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1 Abstract

2 Genomic offset statistics predict the maladaptation of populations to rapid habi-
3 tat alteration based on association of genotypes with environmental variation. De-
s+ spite substantial evidence for empirical validity, genomic offset statistics have well-
s identified limitations, and lack a theory that would facilitate interpretations of pre-
¢ dicted values. Here, we clarified the theoretical relationships between genomic offset
7 statistics and unobserved fitness traits controlled by environmentally selected loci,
¢ and proposed a geometric measure to predict fitness after rapid change in local en-
o vironment. he predictions of our theory were verified in computer simulations and
10 in empirical data on African pearl millet (Cenchrus americanus) obtained from a
u common garden experiment. Our results proposed a unified perspective on genomic
12 offset statistics, and provided a theoretical foundation necessary when considering
13 their potential application in conservation management in the face of environmental

1 change.

15 Keywords: Predictive Ecological Genomics, Genomic Offset, Climate Change, Local

16 Adaptation, Pearl Millet.
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» Introduction

18 Maladaptation across environmental changes. Predicting maladaptation re-
19 sulting from traits that evolved in one environment being placed in an altered envi-
2 ronment is a long-standing question in ecology and evolution, originally termed as
2 evolutionary traps or mismatches (Schlaepfer et al., [2002; Cook and Saccheri, |2013)).
22 With the increasing availability of genomic data, a recent objective is to determine
;3 whether those shifts could be predicted from the genetic loci that control adaptive
2 traits and the fitness effects of these loci in spatially varying environments, bypassing
s any direct phenotypic measurements (Capblancq et al.,[2020; Waldvogel et al.,|2020).
26 'This question is crucial to understand whether sudden changes in the species ecolog-
27 ical niche, i.e., the sum of the habitat conditions that allow individuals to survive
s and reproduce, can be sustained by natural populations (Grinnell, [1917; [Hutchinson,
20 (1957} [Sork et all 2010; Jay et al., 2012; Aitken and Whitlock, 2013; Schoville et al.l
2 [2012; Foden et al.,2019). To this aim, several approaches have incorporated genomic
a1 information on local adaptation into predictive measures of population maladaptation
» across ecological changes, called genomic offset (or genomic vulnerability) statistics

1 (Fitzpatrick and Keller, [2015; |(Capblancq et al., [2020; Waldvogel et al.l 2020).

u  Genomic offset statistics and their limitations. Genomic offset statistics first
55 estimate a statistical relationship between environmental gradients and allelic fre-
3 quencies using genotype-environment association (GEA) models (Forester et al.|
w [2018). The inferred relationship is then used to evaluate differences in predicted
s allelic frequencies at pairs of points in the ecological niche (Fitzpatrick and Keller,

» [2015; Rellstab et al) 2016; Gougherty et all [2021). The central hypothesis is that
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w0 those statistics are predictive of changes in fitness traits that occur under altered
a environmental conditions (Capblancq et all 2020). Recent efforts combining trait
2 measurements in common garden experiments or natural population censuses with
s landscape genomic data have shown that the loss of fitness due to abrupt environ-
s mental shift correlates well with genomic offset predictions (Bay et al., 2018; Ruegg
s |et all 2018; Rhoneé et al., 2020} Ingvarsson and Bernhardsson, 2020; |Fitzpatrick et
s |all 2021; (Chen et all 2022; Sang et al., [2022). Experiments in which organisms are
s placed into an environment that differs from the one in which the traits evolved are,
s however, not always feasible (or efficient). Genomic offsets — that can be calculated
w0 in field studies — offer then a reasonable alternative to common garden experiments
s0 in a wide spectrum of applications to model and non-model organisms.

