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Abstract1

Genomic offset statistics predict the maladaptation of populations to rapid habi-2

tat alteration based on association of genotypes with environmental variation. De-3

spite substantial evidence for empirical validity, genomic offset statistics have well-4

identified limitations, and lack a theory that would facilitate interpretations of pre-5

dicted values. Here, we clarified the theoretical relationships between genomic offset6

statistics and unobserved fitness traits controlled by environmentally selected loci,7

and proposed a geometric measure to predict fitness after rapid change in local en-8

vironment. he predictions of our theory were verified in computer simulations and9

in empirical data on African pearl millet (Cenchrus americanus) obtained from a10

common garden experiment. Our results proposed a unified perspective on genomic11

offset statistics, and provided a theoretical foundation necessary when considering12

their potential application in conservation management in the face of environmental13

change.14

Keywords: Predictive Ecological Genomics, Genomic Offset, Climate Change, Local15

Adaptation, Pearl Millet.16

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2023. ; https://doi.org/10.1101/2023.01.02.522469doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.02.522469
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction17

Maladaptation across environmental changes. Predicting maladaptation re-18

sulting from traits that evolved in one environment being placed in an altered envi-19

ronment is a long-standing question in ecology and evolution, originally termed as20

evolutionary traps or mismatches (Schlaepfer et al., 2002; Cook and Saccheri, 2013).21

With the increasing availability of genomic data, a recent objective is to determine22

whether those shifts could be predicted from the genetic loci that control adaptive23

traits and the fitness effects of these loci in spatially varying environments, bypassing24

any direct phenotypic measurements (Capblancq et al., 2020; Waldvogel et al., 2020).25

This question is crucial to understand whether sudden changes in the species ecolog-26

ical niche, i.e., the sum of the habitat conditions that allow individuals to survive27

and reproduce, can be sustained by natural populations (Grinnell, 1917; Hutchinson,28

1957; Sork et al., 2010; Jay et al., 2012; Aitken and Whitlock, 2013; Schoville et al.,29

2012; Foden et al., 2019). To this aim, several approaches have incorporated genomic30

information on local adaptation into predictive measures of population maladaptation31

across ecological changes, called genomic offset (or genomic vulnerability) statistics32

(Fitzpatrick and Keller, 2015; Capblancq et al., 2020; Waldvogel et al., 2020).33

Genomic offset statistics and their limitations. Genomic offset statistics first34

estimate a statistical relationship between environmental gradients and allelic fre-35

quencies using genotype-environment association (GEA) models (Forester et al.,36

2018). The inferred relationship is then used to evaluate differences in predicted37

allelic frequencies at pairs of points in the ecological niche (Fitzpatrick and Keller,38

2015; Rellstab et al., 2016; Gougherty et al., 2021). The central hypothesis is that39
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those statistics are predictive of changes in fitness traits that occur under altered40

environmental conditions (Capblancq et al., 2020). Recent efforts combining trait41

measurements in common garden experiments or natural population censuses with42

landscape genomic data have shown that the loss of fitness due to abrupt environ-43

mental shift correlates well with genomic offset predictions (Bay et al., 2018; Ruegg44

et al., 2018; Rhoné et al., 2020; Ingvarsson and Bernhardsson, 2020; Fitzpatrick et45

al., 2021; Chen et al., 2022; Sang et al., 2022). Experiments in which organisms are46

placed into an environment that differs from the one in which the traits evolved are,47

however, not always feasible (or efficient). Genomic offsets – that can be calculated48

in field studies – offer then a reasonable alternative to common garden experiments49

in a wide spectrum of applications to model and non-model organisms.50

Despite substantial evidence for empirical validity, the proposed measures of ge-51

nomic offset have well-identified limitations due to migration and gene flow (but see52

Gougherty et al. (2021)), population structure or genomic load. They also have diffi-53

culties to account for polygenic effects or correlated predictors (Rellstab et al., 2021;54

