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Analyzing biological data using pathways helps identify trends in data tied to the function of a
network. A large number of pathway-based analysis tools have been developed toward this
goal. These pathways are often manually curated and thus associations are subject to the
biases of the curator. A potentially attractive alternative is to define pathways based on the
inherent functionality and connectivity of the network itself. Within metabolism, functionality is
defined by the production and consumption of metabolites, and connectivity by metabolites
participating in reactions through common enzymes. In this work, we present an algorithm,
termed MetPath, that calculates pathways for production and consumption of metabolites. We
show how these pathways have attractive properties, such as the ability to integrate multiple
data types and weight contribution of genes within the pathway by their functional contribution to
metabolite production/consumption. Pathways calculated in this manner are condition-specific
and thus are custom tailored to the system of interest, in contrast to curated pathways. We find
that these pathways predict gene expression correlation better compared to manually-curated
pathways. Additionally, we find that these pathways can be used to understand gene expression
changes between growth conditions and between cell types. This work serves to better
understand the functional pathway structure underlying cell metabolism and helps to enable
systems analyses of high-throughput data.
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Introduction

In the modern era of biology, high-throughput molecular data such as genome-scale
gene expression measurements are ubiquitous. However, this abundance of data comes with
the challenge of extracting knowledge from the data, which is largely responsible for the rise of
systems biology. As cells are fundamentally composed of networks of interacting molecules, the
data analysis challenge comes down to obtaining an understanding of how each of the data
points interacts in the context of the underlying biochemical network. Systems biology methods
of data analysis can be roughly grouped into network topology, ontology, and pathway-based
methods. Within metabolism specifically, pathway analysis has played a particularly important
role(Khatri, Sirota, and Butte 2012), as connections between enzymes have clear functional
objectives in conversion of molecules to energy and biomass. However, identifying pathway
structures that are best used to interpret high-throughput data remains an open challenge.

Metabolic pathways have historically been defined manually based on an intuitive
understanding of the relationship and function of particular sets of enzymes. Classical examples
such as glycolysis and the TCA cycle appear in textbooks and databases with well-established
structure and content(Kanehisa et al. 2017; Subramanian et al. 2005). However,
canonically-defined pathways are not necessarily the most optimal pathways for the purpose of
understanding organism function, and they do not generally take into account the myriad
variations of pathways that exist across the phylogenetic tree nor the condition-specific use of
pathways. As an alternative to manually-defined pathways, a number of methods have been
developed to algorithmically calculated pathways from the metabolic network structure
directly(Bordbar et al. 2014). These algorithmic methods often have a strict numerical objective,
such as the extreme pathways that are a non-negative basis for the nullspace of the
stoichiometric matrix of the metabolic network(Wiback, Mahadevan, and Palsson 2003). Still,
these numerical objectives may not be the most practical nor the most effective pathways to
interpret high-throughput data.

The function of a metabolic network can reasonably be defined as the production and
degradation of metabolites. To more rigorously define the machinery that accomplishes these
functions in a systems context, we can define pathways, or sequential sets of enzymes, that are
involved in the production and/or degradation of each metabolite under a defined metabolic flux
state. An intuitive definition of a metabolic pathway thus is a series of consecutive reactions that
result in the production of a metabolite or consumption of a metabolite. This definition inherently
assumes that the flux directions through the network are defined, but in fact these are not fixed
across conditions. A set of reactions may be involved in consumption of a metabolite under one
condition, and production of the metabolite under another condition, for example the relationship
between reactions in glycolysis and glucose under glycolytic compared to gluconeogenic
conditions. Thus, the functional interpretation of changes in enzyme levels depends on the flux
directions in the network. Furthermore, the relative importance of enzyme changes depends on
the contribution of a pathway to a metabolic function. As an example, the pathways of glycolysis
and glycogen synthesis both consume glucose. However, glycolysis operates at a rate
approximately 100x that of glycogen synthesis. Thus, a 10% increase in expression of glycolytic
enzymes would greatly outweigh a 10% decrease in glycogen synthesis, resulting in an
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estimated net decrease in the metabolic capability to consume glucose. We can use this type of
analysis to examine how gene expression has changed in these pathways in order to to identify
coordinated expression shifts that serve specific metabolic functions in terms of increased or
decreased capacity for production or degradation of specific metabolites.

