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Abstract 

 

Difficult decisions typically involve mental effort, which signals the subjective cost of 

processing decision-relevant information. But how does the brain regulate mental effort? A 

possibility is that the brain optimizes a resource allocation problem, whereby the amount of 

invested resources optimally balances its expected cost (i.e. effort) and benefit. Our working 

assumption is that subjective decision confidence serves as the benefit term of the resource 

allocation problem, hence the “metacognitive” nature of decision control (Lee & Daunizeau, 

2021). In this work, we present a computational model for the online metacognitive control of 

decisions or oMCD. Formally, oMCD is a Markov Decision Process that optimally solves the 

ensuing resource allocation problem under agnostic assumptions about the inner workings of 

the underlying decision system. We disclose its main properties, when coupled with two 

standard decision processes (namely: the ideal observer and the attribute integration cases). 

Importantly, we show that oMCD reproduces most established empirical results in the field of 

value-based decision making. Finally, we discuss the possible connexions of the model with 

most prominent neurocognitive theories about mental effort, and highlight potential 

extensions. 
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Introduction 

 

There is no free lunch: obtaining reward typically requires investing effort. This holds even for 

mental tasks, which may involve mental effort for achieving success (in terms of, e.g., mnesic 

or attentional performance). Nevertheless, we sometimes invest very few mental effort, 

eventually rushing decisions and falling for all sorts of cognitive biases (Kahneman, 2011). 

So how does the brain regulate mental effort? A possibility is to understand mental effort 

regulation in terms of a resource allocation problem: namely, identifying the amount of 

cognitive resources that optimizes a cost/benefit tradeoff (Musslick et al., 2015; Shenhav et 

al., 2013, 2017). In this context, mental effort simply signals the subjective cost of investing 

resources, whose aversiveness is balanced by the anticipated performance gain. In 

conjunction with simple optimality principles, this idea has proven fruitful for understanding 

the relationship between mental effort and peoples’ performance in various cognitive tasks, 

in particular those that involve cognitive control (Griffiths et al., 2015; Lieder et al., 2018). 

Recently, it was adapted to the specific case of value-based decision making, and framed as 

a self-contained computational model: namely, the Metacognitive Control of Decisions or 

MCD (Lee & Daunizeau, 2021). 

Central to this work is the notion that decision confidence serves as the benefit term of the 

resource allocation problem, hence the “metacognitive” nature of decision control. Formally, 

confidence derives from the uncertainty of subjective value representations, which evolve 

over decision time as the brain processes more value-relevant information. In brief, low 

confidence induces a latent demand for mental effort: the brain refines uncertain value 

representations by deploying cognitive resources, until they reach the optimal 

confidence/effort trade-off. Interestingly, this mechanism was shown to explain the (otherwise 

surprising) phenomenon of choice-induced preference change (Lee and Daunizeau, 2020). 

More importantly, the MCD model makes quantitative out-of-sample predictions about many 

features of value-based decisions, including decision time, subjective feeling of effort, choice 

confidence and changes of mind. These predictions have already been tested in a 
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systematic manner, using a dedicated behavioral paradigm (Lee and Daunizeau, 2021). 

Despite its remarkable prediction accuracy, the original derivation of the model suffered from 

one main simplifying but limiting approximation: it assumes that MCD is operating in a purely 

prospective manner, i.e. the MCD controller commits to a mental effort investment that is 

identified prior to the decision. In principle, this can be done by anticipating the prospective 

benefit (in terms of confidence gain) and cost of effort, given a prior or default representation 

of option values that would rely on fast/automatic/effortless processes (Lopez-Persem et al., 

2016). The issue here, is twofold. First, it cannot explain variations in decision features (e.g., 

response times, choice confidence, etc) that occur in the absence of changes in default 

preferences. Second, it is somehow suboptimal, as it neglects reactive processes, which 

enables the MCD controller to re-evaluate – and improve on- the decision to stop or continue 

allocating resources, as new information comes in and value representations are updated 

(Tajima et al., 2016, 2019a). This work addresses these limitations, effectively proposing an 

“online” variant of MCD which we coin oMCD.  
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Models and methods 

 

As we will see below, deriving an optimal reactive variant of MCD requires specific 

mathematical developments, which falls under the frame of Markov decision processes 

(Feinberg & Shwartz, 2012). But before we describe the oMCD model, let us first recall the 

prospective variant of MCD. 

 

1. The prospective MCD model 

Disclaimer: this section is a summary of the mathematical derivation of the MCD model, 

which has already been published (Lee & Daunizeau, 2021). 

Let z  be the amount of cognitive (e.g., executive, mnemonic, or attentional) resources that 

serve to process value-relevant information. Allocating these resources will be associated 

with both a benefit ( )B z , and a cost ( )C z . As we will see, both are increasing functions 

of z : ( )B z  derives from the refinement of internal representations of subjective values 

of alternative options or actions that compose the choice set, and ( )C z  quantifies how 

aversive engaging cognitive resources is (mental effort). In line with the framework of 

expected value of control (Musslick et al., 2015; Shenhav et al., 2013), we assume that the 

brain chooses to allocate the amount of resources ẑ  that optimizes the following cost-

benefit trade-off: 

( ) ( )ˆ argmax
z

z E B z C z= −⎡ ⎤⎣ ⎦          (1) 

where the expectation accounts for predictable stochastic influences that ensue from 

allocating resources (this will be clarified below). Here, the benefit term is simply given by 

( ) ( )cB z R P z= × , where ( )cP z  is choice confidence and the weight R  is analogous to a 

reward and quantifies the importance of making a confident decision. As we will see, ( )cP z  
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plays a pivotal role in the model, in that it captures the efficacy of allocating resources for 

processing value-relevant information. So, how do we define choice confidence? 

We assume that the subjective evaluation of alternative options in the choice set is uncertain. 

In other words, the internal representations of values iV  of alternative options are 

probabilistic. Such a probabilistic representation of value can be understood in terms of, for 

example, an uncertain prediction regarding the to-be-experienced value of a given option. 

Without loss of generality, the probabilistic representation of option value takes the form of 

Gaussian probability density functions ( ) ( ),i i ip V N μ σ= , where iμ  and iσ  are the mode and 

the variance of the probabilistic value representation, respectively (and i  indexes alternative 

options in the choice set). This allows us to define choice confidence cP  as the probability 

that the (predicted) experienced value of the (to be) chosen item is higher than that of the (to 

be) unchosen item. When the choice set is composed of two alternatives, cP  is given by: 

( )1 23
cP s

π μ
σ σ

⎛ ⎞Δ
⎜ ⎟≈
⎜ ⎟+⎝ ⎠

          (2) 

where ( ) 1 1 xs x e−= +  is the standard sigmoid mapping, and we assume that the choice 

follows the sign of the preference 1 2μ μ μΔ = − . Note that Equation (2) derives from a 

moment-matching approximation to the Gaussian cumulative density function (Daunizeau, 

2017). 

We assume that the brain valuation system automatically generates uncertain estimates of 

options' value (Lebreton et al., 2009, 2015), before cognitive effort is invested in decision 

making. In what follows, 0
iμ  and 0

iσ  are the mode and variance of the ensuing prior value 

representations (we treat them as inputs to the MCD model). They yield an initial confidence 

level 0
cP . Importantly, this prior or default preference neglects existing value-relevant 

information that would require cognitive effort to be retrieved and processed (Lopez-Persem 

et al., 2016). 
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Now, how does the system anticipate the benefit of allocating resources to the decision 

process? Recall that the purpose of allocating resources is to process (yet unavailable) 

value-relevant information. The critical issue is thus to predict how both the uncertainty iσ  

and the modes iμ  of value representations will eventually change, before having actually 

allocated the resources (i.e., without having processed the information). In brief, allocating 

resources essentially has two impacts: (i) it decreases the uncertainty iσ , and (ii) it perturbs 

the modes iμ  in a stochastic manner. 

