correlation  signal  in  highly expressed  genes compared  with  low 
expressed  genes due  to  noise  associated  with  measuring  the  latter. 
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MetPath pathways reveal coordinated expression changes with shifts in environment 
 

We  then  were  interested  in  determining  whether MetPath  pathways can  identify 
functional  differences between  metabolic states based  on  gene  expression  data. Again  utilizing 
available  gene  expression  data  for E. coli, we  examined  two  comparisons. First, we  looked  at 
the  MetPath  production  and  consumption  pathways for tryptophan  for E. coli grown  aerobic on 
glucose  with  and  without tryptophan  supplementation  (Figure  3A). We  found  that due  to  the 
change  in  underlying  metabolic flux state  calculated  with  flux balance  analysis for each 
condition, the  MetPath  pathways differ substantially between  the  glucose  only case, where 
tryptophan  must be  synthesized  de novo, and  the  tryptophan  supplemented  case. This condition 
change  is associated  with  both  a  clear expression  change  that is observed  through  the  MetPath 
pathway scores as well  as a  known  shift in  activity of the  transcription  factor regulating  this 
pathway. Second, we  examined  central  energy and  oxidative  metabolism during  the 
aerobic-anaerobic shift in  E. coli. Looking  specifically at the  pyruvate  pathway, a  key branch 
point in  the  oxidative/glycolytic shift (Figure  3B), we  once  again  see  a  coordinated  multi-gene 
response  along  MetPath  pathways. This indicates that a  clear expression  signature  exists that 
can  be  mapped  onto  the  metabolic network through  MetPath  pathways to  obtain  an  integrated 
signature  with  potentially greater statistical  power than  single  gene-based  expression  analyses. 
 
MetPath pathways classify neural cells by neurotransmitter pathway expression 
 

Finally, we  wanted  to  determine  whether MetPath  pathways could  identify functional 
metabolic differences across entirely different cell  types using  their gene  expression  alone. To 
this end, we  utilized  single  cell  gene  expression  data  from a  set of 33  cell  subtypes identified 
from human  brain  samples (Lake  et al. 2016). Given  that the  samples originated  from the 
human  brain, we  were  interested  specifically in  whether MetPath  could  identify differential  use  of 
metabolic pathways associated  with  neurotransmitters in  these  cell  subtypes. We  collected 
pathways for a  representative  set of neurotransmitters and  mapped  expression  data  for the 
neural  cell  subtypes onto  these  pathways in  the  global  human  metabolic network reconstruction 
Recon  1 (Duarte  et al. 2007) (Figure  4A). Encouragingly, we  observed  clear differentiation  of cell 
subtypes based  on  expression  of neurotransmitter pathways. These  neurotransmitters matched 
canonical  use  within  particular neural  cell  subtypes, such  as the  association  of GABA with 
inhibitory neurons and  glutamate  with  excitatory neurons. Additionally, we  identified  unusual 
neurotransmitter use  among  particular subtypes of neurons, such  as an  up-regulation  of the  NO 
synthesis pathway among  particular subtypes of inhibitory neurons. Again  with  the  goal  of 
comparing  integrated  pathway analysis with  single  gene  analysis, we  extracted  the  glutamate 
pathway as a  case  study (Figure  4B). We  compared  expression  of the  glutamate  pathway within 
excitatory neurons where  this pathway is canonically activate  and  endothelial  cells where  its role 
is unclear. As with  E. coli, we  observed  that there  is a  coordinated  multi-gene  signature  of 
up-regulation  of glutamate  production  in  the  excitatory neuron. This signature  includes an 
up-regulation  of glutamate  production  and  secretion  genes and  down-regulation  of the  primary 
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glutamate  degradation  enzyme  Glutamate  Dehydrogenase  was observed, consistent with  the 
use  of glutamate  as an  excitatory neurotransmitter. Thus, it appears that the  integrated  analysis 
using  MetPath  pathways reveals additional  coordination  that would  be  more  difficult to  see 
based  on  single  gene  analysis. 
 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2017. ; https://doi.org/10.1101/202226doi: bioRxiv preprint 

https://doi.org/10.1101/202226
http://creativecommons.org/licenses/by/4.0/


Discussion 
 

In  this work, we  developed  a  constraint-based  modeling  method, termed  MetPath, to 
calculate  production  and  consumption  pathways for the  purpose  of differential  analysis of gene 
expression  data. We  compared  this method  qualitatively and  quantitatively to  existing  pathway 
databases, most notably KEGG, and  found  that MetPath  pathways showed  higher intergene 
correlation  within  pathways across conditions in  E. coli K12  MG1655. We  examined  the 
performance  of MetPath  on  two  case  studies in  E. coli, looking  at the  tryptophan  pathway during 
aerobic growth  on  glucose  with  and  without tryptophan  supplementation  as well  as glucose 
growth  in  the  aerobic-anaerobic shift. Finally, we  looked  at the  ability of MetPath  pathways to 
interpret cell-specific differences in  gene  expression, examining  specifically neurotransmitter 
pathway expression  in  human  neural  cell  subtypes based  on  single  cell  transcriptomics data. 