Aguirre-Liguori et al., 2021; Hoffmann et al., 2021). More importantly, different types55

of genomic offset statistics have been proposed in recent years (Fitzpatrick and Keller,56

2015; Rellstab et al., 2016; Capblancq and Forester, 2021), and the inferred values57

for each of those statistics have not been explicitly linked to fundamental measures in58

quantitative and population genetics. The proposed measures lack theoretical foun-59

dations that would clarify how those different statistics are related to fitness and to60

each other. Thus, there is an urgent need to propose theoretical developments that61

will facilitate biological interpretations of genomic offset statistics. Here, we devel-62

oped a theoretical framework that links genomic offset statistics to adaptive trait63
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values controlled by ecological conditions, unifies existing approaches and addresses64

their limitations.65

Results66

Geometry of the ecological niche. We developed a geometric approach to the67

concept of genomic offset (GO) by defining a dot product of ecological predictors68

built on effect sizes of those predictors on allelic frequencies. Effect sizes, (bℓ) = (bℓj),69

were obtained from a GEA model of centered allelic frequencies on scaled predictors70

observed at a set of sampling locations. In that notation, ℓ stands for a locus,71

and j stands for a predictor. Effect sizes were corrected for the confounding effects72

of population structure and missing predictors (Methods:“GEA studies”). Given d73

ecological predictors, recorded in vector x, and their altered versions based on some74

change in time or space, recorded in x⋆, we defined a geometric GO – implemented75

as genetic gap in the computer package LEA – as a quadratic distance between the76

two vectors x and x⋆
77

G2(x,x⋆) = (x− x⋆)Cb(x− x⋆)T , (1)

where Cb = E[bTb] is the empirical covariance matrix of environmental effect sizes.78

Here the notation E[.] stands for the empirical mean across genomic loci in the analy-79

sis, ideally the number of loci controlling adaptive traits. Because the reference allele80

defining the genotype at a particular locus can be changed without any impact on81

the GEA analysis, we assume that the average value of effect sizes across all genomic82

loci is null, E[b] ≈ 0. Considering allelic frequencies predicted from the GEA model,83

f(x) = xbT +
∑K

k=1 ukv
T
k and f(x⋆) = x⋆bT +

∑K
k=1 ukv

T
k , where the uk represents84
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K confounding factors and vk their loadings, we have85

G2(x,x⋆) = E[((x− x⋆)bT )2] = E[(f(x)− f(x⋆))2] . (2)

Thus the geometric GO has a dual interpretation as a quadratic distance in environ-86

mental and in genetic space. The population genetic interpretation of the geometric87

GO is as the average value of Nei’s DST/2 (= FST×HT/2) for the set of loci assumed88

to be involved in local adaptation (Nei, 1973; François and Gain, 2021). As a genomic89

offset, the DST statistic can be calculated between pairs of population in space, but90

also in time, and it evaluates the genetic diversity between the populations in which91

x and x⋆ are measured or forecasted.92

Quantitative theory for genomic offset. We developed a quantitative theory93

for the geometric GO and for other GO statistics under the hypothesis of local stabi-94

lizing selection (Kimura, 1965; Lande, 1975). Under this hypothesis, observed allelic95

frequencies have reached local equilibria in which polygenic or quantitative charac-96

ters are under natural selection for intermediate optimum phenotypes. The theory97

relies on a statistical model for an unobserved fitness trait for which a large number98

of small allelic effects mediate the effects of ecological predictors on fitness.99