51 Despite substantial evidence for empirical validity, the proposed measures of ge-
2 nomic offset have well-identified limitations due to migration and gene flow (but see
s3 \Gougherty et al. (2021)), population structure or genomic load. They also have diffi-
s« culties to account for polygenic effects or correlated predictors (Rellstab et al., 2021
s [Aguirre-Liguori et al., 2021; Hoffmann et al.;[2021). More importantly, different types
ss of genomic offset statistics have been proposed in recent years (Fitzpatrick and Keller,
sv [2015; Rellstab et al.; 2016; |Capblancq and Forester, 2021)), and the inferred values
ss for each of those statistics have not been explicitly linked to fundamental measures in
so quantitative and population genetics. The proposed measures lack theoretical foun-
s dations that would clarify how those different statistics are related to fitness and to
61 each other. Thus, there is an urgent need to propose theoretical developments that
s2 will facilitate biological interpretations of genomic offset statistics. Here, we devel-

&3 oped a theoretical framework that links genomic offset statistics to adaptive trait
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s« values controlled by ecological conditions, unifies existing approaches and addresses

es their limitations.

« Results

7 Geometry of the ecological niche. We developed a geometric approach to the
s concept of genomic offset (GO) by defining a dot product of ecological predictors
e built on effect sizes of those predictors on allelic frequencies. Effect sizes, (by) = (by;),
70 were obtained from a GEA model of centered allelic frequencies on scaled predictors
n observed at a set of sampling locations. In that notation, ¢ stands for a locus,
72 and j stands for a predictor. Effect sizes were corrected for the confounding effects
72 of population structure and missing predictors (Methods: “GEA studies”). Given d
7 ecological predictors, recorded in vector x, and their altered versions based on some
7 change in time or space, recorded in x*, we defined a geometric GO — implemented
76 as genetic gap in the computer package LEA — as a quadratic distance between the

77 two vectors x and x*

G*(x,x*) = (x — x)Cp(x — x*)7, (1)

s where Cp, = E[b”b] is the empirical covariance matrix of environmental effect sizes.
79 Here the notation E[.] stands for the empirical mean across genomic loci in the analy-
so sis, ideally the number of loci controlling adaptive traits. Because the reference allele
s1 defining the genotype at a particular locus can be changed without any impact on
&2 the GEA analysis, we assume that the average value of effect sizes across all genomic
g3 loci is null, E[b] ~ 0. Considering allelic frequencies predicted from the GEA model,

s f(x)=xbl + Zszl u, vl and f(x*) = x*bT + Zszl u, v’ where the uy, represents

5
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ss K confounding factors and v their loadings, we have

G*(x,x") = E[((x —x")b")’] = E[(f(x) — f(x"))]. (2)

s Thus the geometric GO has a dual interpretation as a quadratic distance in environ-
sz mental and in genetic space. The population genetic interpretation of the geometric
ss GO is as the average value of Nei’s Dgr/2 (= Fgr X Hr/2) for the set of loci assumed
o to be involved in local adaptation (Nei| (1973} Francois and Gain, |[2021). As a genomic
o offset, the Dgr statistic can be calculated between pairs of population in space, but
a1 also in time, and it evaluates the genetic diversity between the populations in which

o2 X and x* are measured or forecasted.

s Quantitative theory for genomic offset. We developed a quantitative theory
a for the geometric GO and for other GO statistics under the hypothesis of local stabi-
o5 lizing selection (Kimura, (1965; |Lande, |1975)). Under this hypothesis, observed allelic
s frequencies have reached local equilibria in which polygenic or quantitative charac-
o7 ters are under natural selection for intermediate optimum phenotypes. The theory
s relies on a statistical model for an unobserved fitness trait for which a large number
o of small allelic effects mediate the effects of ecological predictors on fitness.