The former impact derives from assuming that the amount of information that will be 

processed increases with the amount of allocated resources. Here, this implies that the 

variance ( )i zσ  of a given probabilistic value representation decreases in proportion to the 

amount of allocated resources, i.e.: 

( )
0

1
1i

i

z
z

σ
β

σ

=
+

           (3) 

where 0
iσ  is the prior variance of the representation (before any effort has been allocated), 

and β  controls the efficacy with which resources increase the precision of the value 

representation. As we will see below, Equation (3) has the form of a Bayesian update of the 

belief's precision in a Gaussian-likelihood model, where the precision of the likelihood term is 

zβ . More precisely, β  is the precision increase that follows from allocating a unitary 

amount of resources z . In what follows, we will refer to β  as the "type #1 effort efficacy". 

The latter impact follows from acknowledging the fact that the system cannot know how 

processing more value-relevant information will affect its preference before having allocated 

the corresponding resources. Let iδ  be the change in the position of the mode of the i th 

value representation, having allocated an amount z  of resources. The direction of the 

mode's perturbation iδ  cannot be predicted because it is tied to the information that is yet to 

be processed. However, a tenable assumption is to consider that the magnitude of the 
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perturbation increases with the amount of information that will be processed. This reduces to 

stating that the variance of iδ  increases in proportion to z , i.e.: 

( )
( )

0

0,

i i i

i

z

N z

μ μ δ

δ γ

= +

�

          (4) 

where 0
iμ  is the mode of the value representation before any effort has been allocated, and 

γ  controls the relationship between the amount of allocated resources and the variance of 

the perturbation term δ . The higher γ , the greater the expected perturbation of the mode for 

a given amount of allocated resources. In what follows, we will refer to γ  as the "type #2 

effort efficacy". Note that Equation 4 treats the impact of future information processing as a 

non-specific random perturbation on the mode of the prior value representation. Our 

justification for this assumption is twofold: (i) it is simple, and (ii) and it captures the idea that 

the MCD controller is agnostic about how the allocated resources will be used by the 

underlying valuation/decision system. We will see that, in spite of this, the MCD controller 

can still make quantitative predictions regarding the expected benefit of allocating resources. 

Now, predicting the net effect of resource investment onto choice confidence (from Equations 

(3) and (4)) is not entirely trivial. On the one hand, allocating effort will increase the precision 

of value representations, which mechanically increases choice confidence, all other things 

being equal. On the other hand, allocating effort can either increase or decrease the absolute 

difference ( )zμΔ  between the modes (and hence increase or decrease choice confidence). 

This, in fact, depends upon the direction of the perturbation term δ , which is a priori 

unknown. Having said this, it is possible to derive the expected response of the absolute 

difference between the modes that would follow from allocating an amount z  of resources, in 

terms of its mean and variance: 

20 0
0

220

2 exp 2 1
4 6

2

z
E z s

z z

V z z E z

μ π μγμ μ
π γ γ

μ γ μ μ

⎧ ⎛ ⎞ ⎛ ⎞Δ ⎛ ⎞Δ⎪ ⎜ ⎟⎡ ⎤Δ = − + Δ × −⎜ ⎟⎜ ⎟⎣ ⎦ ⎜ ⎟⎪ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎨ ⎝ ⎠
⎪
⎪ ⎡ ⎤ ⎡ ⎤Δ = + Δ − Δ⎣ ⎦ ⎣ ⎦⎩

    (5) 
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where we have used the expression for the first-order moment of the so-called "folded 

normal distribution". Importantly, E zμ⎡ ⎤Δ⎣ ⎦  is always greater than 0μΔ  and increases 

monotonically with z  (as is V zμ⎡ ⎤Δ⎣ ⎦ ). In other words, allocating resources is expected to 

increase the value difference, despite the fact that the impact of the perturbation term can go 

either way. 

Equation 5 now enables us to derive the expected confidence level ( )c cP z E P z⎡ ⎤⎣ ⎦�  that 

would result from allocating the amount of resource z : 

( )
( )

3
2 41

1
2

c

E z
P z s

V z

λ μ

λ μ

⎛ ⎞
⎜ ⎟⎡ ⎤Δ⎣ ⎦⎜ ⎟≈
⎜ ⎟
⎜ ⎟⎡ ⎤+ Δ⎜ ⎟⎣ ⎦⎝ ⎠

        (6) 

where ( ) ( )( )1 21 3 z zλ σ σ= + . Of course, ( ) 00c cP P= , i.e. investing no resources yields no 

confidence gain. Moreover, the expected choice confidence ( )cP z  always increase with z , 

irrespective of the efficacy parameters, as long as 0β ≠  or 0γ ≠ . Equation 6 is important, 

because it quantifies the expected benefit of resource allocation, before having processed 

the ensuing value-relevant information. 

To complete the cost-benefit model, we simply assume that the cost of allocating resources 

to the decision process increases monotonically with the amount of resources, i.e.: 

( )C z zνα=            (7) 

where α  determines the effort cost of allocating a unitary amount of resources z  (we refer 

to α  as the "effort unitary cost"), and ν  effectively controls the range of resource 

investments that result in noticeable cost variations (we refer to ν  as the "cost power"). 

Finally, the MCD-optimal resource allocation ẑ  is identified by replacing Equations (5), (6) 

and (7) into Equation (1). Note that this implicitly assumes that the allocation of resources is 

similar for all alternative options in the choice set.  
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2. Online MCD: optimal stopping rule 

 

We now augment this model, by assuming that the MCD controller is re-evaluating the 

decision to stop or continue allocating resources, as value representations are updated and 

online confidence changes. This makes the ensuing oMCD model a reactive extension of the 

above "purely prospective" MCD model, which relieves the system from the constraint of 

effort investment pre-commitment. 

Let t  be the decision time. Without loss of generality, we assume that there is a linear 

relationship between deliberation time and resource investment, i.e.: z tκ= , where κ  is the 

amount of resources that is spent per unit of time. We refer to κ  as “effort intensity”. By 

convention, we assume that the maximal decision time T  (the so-called temporal horizon) 

corresponds to the exhaustion of all available resources. This implies that 1T κ=  (because 

we consider normalized resources amounts).  

Now, at time t , the system holds probabilistic value representations with modes tμ  and 

variance ( )tσ . These value representations yield the following confidence level (cf. Equation 

(2) above): 

( )
( ) ( )( )1 2

,
3

t
c tP t s

t t

π μ
μ

σ σ

⎛ ⎞Δ⎜ ⎟Δ ≈
⎜ ⎟⎜ ⎟+
⎝ ⎠

        (8) 

where we have used some abuse of notation with time indices. 

This confidence level can be greater or smaller than the initial confidence level 0
cP , because 

new information regarding option values has been assimilated since then. Of course, the 

system will anticipate that investing additional resources will increase its confidence (on 

average). But this may not always overcompensate the cost of spending more resources on 

the decision. Thus, what should the decision to stop or continue look like, in order to 

maximize the expected cost-benefit tradeoff? It turns out that this problem is one of optimal 
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stopping, which is a special case of Markov Decision Processes (Feinberg & Shwartz, 2012; 

Papadimitriou & Tsitsiklis, 1987). As we will see, it can be solved recursively (backward in 

time) using Bellman’s optimality principle (Bellman, 1957). 