We defined ω(x,x⋆) to be the relative fitness value of a trait at equilibrium in100

environment x being placed in the altered environment x⋆. Under local Gaussian101

stabilizing selection, we found that the value of the logarithm of altered fitness varies102

in proportion with the geometric GO (Figure 1, Box 1)103

− logω(x,x⋆) ∝ G2(x,x⋆)/2Vs , (3)
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where the Vs coefficient depends on the inherited variance and on the strength of sta-104

bilizing selection. In addition, the above equation remains valid when environmental105

predictors are indirectly related to the factors that influence the traits under selection,106

for example when those predictors are built on linear combinations of causal predic-107

tors for selection (Supporting Information: “Linear combination of predictors”). The108

geometric GO is thus robust to correlation in causal effects, and Eq. (3) extends to109

known and unknown linear combinations of those effects.110

Unifying genomic offset statistics. Beyond defining a new geometric measure111

of genomic offset, the quantitative theory provides a unified framework for GO statis-112

tics based on redundancy analysis (RDA, Capblancq and Forester (2021)), the risk of113

nonadaptedness (Rona, Rellstab et al. (2016)), and gradient forests (GF, Fitzpatrick114

and Keller (2015)) (Supporting Information:“Relationships to other GO statistics”).115

The main result is that all GO statistics predict the logarithm of fitness, but not for116

the same shape of the (within-locality) selection gradient. When RDA is performed117

on both environmental and latent predictors, the RDA GO is theoretically equiva-118

lent to the geometric GO, and thus predicts relative fitness under the hypothesis of119

Gaussian selection within localities. The risk of nonadaptedness, which is defined as120

the average of allelic frequency differences instead of squared differences, makes the121

implicit assumption that the selection gradient is built upon an exponential (Laplace)122

curve. When the distribution of effect sizes is Gaussian, Rona is then related to the123

square root of the geometric GO (times
√
2/π). Like most machine learning tech-124

niques, GF is a nonparametric approach. In GF, no selection gradient is modelled a125

priori, but may be thought of as being estimated from the observed data. This might126
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be one reason for which GF require more information than linear approaches based on127

low-dimensional parameters. The GF GO nevertheless follows a construction similar128

to the geometric GO and the RDA GO.129

Box 1. Genomic offset theory. Consider an (unobserved) fitness trait, z, for
which a large number of genes mediate the effects of ecological predictors on organis-
mal viability. Using Eq. (7) in (Barton et al., 2017), the trait value is assumed to be
controlled by L mutations each having infinitesimally small allelic effect of equal size,
aℓ ≈ ±a/

√
L, defining the trait value as a polygenic score, z =

∑L
ℓ=1 aℓyℓ+e. Here, yℓ

is the allelic frequency at locus ℓ, expressed as deviation from the population mean,
aℓ has random sign, a2 controls the additive genetic variance, and the random term e
models the non-genetic variance. The definition is equivalent to the more traditional
decomposition of variance into inherited and non-inherited components (Figure S1).
Assuming a local Gaussian stabilizing selection model, the relative fitness of the
trait in environment x is equal to ω(z|x) = exp(−(z − zopt(x))

2/2VS), where 1/VS

represents the strength of stabilizing selection. Conditional on local environment,
the optimum, zopt(x), corresponds to the mean (or predicted) value of the trait,

z̄ =
∑L

ℓ=1 aℓfℓ(x). The logarithm of fitness for a trait at equilibrium in environment
x being placed in the altered environment x⋆ is thus equal to

− logω(x,x⋆) = (z̄ − z̄⋆)2/2VS (4)

where z̄⋆ =
∑L

ℓ=1 aℓfℓ(x
⋆). The difference in fitness traits, (z̄ − z̄⋆), is equal to

a(x − x⋆)
∑L

ℓ=1 b
T
ℓ /

√
L. According to the central limit theorem, the conditional

distribution of (z̄− z̄⋆) is Gaussian N(0, a2G2(x,x⋆)), where G2(x,x⋆) is defined from
the theoretical – instead of empirical – effect size covariance matrix. The distribution
of (z̄ − z̄⋆)2 is a non-standard chi-squared distribution with one degree of freedom

(z̄ − z̄⋆)2 ∼ a2 G2(x,x⋆)χ2
1 . (5)