In this work, we develop a constraint-based modeling method, termed MetPath, to
calculate condition-specific production and consumption pathways for the purpose of differential
analysis of gene expression data. Using metabolic modeling, we can calculate metabolic
pathways for specific flux conditions, defining weighted, context-specific pathways defined in
terms of metabolic functions, i.e. production/consumption of specific metabolites. We compare
this method qualitatively and quantitatively to existing pathway databases, most notably KEGG,
and find that MetPath pathways show higher intergene correlation within pathways across
conditions in E. coli K12 MG1655. We examine the performance of MetPath on two case
studies in E. coli, looking at the tryptophan pathway during aerobic growth on glucose with and
without tryptophan supplementation as well as glucose growth in the aerobic-anaerobic shift.
Finally, we look at the ability of MetPath pathways to interpret cell-specific differences in gene
expression, examining specifically neurotransmitter pathway expression in human neural cell
subtypes based on single cell transcriptomics data.
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Results
Calculation of condition-specific pathways for production and consumption of metabolites

The MetPath computational workflow to analyze the change in metabolic production and
degradation pathways in the network is as follows (Figure 1). First, we define an estimated
metabolic state based on established metabolite uptakes and energy production estimates. We
then define production and degradation pathways for each metabolite in the network using the
network structure and constraint-based pathway definition algorithms(Orth, Thiele, and Palsson
2010). Finally, we create an aggregate perturbation score for each production and degradation
pathway based on the fold change of significantly changed metabolic genes within each
pathway. Perturbed pathways thus represent network-integrated gene expression changes in
production or degradation potential of specific metabolites.

As the definition of a metabolic state depends on the condition of interest, we defined a
set of standard conditions that may be of interest to users and calculated MetPath pathways for
each of these. We utilized the iJO1366 E. coli genome-scale metabolic network(Orth et al.
2011) and calculate flux states for 40 conditions, altering carbon and nitrogen source as well as
terminal electron acceptor. We combined the MetPath pathways for each metabolite in the
network for these conditions into a single database, combining pathways that were shared
between conditions (MCC between the pathways greater than a cutoff) and leaving dissimilar
pathways separate. The resulting pathway database consists of a set of condition-specific
production and consumption pathways for each metabolite in the network. This database serves
as a basis for pathway-based analysis of gene expression data across diverse conditions.

Comparison of pathway behavior to other pathway databases

To assess the ability of the MetPath E. coli pathway database to interpret differential
gene expression, we gathered 213 gene expression samples from E. coli K12 MG1655 grown
under various conditions and genetic perturbations. We mapped this gene expression data onto
the pathway database and examined co-expression of genes within pathways. We calculated
the correlation of genes within pathways compared to genes that do not share pathways (Figure
2A) and compared to pathways extracted from the KEGG database. We found that genes within
MetPath pathways are substantially more correlated. This correlation is dependent upon the
pre-defined length of MetPath pathway, with shorter distances associated with higher
correlations. This indicates that co-expression of genes along metabolic pathways tends to be
highly colocalized. As KEGG pathways tend to be significantly longer than MetPath pathways,
this colocalization bias leads to a lower total co-expression of genes in KEGG pathways.
Additionally, we found that higher expressed genes tended to be more co-expressed within
pathways (Figure 2B). This could indicate either tighter gene expression regulation of highly
expressed genes, or clearer correlation signal in highly expressed genes compared with low
expressed genes due to noise associated with measuring the latter.
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MetPath pathways reveal coordinated expression changes with shifts in environment