The  basis for using  a  metabolic pathway to  understand  the  purpose  of differential  gene 
expression  is rooted  in  the  assumption  that the  expression  difference  is associated  with  a 
change  in  flux through  the  metabolic pathway. The  link between  gene  expression  and  metabolic 
flux, which  is the  variable  of greatest interest, is known  to  be  indirect at best (Chubukov et al. 
2013). mRNA and  enzyme  levels are  known  to  have  only modest correlation (Fendt et al. 2010), 
and  the  flux catalyzed  per unit of enzyme  depends also  on  metabolite  levels, which  can  change 
between  conditions(Bennett et al. 2009). Thus, rather than  attempting  to  estimate  differential 
flux levels directly using  gene  expression  changes, we  decided  to  ask the  more  addressable 
question  of how gene  expression  changes have  made  different ‘functions’  of the  metabolic 
network more  or less difficult, on  the  assumption  that mRNA changes and  enzyme  changes are 
positively correlated  (Greenbaum et al. 2003). 

We  examined  the  performance  of MetPath  pathways related  to  KEGG pathways in  in 
predicting  gene  correlation  primarily with  the  goal  of displaying  the  qualitative  difference 
between  the  behavior of the  pathways. This study was not intended  to  be  a  rigorous comparison 
of various pathway databases and  pathway algorithms to  determine  the  best performing  set of 
pathways. Others have  conducted  such  analyses(Bordbar et al. 2014), and  sufficient increases 
in  available  validated  data  have  not been  made  to  warrant revisiting  this effort. However, the 
result that expression  among  genes was more  correlated  within  MetPath  pathways than  among 
KEGG pathways across conditions lends credibility to  the  hypothesis that the  localization  of 
these  pathways around  production  and  consumption  of individual  metabolites, as well  as the 
condition-specific nature  of the  pathways, may yield  some  tangible  benefits when  performing 
pathway-based  data  analyses. 

To  provide  real  case  studies demonstrating  the  utility of MetPath  pathways in 
understanding  the  functional  significance  of gene  expression  differences, we  looked  at gene 
expression  from E. coli grown  under different conditions as well  as gene  expression  from 
different cell  subtypes in  the  human  brain. In  each  case, we  found  that highly perturbed 
pathways were  directly tied  to  the  functional  difference  between  conditions or cell  type. A similar 
result may be  obtained  by looking  at expression  of individual  genes in  these  cases. However, 
we  observed  a  coordinated  gene  expression  different among  several  genes in  pathways in  each 
case. Thus, statistical  testing  around  this integrated  gene  expression  change  may yield 
additional  power compared  to  non-pathway-based  analyses. 
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This work may be  viewed  as one  more  study in  an  increasingly long  line  of pathway 
definitions for understanding  the  structure  of metabolic networks. The  benefits of the  MetPath 
algorithm are  that these  pathways are  1) automatically calculated, 2) intuitively defined, 3) 
condition  specific, and  4) numerically tractable. We  believe  that this particular set of traits makes 
these  pathways useful  compared  to  other commonly used  pathway sets, and  thus this algorithm 
may be  broadly applicable  to  new studies and  organisms. 
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Methods 
 
Overview of MetPath pathway calculation and differential gene expression analysis 

We  define  the  functions of a  metabolic network as the  production  and  degradation  of 
metabolites. To  more  rigorously define  the  machinery that accomplishes these  functions in  a 
systems context, we  can  define  pathways, or sequential  sets of enzymes, that are  involved  in 
the  production  and/or degradation  of each  metabolite  under a  defined  metabolic flux state. We 
can  then  examine  how gene  expression  has changed  in  these  pathways to  identify coordinated 
expression  shifts that serve  specific metabolic functions in  terms of increased  or decreased 
capacity for production  or degradation  of specific metabolites. 
 
Calculation of a condition-specific flux state 
 To  calculate  state-specific production  and  degradation  pathways, we  first calculate  the 
estimated  metabolic state. We  solve  a  flux balance  analysis problem on  the  metabolic model 
constrained  by estimate  metabolite  uptakes. The  flux state  is calculated  by minimizing  the  total 
length  of the  flux vector subject to  the  previous constraints, to  represent the  principle  that the 
cell  will  try to  achieve  metabolic function  using  as little  enzyme  expenditure  as possible  to 
minimize  precursor costs.  The  purpose  of the  estimated  flux state  is not to  have  fully 
quantitatively accurate  flux values for each  reaction, but rather to  identify likely reaction 
directions and  relative  pathway flux values given  established  literature  on  aspects such  as 
metabolite  synthesis versus de novo uptake  and  relative  energy production  between  glycolysis 
and  beta  oxidation. These  relative  weightings and  pathway directions add  important information 
when  calculating  production  and  degradation  pathways, as they lend  context to  the 
interpretation  of a  gene  expression  change  as it relates to  the  potential  for production  and 
degradation  of different metabolites in  the  network. 
 