Since G2(x,x⋆) ≈ G2(x,x⋆) for large L, the value of the logarithm of altered fitness
varies in proportion with the geometric GO, where the proportionality coefficient is
equal to a2χ2

1/2VS. The expected value is thus approximately equal to G2(x,x⋆)/2Vs,
where Vs = VS/a

2. Consideration of traits that are not at equilibrium in environment
x adds an intercept term to the expected value, equal to a2σ2

ϵ/2VS + σ2
e/2VS, where

σ2
ϵ is the residual variance in the GEA model and σ2

e is the non-inherited variance
(Supporting Information: “Logarithm of altered fitness for non-optimal traits”).

130
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Validation of the theory. To illustrate the above theory, we analyzed simulated131

data in which adaptive traits were matched to ecological gradients by local Gaussian132

stabilizing selection (Figure 2A, Methods:“Simulation study”, Supporting Informa-133

tion:“Extended simulation study”) (Haller and Messer, 2019). Two environmental134

predictors playing the role of temperature and precipitation in the studied range135

were considered, as well as two additional non-causal predictors correlated to the136

first ones (Figure 2B). The median values of temperature and precipitation deter-137

mined four broad types of environments from dry/warm to wet/cold conditions. As138

an outcome of the simulation, the genetic groups resulting from selection, drift and139

gene flow matched the environmental classes, generating high levels of correlation be-140

tween environmental predictors and population structure in the GEA analysis (Figure141

S2). As predicted by equation (3), the values of the geometric GO computed accord-142

ing to equation (1) varied linearly with the logarithm of fitness after alteration of143

local conditions (r2 ≈ 78%, P < 0.001, Figure 2C-D). The predictive power of the144

geometric GO was much higher than the predictive power of squared Euclidean envi-145

ronmental distance between predictors and their altered values (r2 ≈ 45%, J = 11.3,146

P < 0.001). Although it was calculated on both causal and non-causal predictors, the147

GO adjusted almost perfectly to the quadratic function that determines the intensity148

of local Gaussian stabilizing selection (r2 = 97%, P < 0.001, Figure S3). The first two149

eigenvalues of the covariance matrix of environmental effect sizes were much larger150

than the last ones (Figure 2C). We found that the loadings on the first axes gave151

more weight to predictors associated with natural selection, while the loadings on the152

last axes weighted predictors that did not play a role in the simulated evolutionary153

process. Uninformative predictors were given only low weights in the calculation of154
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the GO statistic. Those results provided evidence that the largest eigenvalues that155

characterize the geometric GO contain useful information about local adaptation.156

Extended simulation study. Expanding our case analysis, additional simulation157

scenarios were considered with traits under local stabilizing selection having dis-158

tinct levels of polygenicity. Some cases were complicated by a strong correlation of159

environmental predictors with population structure. To overcome this complication,160

correction based on latent factors were included in all GO calculations (Methods:“GO161

computations”). As predicted by the theory, the values of the squared correlation162

between the GO statistic and the logarithm of fitness were very close to each other163

in all investigated cases (Figure 3, Figure S4). As expected, methods that did not164

use correction (undercorrection) or include population structure covariates (overcor-165

rection) worked less well than methods with latent factor correction (Figures S5-S6).166

Once corrected, the GO statistics ranked similarly in all simulation scenarios. The167

ability of the geometric GO to predict the logarithm of fitness was equal to that of168

corrected RDA GO. It was slightly superior to that of Rona and to that of the GF169

GO. All GO statistics were highly correlated with the geometric GO (Figure S7).170

The geometric GO also exhibited high correlation with the quadratic distance be-171

tween causal predictors explaining the traits under local stabilizing selection in the172

simulation model (Figure S8). This result supported the evidence of near-optimal173

fitness prediction by the GO statistics in all simulated evolutionary scenarios. When174

all genomic loci in the genotype matrix were included in the GO calculations, the175

predictions stayed close to those based on subsets of loci identified in the GEA anal-176

ysis, GF GO reaching then performances similar to the other GO statistics (Figure177
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S9).178