Let { }0,1ta ∈  be the action that is taken at time t , where 0ta =  (resp. 1ta = ) means that the 

system stops (resp. continues) deliberating. Let ( ), ,t tQ a tμΔ  be the discounted benefit that 

the decision system would obtain at time t : 

( ) ( ) ( ),   if 0
, ,

0  otherwise
c t t

t t

R P t t a
Q a t

νμ α κμ
⎧ × Δ − =⎪Δ = ⎨
⎪⎩

      (9) 

where the cost of effort investment ( )t να κ  has been rewritten in terms of decision time. 

A time t , the optimal stopping policy derives from a comparison between the discounted 

benefit of stopping now (i.e. ( )0, ,tQ tμΔ ) and some (yet undefined) threshold value ( )tω , 

which may depend upon decision time. Let ( )tωπ  be the stopping policy that is induced by 

the threshold ( )tω : 

( ) ( ) ( )1 if 0, ,

0 otherwise
tQ t t

tω

μ ω
π

Δ ≥⎧⎪= ⎨
⎪⎩

        (10) 

Finding the optimal stopping policy *
ωπ  thus reduces to finding the optimal threshold ( )* tω . 

By definition, at t T= , the system is stopping its deliberation, irrespective of its current 

discounted benefit ( )0, ,TQ TμΔ . By convention, the optimal threshold ( )* Tω  can thus be 

written as: 

( ) ( )
( )

( )

* min 0, ,

0,0,

2

T
TT Q T

Q T

R T

μ

ν

ω μ

α κ

Δ
= Δ

=

= −

         (11) 
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Now, at 1t T= − , the discounted benefit ( )10, , 1TQ Tμ −Δ −  of stopping now can be compared 

to the expected discounted benefit ( ) 10, ,T TE Q Tμ μ −⎡ Δ Δ ⎤⎣ ⎦  of stopping at time t T= , 

conditional on the current value mode difference 1Tμ −Δ : 

( ) ( ) ( )

( )

( )( )
( )

1 1

1

3 42

1

0, , ,

1
1

2

T T c T T

T T

T T

E Q T R E P T T

T E
R s T

T V

ν

ν

μ μ μ μ α κ

λ μ μ
α κ

λ μ μ

− −

−

−

⎡ ⎤⎡ Δ Δ ⎤ = × Δ Δ −⎣ ⎦ ⎣ ⎦

⎛ ⎞
⎜ ⎟× ⎡ Δ Δ ⎤⎣ ⎦⎜ ⎟≈ × −
⎜ ⎟+ × ⎡ Δ Δ ⎤⎜ ⎟⎣ ⎦⎝ ⎠

  (12) 

where moments of the absolute value mode difference follow Equation 5 (for a unitary time 

increment): 

( )
( ) ( )( )

( )
( )

2

1 1
1 1

2 2

1 1 1

1 2

2 exp 2 1
4 6

2

1

3

1
1

1

T T
T T T

T T T T T

i

i

E s

V E

T
T T

T

T

μ π μγκμ μ μ
π γκ γκ

μ μ γκ μ μ μ

λ
σ σ

σ
βκ

σ

− −
− −

− − −

⎧ ⎛ ⎞ ⎛ ⎞Δ ⎛ ⎞Δ⎪ ⎜ ⎟⎡ Δ Δ ⎤ = − + Δ × −⎜ ⎟⎜ ⎟⎣ ⎦ ⎜ ⎟⎜ ⎟⎪ ⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠⎪
⎪

⎡ Δ Δ ⎤ = + Δ − ⎡ Δ ⎤⎪ ⎣ ⎦ ⎣ ⎦
⎪
⎨ =⎪ +⎪
⎪
⎪ =
⎪ +
⎪ −⎩

   (13) 

Here, the optimal decision is simply to stop if ( ) ( )1 10, , 1 0, ,T T TQ T E Q Tμ μ μ− −Δ − ≥ ⎡ Δ Δ ⎤⎣ ⎦ , 

and to continue otherwise. Note that both ( )10, , 1TQ Tμ −Δ −  and ( ) 10, ,T TE Q Tμ μ −⎡ Δ Δ ⎤⎣ ⎦  are 

deterministic functions of 1Tμ −Δ . More precisely, they are both monotonically increasing with 

1Tμ −Δ  (see Figure 1 below), because current confidence and expected future confidence 

monotonically increase with 1Tμ −Δ . Critically however, these functions have a different offset 

at 1 0Tμ −Δ = , i.e.: ( ) ( ) 10,0, 1 0, , 0T TQ T E Q Tμ μ −− < ⎡ Δ Δ = ⎤⎣ ⎦  as long as 0γ > . In addition, 

they reach a different plateau at the infinite value mode difference limit, i.e.: 

( ) ( )
1 1

1 1lim 0, , 1 lim 0, ,
T T

T T TQ T E Q T
μ μ

μ μ μ
− −

− −Δ →∞ Δ →∞
Δ − > ⎡ Δ Δ ⎤⎣ ⎦  as long as 0α > . This is important, 
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because this implies that there exists a value mode difference *
1Tμ −Δ  such that 

( ) ( )* *
1 10, , 1 0, ,T T TQ T E Q Tμ μ μ− −

⎡ ⎤Δ − = Δ Δ⎣ ⎦ . The discounted benefit at that point is the 

optimal threshold at 1t T= − , i.e.: ( ) ( )* *
11 0, ,T TT E Q Tω μ μ −⎡ ⎤− = Δ Δ⎣ ⎦ . 

 

Figure 1: derivation of oMCD’s optimal stopping strategy. Discounted benefits (y-axis) 
are plotted against the value mode difference μΔ  (x-axis). The red and black lines show the 

current discounted benefit ( )10, , 1TQ Tμ −Δ −  if the system was stopping at 1t T= − , and the 

expected discounted benefit ( ) 10, ,T TE Q Tμ μ −⎡ ⎤Δ Δ⎣ ⎦  at 1t T= − , respectively (when setting 

1Tμ μ−Δ = Δ ). The dotted green line shows the optimal discounted benefit ( )*
1 1T TQ μ− −Δ , 

which is simply the maximum over the two above benefit functions for each value mode 

difference 1Tμ −Δ . Finally, the blue line shows the expected optimal discounted benefit 

( )*
1 1 2T T TE Q μ μ− − −⎡ ⎤Δ Δ⎣ ⎦  at 1t T= −  (when setting 2Tμ μ−Δ = Δ ). See main text. 

 

Now, let us move one step backward in time, at 2t T= − . Here again, the optimal strategy is 

to stop if the current discounted benefit ( )20, , 2TQ Tμ − −  is higher than the expected future 

discounted benefit ( )1 1 2, , 1T T TE Q a Tμ μ− − −⎡ Δ − Δ ⎤⎣ ⎦ , conditional on 2Tμ −Δ . However, the latter 

now depends upon 1Ta − , i.e. whether the system will later decide to stop or to continue: 
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The optimal policy cannot be directly identified from Equation (14). This is where we resort to 

Bellman's optimality principle: namely, whatever the current state and decision are, the 

remaining decisions of an optimal policy must also constitute an optimal policy with regard to 

the state resulting from the current decision (Bellman, 1957). Practically speaking, the 

derivation of the optimal threshold at 2t T= −  is done under the constraint that oMCD’s next 

decision follows the optimal policy, i.e. ( )1 1Ta Tωπ− = − . Let ( )*
t tQ μΔ  be the expected 

discounted benefit evaluated under the optimal policy at time t , where the expectation is 

taken over all the sources of remaining uncertainty, when conditioning on the current value 

mode difference tμΔ . In what follows, we refer to ( )*
t tQ μΔ  as the “optimal discounted 

benefit”. Under Bellman's optimality principle, the optimal strategy at 1t T= −  is to stop if the 

current discounted benefit ( )20, , 2TQ Tμ − −  is higher than the expected optimal discounted 

benefit ( )*
1 1 2T T TE Q μ μ− − −⎡ ⎤Δ Δ⎣ ⎦ . 