Calculation of production and degradation pathways for each metabolite 

Then  using  this estimated  flux state, we  calculate  weighted  production  and  degradation 
pathways for each  metabolite  as follows. First, the  reactions that carry flux in  the  estimated  flux 
state  are  identified. Then, a  desired  pathway length  D is defined. For each  metabolite, reactions 
that are  within  the  distance  D by a  forward  traversal  (in  the  case  of degradation) or reverse 
traversal  (in  the  case  of production) of the  flux carrying  network are  identified. For non-cofactor 
metabolites, cofactors were  first removed  from the  network before  traversal. The  production  or 
degradation  pathway subnetworks are  then  extracted  and  mass balanced  by adding 
compensating  input and  output reactions for unbalanced  metabolites. These  subnetworks are 
then  broken  down  into  elementary modes using  a  published  algorithm(Chan  and  Ji  2011). 
Elementary modes are  mass balanced  pathways with  weightings that when  summed 
recapitulate  the  full  flux distribution. Elementary mode  pathways that contain  the  current 
metabolite  are  then  extracted  and  summed  to  create  a  single  weighted  production  or 
degradation  pathway for the  metabolite  representing  the  contribution  of reactions within  a 
distance  D to  the  production  or degradation  of the  metabolite  at the  estimated  flux state. 
 
Construction of aggregate pathway perturbation scores 
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To  construct perturbed  production  and  degradation  scores for each  metabolite, we  first 
define  reaction  fold  change  scores by averaging  the  fold  change  for all  genes that are  involved 
in  the  catalysis of each  reaction. We  then  define  production  and  degradation  pathway 
perturbation  scores for each  metabolite  by calculating  a  weighted  average  of the  pathways with 
their corresponding  reaction  expression  fold  changes. The  weightings are  assigned  according  to 
the  reaction  weightings within  each  pathway. These  final  production  and  degradation  scores for 
each  metabolite  represent the  expression  change  in  reactions involved  in  the  production  and 
degradation  of the  metabolite, respectively, weighted  by the  degree  of contribution  of each 
reaction  to  the  metabolite  production/degradation  at the  estimated  flux state. 
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Figures 
 

 
 
Figure  1: Overview of the  MetPath algorithm. a) MetPath  is a  constraint-based  modeling 
method  to  calculate  pathways for the  production  and  consumption  of each  metabolite  in  the 
network. The  algorithm begins by calculating  a  flux state  for a  condition  of interest. Then, for 
each  metabolite, a  subnetwork around  the  metabolite  that is active  based  on  the  flux state  for 
the  condition  is extracted. This subnetwork is then  broken  down  into  production  pathways and 
consumption  pathways, weighted  by their flux contribution, using  elementary modes. b) To 
interpret differential  gene  expression  data  using  MetPath  pathways, a  reaction  score  is 
calculated  for each  reaction  in  the  pathway as the  multiplication  of the  differential  gene 
expression  for genes catalyzing  the  reaction  with  the  weighting  on  that reaction  within  the 
pathway. These  reaction  scores are  summed  and  divided  by the  number of reactions to  obtain  a 
pathway score. A value  of 1  indicates unchanged  expression  for the  pathway, greater than  one 
indicates an  up-regulation  of genes in  the  pathway, and  less than  one  indicates a 
down-regulation  of genes in  the  pathway. 
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Figure  2: Comparison of MetPath and KEGG pathways  in predicting correlated gene 
expression correlation. a) Histograms of the  correlation  of gene  expression  within  pathways 
for KEGG (red) and  MetPath  (blue) pathways. Expression  data  was obtained  from 213  samples 
under various conditions in  E. coli  K12  MG1655.  b) Gene  correlation  within  pathways as a 
function  of expression  level  of the  genes. Highly expressed  genes show greater correlation  with 
each  other within  pathways that low expressed  genes. 
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Figure  3: MetPath pathways  highlight metabolic  shifts  due  to growth condition. a) 
MetPath  pathways under two  conditions, glucose  growth  and  tryptophan  supplementation, 
reveal  differential  pathway definition  of tryptophan  production  and  consumption  in  a 
condition-specific manner. b) Differential  expression  between  aerobic growth  and  anaerobic 
growth  of E. coli revealed  by MetPath  scores for pyruvate. 
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Figure  4: MetPath reveals  cell-specific  expression of neurotransmitter  use  in single  cell 
neural gene  expression data. a) Single  cell  gene  expression  data  mapped  to  metabolic 
pathways for neurotransmitter production  for a  representative  set of neurotransmitters. 
Subtypes of neural  cells revealed  differential  expression  of neurotransmitters consistent with 
canonical  neurotransmitter use. b) MetPath  scores for glutamate  production  in  excitatory neural 
cells compared  with  endothelial  cells. A coordinated  up-regulation  of glutamate  production  and 
secretion  genes and  down-regulation  of the  primary glutamate  degradation  enzyme  Glutamate 
Dehydrogenase  was observed, consistent with  the  use  of glutamate  as an  excitatory 
neurotransmitter. 
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