Evaluating the bias of linear allelic frequency predictions. An approxima-179

tion made by the geometric and other GO statistics is that allelic frequencies are180

predicted by unconstrained linear functions of environmental predictors. To evalu-181

ate the impact of this approximation, we compared linear predictions to those of a182

logistic regression model, which are constrained between zero and one. For small en-183

vironmental change, the effect sizes in the linear GEA model could be approximated184

by the effect sizes in the logistic regression multiplied by the heterozygosity at each185

locus (Supporting Information:“Bias of linear predictors”). The geometric GO was186

then accurately approximated by the squared distance between constrained genetic187

predictors, E[(fc(x) − fc(x
⋆))2] (Figure S10). Using a nonlinear machine learning188

model (Supporting Information:“Variational autoencoder GO”), we found again that189

the squared genetic distance between constrained genetic predictors strongly cor-190

related with the geometric GO, supporting the approximation of fitness in altered191

environment using linear models (Figure S11).192

Pearl millet common garden experiment. We hypothesized that GO statistics193

could predict the logarithm of fitness in pearl millet, a nutritious staple cereal culti-194

vated in arid soils in sub-Saharan Africa (Rhoné et al., 2020). Pearl millet is grown195

in a wide range of latitudes and climates with wide variety of ecotypes (landraces).196

The geometric GO and other measures of GO were estimated from 138,948 single-197

nucleotide polymorphisms for 170 Sahelian landraces in a two-year common garden198

experiment conducted in Sadoré (Niger) using loci identified in the GEA study (Fig-199

ure 4A, Methods:“Pearl millet experiment”). For each landrace grown in the common200
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garden, the total weight of seeds was measured as a proxy of landrace fitness, which201

was explained by a Gaussian selection gradient (Figure S12). Including latent factor202

correction, GO statistics were computed using the climate condition at the location203

of origin of the landrace and the climate at the experimental site. All GO statistics204

displayed a consistent relationship with the logarithm of seed weight (Figure 4B, Fig-205

ure 5). Loci identified in the GEA study increased the performance of GO statistics206

compared to using whole genomic data, and the improvements were substantial com-207

pared to methods that did not include correction for confounding factors (Figures208

S13-S14 and Table S1). The best predictions of fitness in the common garden were209

obtained with the geometric GO and with the corrected version of Rona (r2 = 61%,210

P < 0.001, Figure 5). The eigenvalues and eigenvectors of the covariance matrix of211

environmental effect sizes suggested that climatic conditions could be summarized in212

three axes. Temperature predictors were given higher importance in driving fitness213

variation than precipitation and solar radiation predictors (Figure S15).214

Discussion215

Quantitative theory. The geometric theory presented in our study provided a216

unified framework that not only explains why and when a GO statistic differs from217

the standard Euclidean environmental distance, but also allowed for a better under-218

standing of previous measures of genomic offset. Based on models of local selection219

gradients, a theoretical analysis of GO statistics relying on Fisher’s infinitesimal trait220

model was developed. In this framework, the geometric GO decays linearly with the221

logarithm of fitness in the altered environment. Although of much lower computa-222

tional complexity, the geometric GO was proved to be equivalent to a GO based on223
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RDA, which justifies the use of RDA approaches under local Gaussian selection. The224

square root of the geometric GO was connected to Rona, and justifies the use of225

absolute differences in allele frequencies under exponential selection gradient.226