100 We defined w(x,x*) to be the relative fitness value of a trait at equilibrium in
w1 environment X being placed in the altered environment x*. Under local Gaussian
02 stabilizing selection, we found that the value of the logarithm of altered fitness varies

103 in proportion with the geometric GO (Figure 1, Box 1)

—logw(x,x*) < G*(x,x*)/2V,, (3)
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s where the V; coefficient depends on the inherited variance and on the strength of sta-
s bilizing selection. In addition, the above equation remains valid when environmental
ws predictors are indirectly related to the factors that influence the traits under selection,
w7 for example when those predictors are built on linear combinations of causal predic-
s tors for selection (Supporting Information: “Linear combination of predictors”). The
w0 geometric GO is thus robust to correlation in causal effects, and Eq. extends to

1o known and unknown linear combinations of those effects.

m  Unifying genomic offset statistics. Beyond defining a new geometric measure
2 of genomic offset, the quantitative theory provides a unified framework for GO statis-
us  tics based on redundancy analysis (RDA, Capblancq and Forester| (2021))), the risk of
s nonadaptedness (Rona, Rellstab et al|(2016))), and gradient forests (GF, Fitzpatrick
s and Keller| (2015))) (Supporting Information: “Relationships to other GO statistics”).
us The main result is that all GO statistics predict the logarithm of fitness, but not for
u7  the same shape of the (within-locality) selection gradient. When RDA is performed
us on both environmental and latent predictors, the RDA GO is theoretically equiva-
ne lent to the geometric GO, and thus predicts relative fitness under the hypothesis of
120 Gaussian selection within localities. The risk of nonadaptedness, which is defined as
1 the average of allelic frequency differences instead of squared differences, makes the
122 implicit assumption that the selection gradient is built upon an exponential (Laplace)
123 curve. When the distribution of effect sizes is Gaussian, Rona is then related to the
e square root of the geometric GO (times \/2/_71') Like most machine learning tech-
s niques, GF is a nonparametric approach. In GF, no selection gradient is modelled a

126 priori, but may be thought of as being estimated from the observed data. This might


https://doi.org/10.1101/2023.01.02.522469
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.02.522469; this version posted May 6, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

12z be one reason for which GF require more information than linear approaches based on
128 low-dimensional parameters. The GF GO nevertheless follows a construction similar

120 to the geometric GO and the RDA GO.

Box 1. Genomic offset theory. Consider an (unobserved) fitness trait, z, for
which a large number of genes mediate the effects of ecological predictors on organis-
mal viability. Using Eq. (7) in (Barton et al. [2017), the trait value is assumed to be
controlled by L mutations each having infinitesimally small allelic effect of equal size,
ag ~ +a/v/L, defining the trait value as a polygenic score, z = Zle agye+e. Here, y,
is the allelic frequency at locus ¢, expressed as deviation from the population mean,
ay has random sign, a? controls the additive genetic variance, and the random term e
models the non-genetic variance. The definition is equivalent to the more traditional
decomposition of variance into inherited and non-inherited components (Figure S1).
Assuming a local Gaussian stabilizing selection model, the relative fitness of the
trait in environment x is equal to w(z|x) = exp(—(z — zopt(X))?/2Vs), where 1/Vg
represents the strength of stabilizing selection. Conditional on local environment,
the optimum, z,p(x), corresponds to the mean (or predicted) value of the trait,
Z=3"F agfo(x). The logarithm of fitness for a trait at equilibrium in environment

x being placed in the altered environment x* is thus equal to
130

—logw(x,x*) = (2 — 2*)%/2Vy (4)

where z* = Zle apfo(x*). The difference in fitness traits, (z — z*), is equal to
a(x — x*) 327, bl /V/L. According to the central limit theorem, the conditional
distribution of (z — z*) is Gaussian N (0, a’G?(x,x*)), where G?(x,x*) is defined from
the theoretical — instead of empirical — effect size covariance matrix. The distribution
of (z — z*)? is a non-standard chi-squared distribution with one degree of freedom

(2= 2" ~a® G%(x,x") i - (5)