Now, at time 1t T= − , the optimal discounted benefit is given by: 

( ) ( ) ( ){ }*
1 1 1 1max 0, , 1 , 0, ,T T T T TQ Q T E Q Tμ μ μ μ− − − −Δ Δ − ⎡ Δ Δ ⎤⎣ ⎦�     (15) 

Note that ( )*
1 1T TQ μ− −Δ  is just another function of 1Tμ −Δ  (cf. dotted green curve in Figure 1). 

This means that the only source of stochasticity in ( )*
1 1T TQ μ− −Δ  comes from 1Tμ − , which can 

nonetheless be predicted (with some uncertainty), given the current value mode 2Tμ − . In turn, 

this makes the expected optimal discounted benefit ( )*
1 1 2T T TE Q μ μ− − −⎡ ⎤Δ Δ⎣ ⎦  a deterministic 

function of 2Tμ −Δ . Here again, there is a critical value mode difference *
2Tμ −Δ  such that 

( ) ( )* *
2 1 1 20, , 2T T T TQ T E Qμ μ μ− − − −⎡ ⎤Δ − = Δ Δ⎣ ⎦ . The discounted benefit at that point is the 

optimal threshold ( )* 2Tω −  at 2t T= − . 

In fact, the reasoning is the same for all times 1t T< − : 
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First, the expected optimal discounted benefit obeys the following backward recurrence 

relationship (Bellman equation for all 1t T< − ): 

( ) ( ) ( ){ }* *
1 1 1 1max 0, , ,t t t t t t t tE Q E Q t E Qμ μ μ μ μ μ− + + −

⎡ ⎤⎡ ⎤ ⎡ ⎤Δ Δ = Δ Δ Δ Δ⎣ ⎦ ⎣ ⎦⎣ ⎦
   (16) 

This equation is solved recursively backward in time, starting at the expected discounted 

benefit at 1t T= − , as given in Equation (12). 

Second, the optimal threshold at time t  is given by: 

( ) ( )* *0, ,tt Q tω μ= Δ           (17) 

where *
tμΔ  is the critical value mode difference, i.e. *

tμΔ  is such that: 

( ) ( )* * *
1 10, ,t t t t tQ t E Qμ μ μ μ+ +⎡ ⎤Δ = Δ Δ = Δ⎣ ⎦        (18) 

Since the discounted benefit is a deterministic function of decision confidence, the oMCD-

optimal threshold ( )* tω
 for discounted benefits can be transformed into an oMCD-optimal 

confidence threshold ( )*
P tω , as follows: 

( ) ( ) ( )*
*
P

t t
t

R

νω α κ
ω

+
=          (19) 

This closes the derivation of oMCD's optimal stopping policy. 

 

Note that the derivation of oMCD’s optimal stopping policy requires prior information 

regarding the upcoming decision: namely, prior moments of value representations, type #1 

and #2 effort efficacies, decision importance, unitary effort cost and cost power. This means 

that oMCD implicitly includes a prospective component, which is used to decide how to 

optimally react to a particular (stochastic) internal state of confidence. In other terms, oMCD 

is a mixed prospective/reactive policy. 

Figure 2 below shows a representative instance of oMCD's optimal stopping strategy, from 

500 Monte-Carlo simulations (using decision parameters R=1, α=0.2, β=1, γ=4, κ=1/100, υ=0.5, 

σ0=1 and Δµ0=0).  
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Figure 2: oMCD's optimal stopping strategy. Left panel: The black dotted line shows the 
oMCD-optimal discounted benefit threshold. The blue line and shaded area depict the mean 
and standard deviation of discounted benefit dynamics (over the 500 Monte-Carlo 
simulations), respectively. The vertical red line indicates the optimal resource allocation as 
obtained from the prospective variant of MCD, and the horizontal red line depicts the 
corresponding expected discounted benefit level. Right panel: The black dotted line shows 
the oMCD-optimal confidence threshold. The blue line and shaded area depict the mean and 
standard deviation of decision confidence (over the same Monte-Carlo simulations). 
 

First, the prospective variant of MCD correctly identifies the decision time that maximizes the 

expected discounted benefit. However, one can see that oMCD’s optimal stopping rule 

would, in most cases, demand higher confidence than its prospective variant. Second, one 

can see that oMCD’s discounted benefit threshold ( )* tω
 is monotonically decreasing with 

decision time. This, in fact, trivially derives from the max operator that constitutes the 

recursive relationship in Equation (16). However, the corresponding confidence threshold 

( )*
P tω  may not be a monotonic function of decision time (cf. right panel in Figure 2). In fact, 

one can think of the shape of the confidence threshold (over time) as oMCD’s prospective 

component, which is determined by the decision parameters. In the theoretical results 

section, we will investigate how the decision parameters (prior moments of value 

representations, type #1 and #2 effort efficacies, decision importance, unitary cost of effort 

and cost power) influence oMCD’s policy. But let us first relate the MCD framework to 

standard decision processes. 

 

3. How does MCD relate to standard decision processes? 
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By itself, the MCD framework does not commit to any specific assumption regarding how 

value-relevant information is processed. Nevertheless, the properties of decisions that are 

controlled through MCD actually depend upon how probabilistic value representations 

change over time. In what follows, we focus on two specific scenarios of value representation 

update, and disclose their connection with MCD. 

 

• The ideal observer case. 

Let us first consider the so-called ideal observer case, i.e. Bayesian inference on a hidden 

value signal. Note that, in this case, the optimal stopping rule - for maximizing expected 

reward rate - reduces to a specific instance of so-called drift-diffusion decision models with 

decaying bounds (Tajima et al., 2016, 2019b). 

Assume that, at each time point, the decision system receives one partially unreliable copy 

ty  of the (hidden) value V  of each alternative option. More precisely, ty   is a noisy input 

signal that is centered around V , i.e.: t ty V ε= + , where the noise term tε  is gaussian with 

zero mean and variance Σ  (and we have dropped the option indexing for notational 

simplicity). One may think of Σ  as measuring the (lack of) reliability of the input value signal. 

This induces the following likelihood function for the hidden value: ( ) ( ),tp y V N V= Σ . 

Finally, assume that the decision system holds a Gaussian prior belief about the hidden 

options’ value, i.e.: ( ) ( )0 0,p V N μ σ= , where 0μ  and 0σ  are the corresponding prior mean 

and variance. At time t, an ideal (Bayesian) observer would assimilate the series of noisy 

signals to derive a probabilistic (posterior) representation ( ) ( )1,..., ,t t tp V y y N μ σ=  of 

options’ value with the following mean and variance: 
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0

0

1
1 1

t t

t

t

μ μ δ

σ

σ

⎧ = +
⎪
⎪

=⎨
⎪ + ×
⎪ Σ⎩

%

          (20) 

where the change in the value mode δ%  is given by: 

( )' 0
' 1

0

1 t

t t
t

y
t

δ μ

σ
=

= −
Σ +

∑%          (21) 

In brief, Equation (21) states that the value mode changes in proportion to prediction errors 

(i.e. 0ty μ− ), which the ideal observer accumulates as she is sampling more input value 

signals. The stochasticity of δ%  is driven by the random perturbation term in the incoming 

noisy value signal. Conditioned on the hidden value V , it is easy to show that 

0E V Vδ μ⎡ ⎤ ∝ −⎣ ⎦
% . This implies that the random walk in Equation (20) actually has a nonzero 

drift that is proportional to the hidden value. Importantly however, the ideal observer does not 

know what the hidden value V  is. Prior to the decision, her expectation is simply that 

[ ] [ ] 0E y E V μ= =  and therefore 0E δ⎡ ⎤ =⎣ ⎦
% . In fact, this holds true at any time t: the ideal 

observer’s expectation about the future change in her value belief mode (i.e.