Improving GO statistics. According to Rellstab et al. (2021), current GO statis-227

tics may provide wrong predictions due to the correlation between population struc-228

ture at selectively neutral loci and environmental predictors. Built on unbiased effect229

sizes, the geometric GO, which is based on a unique model for GEA estimation and230

for GO prediction, addressed this problem by including latent factors as covariates231

in the prediction model. Latent factor corrections were then incorporated into all232

considered GO statistics, which increased their predictive performance compared to233

their traditional usage. Our versions of RDA GO and Rona – that slightly differ from234

original proposals – were implemented in the R package LEA. Although those changes235

led to improved statistics, the geometric GO reached higher predictive performance236

than the other GO approaches. Next, the geometric GO addressed the problem of237

correlated predictors by modeling the covariance of their effect sizes. The impor-238

tance of predictors could be assessed by examining the eigenvalues and eigenvectors239

of the environmental effect size covariance matrix. The eigenvalues provide a natural240

ranking of the importance of each axis, similar to the cumulative importance curves241

in GF. When a statistical analysis includes redundant predictors, reproducing infor-242

mation already present in a reduced set of predictors, the geometric GO gave lower243

weight to those redundant predictors, and differed substantially from the Euclidean244

environmental distance. Generally, the principal benefit of genomic offset over purely245

environmental distances in predicting maladaptation comes from the weighting of en-246
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vironmental predictors by their effect sizes (Làruson et al., 2022). All proposed GO247

approaches share the principle of weighting the environmental predictors by their248

strength of genetic association. For the vast majority of organisms where the most249

important predictors are unknown or for which common garden experiments are not250

efficient or unfeasible, genomic offset therefore provides a useful means for weighting251

the environmental predictors based on the information contained in allele frequencies.252

Limitations. Our simulation models and our theoretical developments relied upon253

a model of genotype × environment interaction for fitness related to antagonistic254

pleiotropy, whereby native alleles are best adapted to local conditions (Kawecki, 2004;255

Anderson et al., 2011). While antagonistic pleiotropy is an important mechanism for256

local adaptation, there are other types of interactions for fitness. If local adapta-257

tion is caused by conditional neutrality at many loci, where alleles show difference in258

fitness in one environment, but not in a contrasting environment, the predictive per-259

formances of GO statistics remain to be explored. In addition, GO statistics (except260

GF) are based on linear models for the relationship between genotype and environ-261

ment. Linear models generate GO statistics that are invariant under translation in262

the niche, making predictions relevant at the center of the species distribution, but263

perhaps less relevant at margins of the range. While translational invariance could264

be corrected for by defining the offset as the average of squared differences between265

allelic frequencies in nonlinear models, we found that the results were very close to266

the linear models. An explanation may be that nonlinear machine learning models267

offer more flexible GO statistics than linear models, but that linear models achieve a268

better bias-variance trade-off than machine learning models, likely because less data269
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are needed for their application. Other conceptual limitations include gene flow and270

constraints on adaptive plasticity that might mitigate the effect of environmental271

change on fitness (Aguirre-Liguori et al., 2021; Kawecki, 2004). As they do not use272

any observed information on fitness traits, GO statistics provide measures of expected273

fitness loss based on the indirect effects of environment mediated by loci under se-274

lection (Baron and Kenny, 1986). GO statistics are more accurate when non-genetic275

effects do not covary with environmental predictors. Lastly, we found that using276

candidate loci based on statistical significance in GEA improved prediction of fitness277

in altered conditions both in simulation and in real data analysis. We think that this278

happens because those studies may generally be underpowered, i.e., a much larger279

sample size would increase the predictive power of GO statistics. Using a liberal280

threshold in GEA studies was considered as a trade-off between polygenicity and sta-281

tistical significance, so that the GO measures could actually be based on polygenic282

scores while not erasing or blurring the genomic signals of local adaptation.283

Pearl millet experiment. To compare predictions of local adaptation with em-284

pirical data, GO statistics were estimated in a common garden experiment on pearl285

millet landraces in sub-Saharan Africa. Using GF, the original study reported a286

squared correlation of r2 ≈ 9.5−17% for seed weight, indicating that higher genomic287

vulnerability was associated with lower fitness under the climatic conditions at the288

experimental site (Rhoné et al., 2020). In our reanalysis, signals of local adaptation289

were consistent across all GO statistics, and improved fitness prediction substantially,290

up to a value of squared correlation equal to r2 ≈ 61%. The results strengthened291

the conclusions of (Rhoné et al., 2020), and supported the use of GO statistics in292
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predictions of fitness values across the sub-Saharan area.293