We then were interested in determining whether MetPath pathways can identify
functional differences between metabolic states based on gene expression data. Again utilizing
available gene expression data for E. coli, we examined two comparisons. First, we looked at
the MetPath production and consumption pathways for tryptophan for E. coli grown aerobic on
glucose with and without tryptophan supplementation (Figure 3A). We found that due to the
change in underlying metabolic flux state calculated with flux balance analysis for each
condition, the MetPath pathways differ substantially between the glucose only case, where
tryptophan must be synthesized de novo, and the tryptophan supplemented case. This condition
change is associated with both a clear expression change that is observed through the MetPath
pathway scores as well as a known shift in activity of the transcription factor regulating this
pathway. Second, we examined central energy and oxidative metabolism during the
aerobic-anaerobic shift in E. coli. Looking specifically at the pyruvate pathway, a key branch
point in the oxidative/glycolytic shift (Figure 3B), we once again see a coordinated multi-gene
response along MetPath pathways. This indicates that a clear expression signature exists that
can be mapped onto the metabolic network through MetPath pathways to obtain an integrated
signature with potentially greater statistical power than single gene-based expression analyses.

MetPath pathways classify neural cells by neurotransmitter pathway expression

Finally, we wanted to determine whether MetPath pathways could identify functional
metabolic differences across entirely different cell types using their gene expression alone. To
this end, we utilized single cell gene expression data from a set of 33 cell subtypes identified
from human brain samples (Lake et al. 2016). Given that the samples originated from the
human brain, we were interested specifically in whether MetPath could identify differential use of
metabolic pathways associated with neurotransmitters in these cell subtypes. We collected
pathways for a representative set of neurotransmitters and mapped expression data for the
neural cell subtypes onto these pathways in the global human metabolic network reconstruction
Recon 1(Duarte et al. 2007) (Figure 4A). Encouragingly, we observed clear differentiation of cell
subtypes based on expression of neurotransmitter pathways. These neurotransmitters matched
canonical use within particular neural cell subtypes, such as the association of GABA with
inhibitory neurons and glutamate with excitatory neurons. Additionally, we identified unusual
neurotransmitter use among particular subtypes of neurons, such as an up-regulation of the NO
synthesis pathway among particular subtypes of inhibitory neurons. Again with the goal of
comparing integrated pathway analysis with single gene analysis, we extracted the glutamate
pathway as a case study (Figure 4B). We compared expression of the glutamate pathway within
excitatory neurons where this pathway is canonically activate and endothelial cells where its role
is unclear. As with E. coli, we observed that there is a coordinated multi-gene signature of
up-regulation of glutamate production in the excitatory neuron. This signature includes an
up-regulation of glutamate production and secretion genes and down-regulation of the primary
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glutamate degradation enzyme Glutamate Dehydrogenase was observed, consistent with the
use of glutamate as an excitatory neurotransmitter. Thus, it appears that the integrated analysis

using MetPath pathways reveals additional coordination that would be more difficult to see
based on single gene analysis.
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Discussion

In this work, we developed a constraint-based modeling method, termed MetPath, to
calculate production and consumption pathways for the purpose of differential analysis of gene
expression data. We compared this method qualitatively and quantitatively to existing pathway
databases, most notably KEGG, and found that MetPath pathways showed higher intergene
correlation within pathways across conditions in E. coli K12 MG1655. We examined the
performance of MetPath on two case studies in E. coli, looking at the tryptophan pathway during
aerobic growth on glucose with and without tryptophan supplementation as well as glucose
growth in the aerobic-anaerobic shift. Finally, we looked at the ability of MetPath pathways to
interpret cell-specific differences in gene expression, examining specifically neurotransmitter
pathway expression in human neural cell subtypes based on single cell transcriptomics data.

The basis for using a metabolic pathway to understand the purpose of differential gene
expression is rooted in the assumption that the expression difference is associated with a
change in flux through the metabolic pathway. The link between gene expression and metabolic
flux, which is the variable of greatest interest, is known to be indirect at best (Chubukov et al.
2013). mRNA and enzyme levels are known to have only modest correlation(Fendt et al. 2010),
and the flux catalyzed per unit of enzyme depends also on metabolite levels, which can change
between conditions(Bennett et al. 2009). Thus, rather than attempting to estimate differential
flux levels directly using gene expression changes, we decided to ask the more addressable
question of how gene expression changes have made different ‘functions’ of the metabolic
network more or less difficult, on the assumption that mMRNA changes and enzyme changes are
positively correlated (Greenbaum et al. 2003).