Since G%(x,x*) ~ G*(x,x*) for large L, the value of the logarithm of altered fitness
varies in proportion with the geometric GO, where the proportionality coefficient is
equal to a®x?/2Vs. The expected value is thus approximately equal to G*(x,x*)/2V,
where V; = Vg/ a®. Consideration of traits that are not at equilibrium in environment
x adds an intercept term to the expected value, equal to a®0?/2Vs + 02 /2Vs, where
02 is the residual variance in the GEA model and o2 is the non-inherited variance
(Supporting Information: “Logarithm of altered fitness for non-optimal traits”).
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1 Validation of the theory. To illustrate the above theory, we analyzed simulated
12 data in which adaptive traits were matched to ecological gradients by local Gaussian
133 stabilizing selection (Figure 2A, Methods: “Simulation study”, Supporting Informa-
13 tion: “Extended simulation study”) (Haller and Messer}, 2019). Two environmental
s predictors playing the role of temperature and precipitation in the studied range
s were considered, as well as two additional non-causal predictors correlated to the
137 first ones (Figure 2B). The median values of temperature and precipitation deter-
133 mined four broad types of environments from dry/warm to wet/cold conditions. As
139 an outcome of the simulation, the genetic groups resulting from selection, drift and
1o gene flow matched the environmental classes, generating high levels of correlation be-
11 tween environmental predictors and population structure in the GEA analysis (Figure
2 S2). As predicted by equation , the values of the geometric GO computed accord-
w3 ing to equation varied linearly with the logarithm of fitness after alteration of
s local conditions (r? =~ 78%, P < 0.001, Figure 2C-D). The predictive power of the
us geometric GO was much higher than the predictive power of squared Euclidean envi-
s ronmental distance between predictors and their altered values (r? ~ 45%, J = 11.3,
17 P < 0.001). Although it was calculated on both causal and non-causal predictors, the
us GO adjusted almost perfectly to the quadratic function that determines the intensity
uo  of local Gaussian stabilizing selection (r? = 97%, P < 0.001, Figure S3). The first two
10 eigenvalues of the covariance matrix of environmental effect sizes were much larger
151 than the last ones (Figure 2C). We found that the loadings on the first axes gave
152 more weight to predictors associated with natural selection, while the loadings on the
153 last axes weighted predictors that did not play a role in the simulated evolutionary

15« process. Uninformative predictors were given only low weights in the calculation of
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155 the GO statistic. Those results provided evidence that the largest eigenvalues that

156 characterize the geometric GO contain useful information about local adaptation.

157 Extended simulation study. Expanding our case analysis, additional simulation
158 scenarios were considered with traits under local stabilizing selection having dis-
19 tinct levels of polygenicity. Some cases were complicated by a strong correlation of
10 environmental predictors with population structure. To overcome this complication,
161 correction based on latent factors were included in all GO calculations (Methods: “GO
12 computations”). As predicted by the theory, the values of the squared correlation
13 between the GO statistic and the logarithm of fitness were very close to each other
6o in all investigated cases (Figure 3, Figure S4). As expected, methods that did not
165 use correction (undercorrection) or include population structure covariates (overcor-
166 rection) worked less well than methods with latent factor correction (Figures S5-S6).
17 Once corrected, the GO statistics ranked similarly in all simulation scenarios. The
s ability of the geometric GO to predict the logarithm of fitness was equal to that of
160 corrected RDA GO. It was slightly superior to that of Rona and to that of the GF
o  GO. All GO statistics were highly correlated with the geometric GO (Figure S7).
i1 The geometric GO also exhibited high correlation with the quadratic distance be-
2 tween causal predictors explaining the traits under local stabilizing selection in the
173 simulation model (Figure S8). This result supported the evidence of near-optimal
s fitness prediction by the GO statistics in all simulated evolutionary scenarios. When
s all genomic loci in the genotype matrix were included in the GO calculations, the
e predictions stayed close to those based on subsets of loci identified in the GEA anal-

7 ysis, GF GO reaching then performances similar to the other GO statistics (Figure

10
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178 89)

o Evaluating the bias of linear allelic frequency predictions. An approxima-
1o tion made by the geometric and other GO statistics is that allelic frequencies are
11 predicted by unconstrained linear functions of environmental predictors. To evalu-
1.2 ate the impact of this approximation, we compared linear predictions to those of a
183 logistic regression model, which are constrained between zero and one. For small en-
18s vironmental change, the effect sizes in the linear GEA model could be approximated
185 by the effect sizes in the logistic regression multiplied by the heterozygosity at each
18 locus (Supporting Information: “Bias of linear predictors”). The geometric GO was
17 then accurately approximated by the squared distance between constrained genetic
s predictors, E[(f.(x) — f.(x*))?] (Figure S10). Using a nonlinear machine learning
1o model (Supporting Information: “Variational autoencoder GO”), we found again that
1o the squared genetic distance between constrained genetic predictors strongly cor-
1 related with the geometric GO, supporting the approximation of fitness in altered

12 environment using linear models (Figure S11).