Conclusions. Considering a duality between genetic space and environmental space,294

we developed a theoretical framework that linked GO statistics to a non-Euclidean295

geometry of the ecological niche. The geometric GO, as well as the modified Rona296

statistic, were implemented in the genetic gap function of the R package LEA (Gain297

and François, 2021). As a result of the quantitative theory, interpretations in terms298

of fitness in the altered environment were proposed, unifying several existing ap-299

proaches, and addressing some of their limitations. Based on extensive numerical300

simulations and on data collected in a common garden experiment, our study indi-301

cated that GO statistics are important tools for conservation management in the face302

of climate change.303

Materials and Methods304

GEA studies. GEA studies and estimates of environmental effect sizes were per-305

formed based on LFMMs in the computer package LEA v3.9 (Caye et al., 2019; Gain306

and François, 2021). In LFMMs, allelic frequencies are modelled at each genomic307

locus of a genotype matrix as a mixed response of observed environmental variables308

with fixed effects and K unobserved latent factors. The number of latent factors309

was estimated from the screeplot of a principal component analysis of the genotype310

matrix. Loci with minor allele frequency less than 10% were filtered out the analysis.311

Statistical significance was determined by using the R package qvalue at a level of312

false discovery rate equal to 10%.313
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GO computations. RDA was performed by using principal components of fitted314

values of the GEA regression model. Rona was computed as the average value of315

the absolute distance between predicted allelic frequencies across genomic loci (de316

Aquino et al., 2022; Rellstab et al., 2016). GF computations were performed using317

the R package gradientForest version 0.1. For consistency, we reported squared318

values of GO statistics in RDA and GF. Unless specified, GO statistics were computed319

on the loci detected in the GEA study, i.e., a same set of loci for all methods. To320

correct statistics for the confounding effect of population structure, all analyzes were321

performed conditional on the factors estimated in the LFMM analysis (Supporting322

Information:“GO computations”).323

Simulation study. Spatially-explicit individual-based simulations were performed324

using SLiM 3.7 (Haller and Messer, 2019) (Supporting Information:“Extended simu-325

lation study”). Each individual genome contained neutral mutations and quantitative326

trait loci (QTLs) under local stabilizing selection from a two-dimensional environ-327

ment. The probability of survival of an individual genome in the next generation was328

computed as the product of density regulation and fitness. We designed four classes329

of scenarios, including weakly or highly polygenic traits, and weak or high correlation330

of environment with population structure. In scenarios with high polygenicity, traits331

controlled by 120 mutations with additive effects were matched to each environmental332

variable by local stabilizing selection. In weakly polygenic scenarios, the traits were333

controlled by 10 mutations. Scenarios with high confounding effects were initiated334

in a demographic range expansion process, creating correlation between environment335

and allelic frequencies at the genome level. For each scenario, thirty replicates were336
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run with distinct seed values of the random generator. At the end of a simulation, in-337

dividual geographic coordinates, environmental variables and individual fitness values338

before and after instantaneous environmental change were recorded. Paired t-tests339

were used to test statistical differences in the mean of predictive performances for340

the geometric GO and the other GO statistics.341

Empirical study. Methods regarding the common garden experiment on Pearl342

millet landraces conducted in Sadoré (13◦ 14’ 0” N, 2◦ 17’ 0” E, Niger, Africa) were343

described by Rhoné et al. (2020). For each of 170 landraces grown in the common gar-344

den, the total weight of seeds was measured by harvesting the main spike in ten plants345

per landrace sown during two consecutive years and was used as a proxy of landrace346

fitness. For each landrace grown in the common garden, environmental predictors,347

x, were obtained at the location of origin of the landrace, and x⋆ corresponded to348

the local conditions in Sadoré. We made the hypothesis that the mean total weight349

of seeds for a landrace was proportional to ω(x,x⋆) in the common garden. Using350