1 1,...,t t tE y yμ μ+⎡ ⎤ −⎣ ⎦ ) is always zero, because her expectation about the next value signal 

reduces to her current value mode (i.e., 1 1,...,t t tE y y y μ+⎡ ⎤ =⎣ ⎦ ). In other words, although the 

mode changes δ%  actually have a nonzero mean (as long as V  deviates from the mode of 

the observer’s belief), the ideal observer’s expectation about its future realizations is always 

zero. 

Nevertheless, the ideal observer can accurately predict how the precision of her belief will 

change. Comparing Equations (3) and (20) suggests that, under the ideal observer scenario, 

type #1 effort efficacy simply reduces to: 1β κ= Σ . This means that type #1 effort efficacy 
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simply increases with the reliability of the input value signal that the ideal observer is 

sampling. 

In addition, although the ideal observer cannot anticipate in what direction the to-be-sampled 

signal will modify the mode of her posterior belief, she can derive a prediction over the 

magnitude of the change: 

2 0
2

0

t

t
E t

t

σδ

σ

Σ +
⎡ ⎤ = ×⎣ ⎦

⎛ ⎞Σ +⎜ ⎟
⎝ ⎠

%          (22) 

where the expectation is derived under the agent’s prior belief about the hidden value. Now, 

Equation 4 defines type #2 effort efficacy in terms of the ratio 2
tE tδ κ⎡ ⎤⎣ ⎦
%

 of expected change 

magnitude over effort investment (where z tκ= ). Note that, under Equation (22), this 

quantity varies as a function of decision time. Thus, under the ideal observer scenario, type 

#2 effort efficacy can be approximated as its sample average over all admissible decision 

times, i.e.: ( ) ( )2

0 01
1

T

t
T t tγ σ σ κ

=
≈ Σ + Σ +∑ . This is only an approximation of course, 

since 2
tE δ⎡ ⎤

⎣ ⎦
%  eventually tails off as time increases, because noisy value signals that are 

sampled later in time have a smaller effect on the posterior mode. In other words, would the 

MCD controller know about the inner workings of the underlying (here: ideal observer) value 

updating system, it would rely on Equation (22) (as is done in Tajima, Drugowitsch, and 

Pouget 2016; Tajima et al. 2019b) rather than on Equation (4).  

 

• The attribute-integration case. 

Second, let us consider another type of scenario, which essentially proceeds from 

progressively integrating the value-relevant attributes of alternative options. This typically 
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happens when alternative options can be decomposed into multiple dimensions that may 

enter in conflict with each other (cf., e.g., risk, delay or effort discounting).  

Let 1,..., kx x  be the set of k such value-relevant attributes, the combination of which is 

specific to each alternative option. Assume that the decision system constructs the value of 

alternative options according to a weighted sum of attributes, i.e.: k kk
V w x= ×∑ , where the 

attribute weights kw  are the same for all alternative options. Assume that each attribute is 

sampled from a gaussian distribution with mean kη  and variance kς , i.e. ( ) ( ),k k kp x N η ς= . 

Finally, assume that attributes are available to the decision system one at a time, i.e. 

decision time steps co-occur with attribute-disclosing events. For the sake of simplicity, we 

set the decision’s temporal horizon to T k= , i.e. we focus on the decision to stop integrating 

value-relevant attributes (and we ignore the additional mental effort that may be required to 

construct value from known attributes). In what follows, we refer to this scenario as the 

attribute integration model. 

In the absence of default preferences, the system holds a prior representation about options’ 

value that is maximally uninformative. This is because, prior to the decision, any combination 

of value-relevant attributes is admissible, and the system did not disclose the options’ 

attributes yet. The first two moments of the system’s prior value representation 

( ) ( )0 0,p V N μ σ=  are thus given by: 

0 '
' 1

2
0 '

' 1

k

k k
k

k

k k
k

w

w

μ η

σ ς

=

=

⎧ = ×⎪
⎪
⎨
⎪ = ×
⎪⎩

∑

∑

          (23) 

Now, as time unfolds and the decision system discloses the value-relevant attributes, it 

progressively removes sources of uncertainty about the value of alternative options. In 

principle, if the system reaches the temporal horizon, then it knows all the attributes and can 

evaluate the alternative options with infinite precision. However, as long as some attributes 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2023.01.02.522463doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.02.522463
http://creativecommons.org/licenses/by-nc-nd/4.0/


are missing, value representations remain uncertain. Let tK  be the set of attribute indices 

that have been available to the decision system up until time t. At time t, the decision thus 

holds an updated probabilistic representation of value ( ) ( ),
tK t tp V x N μ σ=  with the 

following mean and variance: 

0

2
0 ' '

' t

t t

t k k
k K

w

μ μ δ
σ σ ς

∈

⎧ = +
⎪
⎨ = − ×
⎪⎩

∑

%

         (24) 

where the change in the value mode is simply given by: 

( )' ' '
' t

t k k k
k K

w xδ η
∈

= × −∑%          (25) 

Note that here, variability in mode changes does not arise from some form of stochasticity or 

unreliability of input signals, as is the case for the “ideal observer” scenario. Rather, it derives 

from the arbitrariness of the permutation order with which attributes become available for 

options’ evaluation. However, should the full set of attributes be eventually disclosed, the 

estimated value would be ' ''

k

k k kk
w xμ = ×∑ , with full certainty. 

Here again, the decision system cannot anticipate in which direction the future value mode 

will change, i.e. its expectation over future mode changes always is 0tE δ⎡ ⎤ =⎣ ⎦
%  at any point in 

time (because [ ]k kE x η= ). Nevertheless, it can derive a prediction over the magnitude of the 

change, by averaging over all possible permutation orders: 

2 2
' '

' 1

k

t k k
k

t
E w

k
δ ς

=

⎡ ⎤ = ×⎣ ⎦ ∑%          (26) 

Comparing Equations (4) and (26) suggests that type #2 effort efficacy simplifies to: 0γ σ= . 

This means that type #2 effort efficacy simply scales with the range of attributes’ variation. 

Note that this prior prediction would need to be updated as time unfolds, because the 

remaining set of admissible permutations of yet unseen attributes progressively shrinks. This 

however, only entails a minor modification to Equation (26): practically speaking, a simple 
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truncation of the sum. In any case, deriving the prospective component of oMCD from 

Equation (26) - or its proper variant - does not entail any approximation. 

So how about type #1 effort efficacy? Note that one cannot directly compare Equation (24) to 

Equation (3), because of the arbitrariness of the order of attribute-disclosing events. 

However, as for type #2 efficacy, averaging over all possible permutations yields the 

following expected change in precision: [ ] ( )0 01 1 1tE t k tσ σ σ− = × − . Using the same logic 

as above, this suggests that, in this scenario, type #2 effort efficacy can be approximated as: 

( ) ( )1

01
1 1 1

k

t
k k tβ κσ−

=
≈ − −∑ . Note that we have removed the time horizon from the 

average over admissible decision times, since it induces a singularity (infinite precision). Of 

course, would the MCD controller know about the mechanism of value construction (by 

attribute integration), it would rely on Equation (24) as opposed to Equation (3).  