13 Pearl millet common garden experiment. We hypothesized that GO statistics
14 could predict the logarithm of fitness in pearl millet, a nutritious staple cereal culti-
105 vated in arid soils in sub-Saharan Africa (Rhoné et al., 2020). Pearl millet is grown
s in a wide range of latitudes and climates with wide variety of ecotypes (landraces).
17 The geometric GO and other measures of GO were estimated from 138,948 single-
18 nucleotide polymorphisms for 170 Sahelian landraces in a two-year common garden
100 experiment conducted in Sadoré (Niger) using loci identified in the GEA study (Fig-

200 ure 4A, Methods: “Pearl millet experiment”). For each landrace grown in the common

11
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21 garden, the total weight of seeds was measured as a proxy of landrace fitness, which
20 was explained by a Gaussian selection gradient (Figure S12). Including latent factor
203 correction, GO statistics were computed using the climate condition at the location
204 Of origin of the landrace and the climate at the experimental site. All GO statistics
205 displayed a consistent relationship with the logarithm of seed weight (Figure 4B, Fig-
205 ure 5). Loci identified in the GEA study increased the performance of GO statistics
207 compared to using whole genomic data, and the improvements were substantial com-
208 pared to methods that did not include correction for confounding factors (Figures
20 S513-S14 and Table S1). The best predictions of fitness in the common garden were
20 obtained with the geometric GO and with the corrected version of Rona (r? = 61%,
a1 P < 0.001, Figure 5). The eigenvalues and eigenvectors of the covariance matrix of
212 environmental effect sizes suggested that climatic conditions could be summarized in
a3 three axes. Temperature predictors were given higher importance in driving fitness

214 variation than precipitation and solar radiation predictors (Figure S15).

25 1D1scussion

26 Quantitative theory. The geometric theory presented in our study provided a
217 unified framework that not only explains why and when a GO statistic differs from
28 the standard Euclidean environmental distance, but also allowed for a better under-
219 standing of previous measures of genomic offset. Based on models of local selection
20 gradients, a theoretical analysis of GO statistics relying on Fisher’s infinitesimal trait
21 model was developed. In this framework, the geometric GO decays linearly with the
22 logarithm of fitness in the altered environment. Although of much lower computa-

23 tional complexity, the geometric GO was proved to be equivalent to a GO based on

12
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24 RDA, which justifies the use of RDA approaches under local Gaussian selection. The
25 square root of the geometric GO was connected to Rona, and justifies the use of

26 absolute differences in allele frequencies under exponential selection gradient.

27 Improving GO statistics. According to Rellstab et al.| (2021), current GO statis-
28 tics may provide wrong predictions due to the correlation between population struc-
29 ture at selectively neutral loci and environmental predictors. Built on unbiased effect
230 sizes, the geometric GO, which is based on a unique model for GEA estimation and
2 for GO prediction, addressed this problem by including latent factors as covariates
222 in the prediction model. Latent factor corrections were then incorporated into all
213 considered GO statistics, which increased their predictive performance compared to
24 their traditional usage. Our versions of RDA GO and Rona — that slightly differ from
235 original proposals — were implemented in the R package LEA. Although those changes
26 led to improved statistics, the geometric GO reached higher predictive performance
37 than the other GO approaches. Next, the geometric GO addressed the problem of
238 correlated predictors by modeling the covariance of their effect sizes. The impor-
23 tance of predictors could be assessed by examining the eigenvalues and eigenvectors
20 of the environmental effect size covariance matrix. The eigenvalues provide a natural
2n ranking of the importance of each axis, similar to the cumulative importance curves
22 in GF. When a statistical analysis includes redundant predictors, reproducing infor-
23 mation already present in a reduced set of predictors, the geometric GO gave lower
a4 weight to those redundant predictors, and differed substantially from the Euclidean
25 environmental distance. Generally, the principal benefit of genomic offset over purely