100 plants per landrace in a pool-sequencing design, allelic frequencies were inferred351

at 138,948 single-nucleotide polymorphisms. Climate data were used to compute 157352

metrics in three categories, precipitation, temperature (mean, maximum and min-353

imum near surface air temperature), and surface downwelling shortwave radiation,354

that were reduced by principal component analysis (27 axes). GO statistics were355

computed using the climate condition (x) at the location of origin of the landrace356

and the climate conditions (x⋆) at the experimental site. For each GO statistic, we357

estimated a linear relationship with the logarithm of the mean total weight of seeds358

and used Pearson’s squared correlation to evaluate the goodness of fit. The J-test359
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was used to test differences between predictive performances, corresponding to R-360

squared for distinct regression models, of the geometric GO and other GO statistics361

(Davidson and MacKinnon, 1981).362

Data Availability. The pearl millet data have already been published, and have363

permissions appropriate for fully public release.364

Code Availability. The codes necessary to reproduce the simulations and data365

analyses of this study are available at https://github.com/bcm-uga/geneticgap366

under GNU General Public License v3.0 The geometric GO is implemented in the367

genetic gap function of the R package LEA (version number > 3.9.5) available from368

the public repository bioconductor and https://github.com/bcm-uga/LEA (latest369

version).370
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Figure 1. Geometric offset (genetic gap) under local Gaussian stabilizing
selection. The two points, z(x) = z̄ and z(x⋆) = z̄⋆, represent locally optimal
values of an adaptive trait in respective environments x and x⋆. The curves display
the fitness values for the trait in each environment. An organism with trait z(x),
optimal in environment x, being placed in altered environment x⋆, has a fitness value
equal to ω⋆ = exp(−G2(x,x⋆)/2Vs), where G

2(x,x⋆) is the genomic offset (horizontal
dashed line), and Vs is defined in text.
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Figure 2. Simulation of fitness traits and geometric offset. a) Spatial
individual-based forward simulations: Adaptive traits were matched to ecological
gradients by local Gaussian stabilizing selection. b) Geographic maps of four envi-
ronmental predictors before and after change. c) Logarithm of altered fitness values
as a function of geometric offset. The eigenvalues of the covariance matrix of envi-
ronmental effect sizes are displayed in the top left corner. d) Geographic maps of the
logarithm of altered fitness values (left) and geometric offset (right).
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Figure 3. Predictive performances of GO statistics. Proportion of variance
of fitness in the altered environment explained by GO statistics (coefficient of deter-
mination). Four scenarios with distinct levels of polygenicity in adaptive traits and
correlation of environmental predictors with population structure were implemented.
Significance values were based on paired t-tests of the difference in mean performance
for each GO statistic relative to the geometric GO (***: P < 0.001). Boxplots display
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Figure 4. Interpolated fitness gradient and genomic offset for pearl millet
landraces. A) Fitness values (log) measured as the mean total seed weight for each
pearl millet landrace in the common garden experiment located in Sadoré (Niger). B)
Values of the geometric genomic offset. Locations of landrace origin are represented
as dots. Values at unsampled locations were interpolated from the nearest sampled
location using the inverse distance weighting method.
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Figure 5. Logarithm of fitness in the common garden as a function of the
GO statistic. Latent factor corrections were included in the calculation of all GO
statistics (ten factors). Fitness was evaluated as the mean total weight of seed for
170 pearl millet landraces. GO values for GF were multiplied by a factor of ten.
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