 

One can see that the definition of type #1 and type #2 effort efficacies actually depends upon 

the way the decision process changes the value representations. Recall that the above 

scenarios are just two examples out of many possibilities. In principle, optimal stopping 

would thus require variants of MCD controllers that are tailored to the underlying decision 

system. In this context, the MCD architecture that we propose provides an efficient 

alternative, which generalizes across decision processes and still operate quasi-optimal 

decision control. The only requirement here, is to calibrate the MCD controller over a few 

decision trials to learn effort efficacy parameters. Note that such calibration is expected to be 

very quick (at the limit: only one decision trial), because effort efficacies can be learned on 

within-trial dynamics (of value representations). This is effectively what we have done here, 

in an analytical manner, when deriving approximations for the effort efficacy parameters 

under distinct decision scenarios.   
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Results 

 

In the previous section of this manuscript, we derived the online, dual prospective/reactive 

variant of MCD (and disclosed its connection with two exemplar decision systems). We now 

wish to illustrate its properties, when compared to its prospective variant.  

 

1. What is the performance of oMCD? 

At this point, one may ask whether oMCD eventually produces better decisions than 

prospective MCD, which operates by committing to a predefined temporal threshold. More 

precisely, under prospective MCD, the decision stops when the expected discounted benefit 

is maximal, which is evaluated prior to the decision (this corresponds to the red vertical line 

in Figure 2).  

Now, does oMCD yields higher discounted benefits than prospective MCD (on average)?  

To answer this question, we resort to Monte-Carlo simulations. In brief, we simulate a 

particular decision trial in terms of the stochastic dynamics of value representations, 

according to Equations (3) and (4), using the same decision parameters as for Figure 2. At 

each time step, oMCD’s policy proceeds by comparing the ensuing confidence level to the 

optimal confidence threshold. When the confidence threshold is reached, we store the 

response time, which we note τ, as well as the ensuing confidence level and discounted 

benefit. We proceed similarly for prospective MCD, except that decision times are defined 

according to Equation (1). We then repeat the procedure to evaluate the average confidence 

levels, amount of invested resources, and discounted benefits induced by both MCD 

variants. These are summarized in Figure 3 below. Note: as a reference, we also compare 

MCD stopping strategies to a so-called "oracle" strategy, which identifies (post-hoc) the apex 

time, i.e. the time at which the stochastic discounted benefit is maximal. This provides an 

upper (though unachievable) bound to the expected discounted benefit of any stopping 

policy. 
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Figure 3: the performance of oMCD’s optimal stopping strategy. Upper-left panel: the 
average amount of resources invested (y-axis) is shown as a function of the thresholding 
strategy (x-axis, grey: oMCD, red: prospective MCD, green: oracle). Upper-right panel: 
Average confidence level at the time of decision, same format. Lower-left panel: The 
average discounted benefits, same format. Lower-right panel: Confidence at response time 
(y-axis) is plotted against response times deciles (x-axis) for all strategies (oMCD: black, 
MCD: red, oracle: green). 
 

One can see that prospective MCD tends to invest more resources that oMCD, though this 

yields lower confidence levels on average. In turn, the ensuing average discounted benefit is 

lower than that of oMCD (which is closer to that of the oracle). Interestingly, the statistical 

relationship between response times and confidence actually depends upon the stopping 

strategy. Under the oracle, this relationship is monotonic and increasing. This is because, 

everything else being equal, expected confidence increases with decision time - see 

Equation (6). This does not hold however, under oMCD stopping strategy. In particular, in our 

example, decisions that take longer eventually yield lower confidence. In fact, this 
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relationship is determined by the shape of the optimal confidence threshold (cf. right panel of 

Figure 2). 

Note: the relationship between confidence and response time for prospective MCD is trivial, 

because response time is fixed once decision parameters are set. 

 

Importantly, the performance advantage of oMCD over prospective MCD does not derive 

from errors in the anticipation of discounted benefits over decision time. This is because, in 

principle, both MCD variants rely on the exact same information (i.e. decision parameters) to 

anticipate future discounted benefits. Rather, the performance advantage of oMCD derives 

from its reactive component, which enables it to realize that future discounted benefits are 

unlikely to improve. In other terms, one can think of oMCD as attempting to stop in the close 

neighborhood of the apex of discounted benefits. Recall that an apex is correctly identified if 

the discounted benefit at response time is higher than all discounted benefits before and 

after response time. Thus, from the perspective of apex identification, one can think of the 

decision to “continue until the decision time” as being correct if the discounted benefit at 

response time was higher than all previous discounted benefits. Reciprocally, the decision to 

“stop at decision time” was correct if the discounted benefit at response time was higher than 

all future discounted benefits. Figure 4 below summarizes the apex identification accuracy for 

oMCD, prospective MCD and oracle strategies, in terms of the rates of correct "continue" and 

"stop" decisions. 
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Figure 4: apex identification accuracy. Left panel: The rate of correct "continue until 
decision time" decisions (y-axis) is shown for all stopping strategies (oMCD: black, MCD: 
red, oracle: green). Right panel: rate of correct "stop at decision time" decisions, same 
format. 
 

By design, the oracle strategy always accurately identifies the apex time. Clearly, prospective 

MCD tends to stop the decision too late, since "continue" decisions are almost always wrong 

(about 95% error rate). In comparison, oMCD is clearly better at identifying the discounted 

benefit apex. Note that, although oMCD is more often wrong about "stop" decisions (about 

70% error rate) than about "continue" decisions (about 30% error rate), it seems that oMCD 

still tends to sometimes stop too late, when compared to the oracle (cf. upper-left panel of 

Figure 3). Note that although oMCD’s performance advantage over prospective MCD 

generalizes over most decision parameters, it actually increases with γ, which controls the 

stochasticity of value representation dynamics. At the limit when γ=0, oMCD and prospective 

MCD stopping strategies are identical. 

 

2. How do prospective MCD and oMCD differ? 

Both prospective MCD and oMCD models predict decision properties (e.g., response time, 

confidence, etc), as a function of decision parameters. But how do these predictions 

compare with each other? 

To answer this question, we conducted the following series of Monte Carlo simulations. First, 

we draw decision parameters (decision importance R, effort unitary cost α, effort cost power 

ν, effort efficacies β and γ, prior moment of value representations σ0 and µ0) at random, 

following a uniform probability density defined on the [0,8] interval. Second, we determine the 

resources investment under the prospective variant of MCD, and derive the oMCD optimal 

confidence threshold. Third, we simulate 500 stochastic dynamics of value mode and identify 

the corresponding oMCD response times. We then estimate the average resource 

investment and decision confidence, under oMCD (across the 500 simulations). We repeat 

this procedure 200 times, for different decision parameter samples. Note that we discard 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2023.01.02.522463doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.02.522463
http://creativecommons.org/licenses/by-nc-nd/4.0/


decision parameter samples that yield null resource investment under prospective MCD, 

because these correspond to decisions without deliberation. Figure 5 below summarizes the 

results of this Monte-Carlo simulations series. 

 

 

Figure 5: comparison between prospective MCD and oMCD. Left panel: the amount of 
resources invested under the prospective variant of MCD (x-axis) is plotted against the 
average amount of resources invested under oMCD (y-axis). Each dot corresponds to a set 
of decision parameters (200 samples). The red dotted line shows the identity mapping. Right 
panel: decision confidence, same format. 
 

One can see that, on average, resource investments under both MCD variants exhibit a 

strong correlation (r=0.78). Qualitatively, the same is true for decision confidence (r=0.76). 

This implies that the impact of decision parameters on resource investments and confidence 

is very similar under both MCD variants (although oMCD's optimal stopping strategy tends to 

yield slightly lower resource investments and higher confidence than prospective MCD). This 

is important, because this means that the known properties of prospective MCD (Lee & 

Daunizeau, 2021) approximately generalize to oMCD. 