We examined the performance of MetPath pathways related to KEGG pathways in in
predicting gene correlation primarily with the goal of displaying the qualitative difference
between the behavior of the pathways. This study was not intended to be a rigorous comparison
of various pathway databases and pathway algorithms to determine the best performing set of
pathways. Others have conducted such analyses(Bordbar et al. 2014), and sufficient increases
in available validated data have not been made to warrant revisiting this effort. However, the
result that expression among genes was more correlated within MetPath pathways than among
KEGG pathways across conditions lends credibility to the hypothesis that the localization of
these pathways around production and consumption of individual metabolites, as well as the
condition-specific nature of the pathways, may yield some tangible benefits when performing
pathway-based data analyses.

To provide real case studies demonstrating the utility of MetPath pathways in
understanding the functional significance of gene expression differences, we looked at gene
expression from E. coli grown under different conditions as well as gene expression from
different cell subtypes in the human brain. In each case, we found that highly perturbed
pathways were directly tied to the functional difference between conditions or cell type. A similar
result may be obtained by looking at expression of individual genes in these cases. However,
we observed a coordinated gene expression different among several genes in pathways in each
case. Thus, statistical testing around this integrated gene expression change may yield
additional power compared to non-pathway-based analyses.
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This work may be viewed as one more study in an increasingly long line of pathway
definitions for understanding the structure of metabolic networks. The benefits of the MetPath
algorithm are that these pathways are 1) automatically calculated, 2) intuitively defined, 3)
condition specific, and 4) numerically tractable. We believe that this particular set of traits makes
these pathways useful compared to other commonly used pathway sets, and thus this algorithm
may be broadly applicable to new studies and organisms.
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Methods

Overview of MetPath pathway calculation and differential gene expression analysis

We define the functions of a metabolic network as the production and degradation of
metabolites. To more rigorously define the machinery that accomplishes these functions in a
systems context, we can define pathways, or sequential sets of enzymes, that are involved in
the production and/or degradation of each metabolite under a defined metabolic flux state. We
can then examine how gene expression has changed in these pathways to identify coordinated
expression shifts that serve specific metabolic functions in terms of increased or decreased
capacity for production or degradation of specific metabolites.

Calculation of a condition-specific flux state

To calculate state-specific production and degradation pathways, we first calculate the
estimated metabolic state. We solve a flux balance analysis problem on the metabolic model
constrained by estimate metabolite uptakes. The flux state is calculated by minimizing the total
length of the flux vector subject to the previous constraints, to represent the principle that the
cell will try to achieve metabolic function using as little enzyme expenditure as possible to
minimize precursor costs. The purpose of the estimated flux state is not to have fully
quantitatively accurate flux values for each reaction, but rather to identify likely reaction
directions and relative pathway flux values given established literature on aspects such as
metabolite synthesis versus de novo uptake and relative energy production between glycolysis
and beta oxidation. These relative weightings and pathway directions add important information
when calculating production and degradation pathways, as they lend context to the
interpretation of a gene expression change as it relates to the potential for production and
degradation of different metabolites in the network.

Calculation of production and degradation pathways for each metabolite

Then using this estimated flux state, we calculate weighted production and degradation
pathways for each metabolite as follows. First, the reactions that carry flux in the estimated flux
state are identified. Then, a desired pathway length D is defined. For each metabolite, reactions
that are within the distance D by a forward traversal (in the case of degradation) or reverse
traversal (in the case of production) of the flux carrying network are identified. For non-cofactor
metabolites, cofactors were first removed from the network before traversal. The production or
degradation pathway subnetworks are then extracted and mass balanced by adding
compensating input and output reactions for unbalanced metabolites. These subnetworks are
then broken down into elementary modes using a published algorithm(Chan and Ji 2011).
Elementary modes are mass balanced pathways with weightings that when summed
recapitulate the full flux distribution. Elementary mode pathways that contain the current
metabolite are then extracted and summed to create a single weighted production or
degradation pathway for the metabolite representing the contribution of reactions within a
distance D to the production or degradation of the metabolite at the estimated flux state.