However, when compared to prospective MCD, oMCD possesses a unique feature: namely, 

the potentially nontrivial statistical relationship between decision properties (e.g. confidence) 

and resource investments (as proxied using, e.g., response times), across trials with identical 

decision parameters. Although we did not comment on this until now, this was already 

exemplified in the lower-right panel of Figure 3. 
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To make this distinction clearer, we performed another set of simulations aiming at 

evaluating the impact of decision difficulty. Note that difficult decisions are those decisions 

where the reliability of value representations improve very slowly. Within the MCD 

framework, increasing decision difficulty can thus be modelled by decreasing type #1 effort 

efficacy. We systematically varied β from 1 to 4 (having set all the other decision parameters 

to 4), and evaluated both response times and confidence (for 500 stochastic dynamics of 

value representations per difficulty level). Figure 6 below summarizes the simulation results. 

 

Figure 6: Impact of difficulty level. Upper-left panel: mean effort investment (y-axis, 
black dots) is plotted as a function of type #1 effort efficacy (x-axis). Errorbars depict 
standard deviations across trials, and red diamonds show the effort investment under 
prospective MCD. Upper-right panel: decision confidence, same format. Lower-left panel: 
confidence (y-axis) is plotted against response time deciles (x-axis), for each difficulty level 
(color code: type #1 effort efficacy), under oMCD’s optimal policy. Lower-right panel: 
oMCD's confidence thresholds (y-axis, plain lines) are plotted against decision time (x-axis), 
for each difficulty level (same color code as lower-left panel). Dotted lines show expected 
confidence (as anticipated by prospective MCD), and dots show the optimal response times, 
under a prospective MCD strategy. 
 

One can see that the net effect of increasing decision difficulty (or equivalently, decreasing 

type #1 effort efficacy) is to increase response time and decrease confidence. However, the 
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(slightly concave) shape of the relationship between response time and confidence is 

preserved across difficulty levels. This derives from the fact that the corresponding dynamics 

of expected confidence and oMCD's confidence thresholds are qualitatively similar. 

Figure 6 also reveals how oMCD's optimal stopping strategy prospectively anticipate the 

impact of decision difficulty. In brief, the decay rate of oMCD's confidence threshold 

increases with decision difficulty. However, this is overcompensated by the corresponding 

decrease in the ascend rate of expected confidence. This eventually determines the way 

oMCD trades speed against accuracy: difficult decisions are given more deliberation time 

than easy decisions (here, this is also true for prospective MCD). 

Note that the effect of difficulty onto response time, as well as the shape of the relationship 

between response time and confidence, actually depend upon the decision parameter 

setting. In other terms, these effects do not generalize to all decision parameter settings. This 

dependency is exemplified in Figure 7 below, which replicates the above analysis, this time 

setting all decision parameters to 2 (except type #1 effort efficacy). 
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Figure 7: Impact of difficulty level. Same format as Figure 6. 
 

One can see that, although the relationship between response time and confidence is now 

convex, decision difficulty has qualitatively similar effects on oMCD's behavior than before. 

However, prospective MCD and oMCD now slightly differ. More precisely, under prospective 

MCD, increasing decision difficulty now decreases response time. This is not the case for 

oMCD, which preserves its speed-accuracy tradeoff properties. 

 

In summary, the shape of the relationship between confidence and response time is mostly 

determined by the dynamics of oMCD’s optimal confidence threshold, which itself depends 

upon decision parameters. Therefore, we systematically investigated the impact of each 

decision parameter on oMCD’s confidence threshold dynamics (when setting all the other 

ones to 1). This is summarized in Figure 8 below. 
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Figure 8: Impact of decision parameters on oMCD’s optimal confidence threshold 
dynamics. Upper-left panel: Effect of type #1 effort efficacy. Optimal confidence 
threshold (y-axis, black dots) is plotted against decision time (x-axis), for different β levels 
(color code). Upper-right panel: Effect of type #2 effort efficacy, same format. Lower-left 
panel: Effect of unitary effort cost, same format. Lower-right panel: Effect of cost power, 
same format. 
 

The net effect of increasing effort efficacy (either type #1 or type #2) is to increase the 

absolute confidence threshold. In other terms, the demand for confidence increases with 

effort efficacy. In contrast, the demand for confidence decreases with unitary effort cost. Note 

that the effect of increasing decision importance is exactly the same as that of decreasing 

unitary effort cost (not shown). Importantly, the shape of the confidence threshold dynamics 

is approximately invariant to changes in effort efficacy or unitary effort cost (here, the 

threshold globally increases over most admissible decision times, until it begins to fall when 

approaching the time horizon).  

The only parameter that eventually changes the qualitative dynamics of oMCD’s optimal 

confidence threshold is the cost power (cf. lower-left panel in Fig. 8). In brief, increasing the 

cost power tends to decrease the initial slope of oMCD’s confidence threshold dynamics. 
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Here, the latter eventually falls below zero (i.e. the confidence threshold decreases with 

decision time) when the effort cost becomes superlinear (ν>1). Note that this happens 

without changing the dynamics of expected confidence (as when changing the unitary effort 

cost α). In other terms, the shape of the relationship between decision time and confidence 

is, for the most part, independent from the inner workings of the underlying decision system. 

In conclusion, although oMCD relies on the same parameters than prospective MCD, it can 

produce a wider range of confidence/RT relationships (in particular, the latter can be non-

monotonic, monotonically concave or monotonically convex). 

 

3. Does MCD reproduce established empirical results? 

As we highlighted before, MCD is compatible with most standard decision processes. 

However, the inner workings of value representation updates determine the choice that is 

made. This is important, since some of the decision features may depend upon, e.g., 

whether the system eventually arrives at a choice that is consistent with the comparison of 

options’ values or not (in case stochastic perturbations alter the decision rule). Inspecting 

these kinds of effects thus requires committing to further assumptions regarding decision 

processes. In what follows, we perform Monte-Carlo simulations under the two above 

decision process scenarios: namely, the ideal observer model and the attribute integration 

model. 

 

Let us first consider the ideal observer model. First, we simulate 1000 stochastic dynamics of 

Bayesian value belief updates according to Equation (20), having set the parameters of the 

ideal observer model as follows: R=1, α=0.1, ν=2, σ0=10, µ0=0, Σ=100, and sampling a hidden 

value signal V (per trial) under the ideal observer’s prior belief. Second, we identify the 

oMCD-optimal confidence threshold dynamics, having set the effort efficacy parameters to 

their analytical approximation, as given in Equation (22) and related derivations. We then 

store the ensuing decision times and their associated decision confidence, as well as the 
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choice of the ideal observer (as given by the comparison of value modes at decision time). 

Figure 9 below summarizes the results of this Monte-Carlo simulations series. 

 

 

Figure 9: The ideal observer decision process. Upper-left panel: The blue line and 
shaded area depict the mean and standard deviation of the observer’s confidence (under 
the 500 Monte-Carlo simulations), respectively. The blue dotted line shows the expected 
confidence under the corresponding MCD approximation, and the black dotted line shows 
the oMCD-optimal confidence threshold. Upper-right panel: Decision time (y-axis) is 
plotted against the difference in hidden option values (x-axis), for all trials (black), high-
confidence trials (blue) and low-confidence trials (red), respectively. Lower-left panel: The 
probability of choosing the first option (y-axis) is plotted against the difference in hidden 
option values (x-axis), for all trials (black), high-confidence trials (blue) and low-confidence 
trials (red), respectively. Lower-right panel: Choice confidence (y-axis) is plotted against 
the difference in hidden option values (x-axis), for all trials (black), value-consistent trials 
(blue) and value-inconsistent trials (red), respectively. 
 