Construction of aggregate pathway perturbation scores
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To construct perturbed production and degradation scores for each metabolite, we first
define reaction fold change scores by averaging the fold change for all genes that are involved
in the catalysis of each reaction. We then define production and degradation pathway
perturbation scores for each metabolite by calculating a weighted average of the pathways with
their corresponding reaction expression fold changes. The weightings are assigned according to
the reaction weightings within each pathway. These final production and degradation scores for
each metabolite represent the expression change in reactions involved in the production and
degradation of the metabolite, respectively, weighted by the degree of contribution of each
reaction to the metabolite production/degradation at the estimated flux state.
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Figure 1: Overview of the MetPath algorithm. a) MetPath is a constraint-based modeling
method to calculate pathways for the production and consumption of each metabolite in the
network. The algorithm begins by calculating a flux state for a condition of interest. Then, for
each metabolite, a subnetwork around the metabolite that is active based on the flux state for
the condition is extracted. This subnetwork is then broken down into production pathways and
consumption pathways, weighted by their flux contribution, using elementary modes. b) To
interpret differential gene expression data using MetPath pathways, a reaction score is
calculated for each reaction in the pathway as the multiplication of the differential gene
expression for genes catalyzing the reaction with the weighting on that reaction within the
pathway. These reaction scores are summed and divided by the number of reactions to obtain a
pathway score. A value of 1 indicates unchanged expression for the pathway, greater than one
indicates an up-regulation of genes in the pathway, and less than one indicates a
down-regulation of genes in the pathway.


https://doi.org/10.1101/202226
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/202226; this version posted October 12, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

0.01

B KEGG
W MetPath

Fraction
o
o
o
a

0
-1 0 1
Gene correlation within pathway
b
0.55 .
> B /]
g ® MetPath I
= s //—
© m KEGG A
o i A
c =¥ /ﬂ |
£ ~ N
§ L et - ! ‘\I —
= T o - A
0o 0.30f A e |
E //)F., " .
[3) - S .
&) I = e . .
o P P
) [ T 1
O] i
005 '
0 100

Gene Expression Threshold (%)

Figure 2: Comparison of MetPath and KEGG pathways in predicting correlated gene
expression correlation. a) Histograms of the correlation of gene expression within pathways
for KEGG (red) and MetPath (blue) pathways. Expression data was obtained from 213 samples
under various conditions in E. coli K12 MG1655. b) Gene correlation within pathways as a
function of expression level of the genes. Highly expressed genes show greater correlation with
each other within pathways that low expressed genes.
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Figure 3: MetPath pathways highlight metabolic shifts due to growth condition. a)
MetPath pathways under two conditions, glucose growth and tryptophan supplementation,
reveal differential pathway definition of tryptophan production and consumption in a
condition-specific manner. b) Differential expression between aerobic growth and anaerobic

growth of E. coli revealed by MetPath scores for pyruvate.
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Figure 4: MetPath reveals cell-specific expression of neurotransmitter use in single cell
neural gene expression data. a) Single cell gene expression data mapped to metabolic
pathways for neurotransmitter production for a representative set of neurotransmitters.
Subtypes of neural cells revealed differential expression of neurotransmitters consistent with
canonical neurotransmitter use. b) MetPath scores for glutamate production in excitatory neural
cells compared with endothelial cells. A coordinated up-regulation of glutamate production and
secretion genes and down-regulation of the primary glutamate degradation enzyme Glutamate
Dehydrogenase was observed, consistent with the use of glutamate as an excitatory
neurotransmitter.
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