First, one can see that the MCD approximation of within-trial choice confidence dynamics is 

relatively accurate (upper-left panel), and smoothly trades errors at early and late decision 

times. Second, on average, decision time decreases with the absolute difference in hidden 

option values (cf. black line in upper-right panel). This is a standard result in empirical studies 

of value-based decision making (De Martino et al., 2012; Milosavljevic et al., 2010; Rangel et 
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al., 2008). Third, we reproduce most known relationships between decision times, confidence 

and choice consistency that are reported in the existing literature (De Martino et al., 2012; 

Lee & Daunizeau, 2021). In particular, above and beyond the effect of decision value, 

decision time decreases when choice confidence increases (cf. blue and red lines in upper-

right panel). This, in fact, derives from shape of the oMCD confidence threshold dynamics 

(cf. Figure 8). Also, the consistency of choice with value is higher for high-confidence choices 

than for low-confidence choices (lower-left panel). This observation derives from performing 

a logistic regression of choice against hidden value, when splitting trials according to whether 

they yield a high or a low confidence (De Martino et al., 2012). Finally, on average, choice 

confidence decreases with the absolute difference in hidden option values (cf. black line in 

lower-right panel). Note that the oMCD framework also predicts that confidence is higher for 

choices that are consistent with the comparison of hidden values than for inconsistent 

choices (cf. red and blue lines in lower-right panel). This suggests that MCD possesses 

some level of metacognitive sensitivity (Fleming & Lau, 2014), i.e. it reports lower confidence 

when making a decision that is at odds with the hidden (unknown) value. In addition, when 

focusing on choices that are inconsistent with the comparison of hidden values, the impact of 

value difference on confidence reverses, i.e. choice confidence actually decreases with the 

absolute difference in hidden values. This extends known results in the context of perceptual 

decision making (Kepecs et al., 2008). We note that the latter results actually depend upon 

the effort cost parameters. In particular, metacognitive sensitivity tends to decrease in 

parameter regimes where the dynamics of oMCD confidence thresholds stop the decisions 

very early (e.g. low cost power and high unitary effort cost).  

 

Let us now consider the attribute integration model. First, we simulate 1000 stochastic 

dynamics of value construction dynamics by attribute integration according to Equation (24), 

having set the model parameters to yield a similar rate of value-consistent choices than for 

the above ideal observer case (R=1, α=2, ν=3, k=20, 1kη = , 10kς = ), and sampling a 
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permutation order for attribute-disclosing events at random for each trial. Second, we identify 

the oMCD-optimal confidence threshold dynamics, having set the effort efficacy parameters 

to their analytical approximation, as given in Equation (26) and related derivations. We then 

store the ensuing decision times and their associated decision confidence, as well as the 

choice of the attribute-integration decision system (as given by the comparison of value 

modes at decision time). Figure 10 below summarizes the results of this Monte-Carlo 

simulations series. 

 

 

Figure 9: The attribute-integration decision process. Same format as Figure 9. 

 

In brief, one can see that we qualitatively reproduce the above relationships between 

decision time, confidence and choice consistency. This is important, since this means that 

these relationships tend to generalize across different decision processes. However, this 

equivalence is only qualitative, and does not always hold. For example, reducing the unitary 
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effort cost eventually renders the oMCD confidence threshold dynamics concave. Under the 

attribute-integration scenario, this reverses the impact of the difference in option values onto 

confidence for value-inconsistent choices back again. This does not seem to happen under 

the ideal observer scenario.  
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Discussion 

 

In this work, we have presented the online/reactive metacognitive control of decisions or 

oMCD. We have compared it to its prospective MCD variant, and highlighted its main 

properties, when coupled with different underlying decision systems (in particular: the ideal 

observer and the attribute integration cases). 

One of the main assumptions behind MCD is that mental effort investments are regulated by 

a unique controller that needs to operate under agnostic assumptions about the inner 

workings of the underlying decision system. Here, we have shown that the confidence gains 

of very different decision processes can be approximated using the same computational 

architecture, which relies on calibrating simple effort efficacy parameters. We did not, 

however, investigate the possibility that effort costs may be qualitatively different for different 

decision processes. 

Recall that the notion of (mental) effort cost was central to the early definition of automatic 

versus controlled processing, with the former described as easy and effortless, and the latter 

as effortful (Schneider & Shiffrin, 1977). In line with this idea, we think of processing value-

relevant information as involving the investment of (limited) cognitive resources, which may 

eventually override default/automatic preferences. Now, three main assumptions have been 

laid out for explaining the cost of controlled processes. As we will see, these suggest distinct 

neurocognitive mechanisms by which effort may operate. 

First, mental effort may exhaust biological (e.g., metabolic) energy (Baumeister et al., 1998) 

that results from the additional complexity of controlled processes. Although attractive, this 

assumption is difficult to reconcile with the observation that some automatic/effortless 

processes (e.g., face recognition) arguably involve more complex computations than some 

controlled processes (e.g., one-digit arithmetic). Second, engaging control resources on a 

given task necessarily means foregoing the benefits of engaging these resources on other 

tasks. This induces an opportunity cost (Kurzban et al., 2013) that increases with the time 
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spent on the task. However, this assumption falls short of an explanation for why effort cost 

increases with effort intensity, irrespective of effort duration (Blain et al., 2016). Third, effort 

signals may proxy detrimental interferences that would result from the multiple and conflictual 

loading of shared neural resources. Such conflict-induced signal would then trigger cognitive 

control, which disengages bottlenecks of brain information processing pathways from non-

instrumental multitasking demands (Botvinick et al., 2001). Here effort regulation is 

essentially a reactive process, whereby cognitive control is engaged until target task 

demands are met. In this scenario, effort sensations feel like a cost, because they co-occur 

with situations in which cognitive control strives against high resistance (cf. difficult 

decisions). Under the framework of MCD, a possibility is that decision making requires the 

active maintenance of multiple value representations that tend to interfere with each other 

(e.g., because they involve the same neural population). In this case, cognitive control may 

alter the associated neural code with the aim of dampening these interferences. We will test 

these ideas using artificial neural network models of MCD in forthcoming publications. 

 

Finally, we note that the architecture of oMCD model lends itself nicely to other kinds of 

decision processes: in particular, perceptual or evidence-based decisions. In this context, 

decision confidence can be defined (somewhat more straightforwardly) as the subjective 

probability of being correct (Pouget et al., 2016). Nevertheless, as long as (i) decision 

confidence can be described using some variant of Equation (2), and (ii) the mean and 

variance of the relevant perceived quantity follow Equations (3) and (4), the overall MCD 

architecture will provide an optimal solution to the resource allocation problem. Note that 

when describing perceptual detection or discrimination processes using some form of ideal 

observer scenario, those conditions are trivially satisfied (Daunizeau et al., 2010; 

Drugowitsch et al., 2012). This would also hold for perceptual categorization processes, 

which may rather resemble attribute integration scenarios (Summerfield & Tsetsos, 2012). 

In fact, oMCD’s potential generalization ability derives from its agnostic stance regarding the 

nature of information processing that takes place in the underlying decision system. This is 
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also why oMCD can in principle be extended to describe the metacognitive control of other 

kinds of cognitive processes (e.g., reasoning or memory encoding/retrieval). In this context, 

an interesting avenue is to consider the impact of metacognitive adaptation onto the 

regulation of mental effort. Note that, because MCD only relies upon confidence monitoring 

to control effort, it requires a systematic calibration (in terms of, e.g., effort efficacy 

estimation) to guaranty the quasi-optimality of resource allocation. As we highlighted before, 

we expect such calibration to converge very quickly (e.g., over a few training trials). This is 

because effort efficacies can be learned from within-trial confidence dynamics. Nevertheless, 

whether and how this specific kind of metacognitive adaptation eventually modifies mental 

effort regulation is virtually unknown.  
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