26 environmental distances in predicting maladaptation comes from the weighting of en-

13
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27 vironmental predictors by their effect sizes (Laruson et al., [2022). All proposed GO
us  approaches share the principle of weighting the environmental predictors by their
a9 strength of genetic association. For the vast majority of organisms where the most
50 important predictors are unknown or for which common garden experiments are not
s efficient or unfeasible, genomic offset therefore provides a useful means for weighting

2 the environmental predictors based on the information contained in allele frequencies.

»3  Limitations. Our simulation models and our theoretical developments relied upon
4 a model of genotype X environment interaction for fitness related to antagonistic
255 pleiotropy, whereby native alleles are best adapted to local conditions (Kawecki, 2004}
256 |Anderson et al., 2011]). While antagonistic pleiotropy is an important mechanism for
7 local adaptation, there are other types of interactions for fitness. If local adapta-
s tion is caused by conditional neutrality at many loci, where alleles show difference in
50 fitness in one environment, but not in a contrasting environment, the predictive per-
20 formances of GO statistics remain to be explored. In addition, GO statistics (except
21 GF) are based on linear models for the relationship between genotype and environ-
%2 ment. Linear models generate GO statistics that are invariant under translation in
»3 the niche, making predictions relevant at the center of the species distribution, but
x4 perhaps less relevant at margins of the range. While translational invariance could
x5 be corrected for by defining the offset as the average of squared differences between
x6  allelic frequencies in nonlinear models, we found that the results were very close to
27 the linear models. An explanation may be that nonlinear machine learning models
xs  offer more flexible GO statistics than linear models, but that linear models achieve a

x0 better bias-variance trade-off than machine learning models, likely because less data

14
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a0 are needed for their application. Other conceptual limitations include gene flow and
o constraints on adaptive plasticity that might mitigate the effect of environmental
22 change on fitness (Aguirre-Liguori et al., |2021; Kawecki, [2004). As they do not use
;3 any observed information on fitness traits, GO statistics provide measures of expected
s fitness loss based on the indirect effects of environment mediated by loci under se-
25 lection (Baron and Kenny, 1986). GO statistics are more accurate when non-genetic
s effects do not covary with environmental predictors. Lastly, we found that using
o7 candidate loci based on statistical significance in GEA improved prediction of fitness
s in altered conditions both in simulation and in real data analysis. We think that this
270 happens because those studies may generally be underpowered, i.e., a much larger
20 sample size would increase the predictive power of GO statistics. Using a liberal
2s1 threshold in GEA studies was considered as a trade-off between polygenicity and sta-
22 tistical significance, so that the GO measures could actually be based on polygenic

283 scores while not erasing or blurring the genomic signals of local adaptation.

2 Pearl millet experiment. To compare predictions of local adaptation with em-
s pirical data, GO statistics were estimated in a common garden experiment on pearl
26 millet landraces in sub-Saharan Africa. Using GF, the original study reported a
%7 squared correlation of 72 &~ 9.5 — 17% for seed weight, indicating that higher genomic
288 vulnerability was associated with lower fitness under the climatic conditions at the
20 experimental site (Rhoné et all 2020). In our reanalysis, signals of local adaptation
200 were consistent across all GO statistics, and improved fitness prediction substantially,
21 Up to a value of squared correlation equal to r? ~ 61%. The results strengthened

2 the conclusions of (Rhoné et al. 2020)), and supported the use of GO statistics in

15
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203 predictions of fitness values across the sub-Saharan area.

2a  Conclusions. Considering a duality between genetic space and environmental space,
205 we developed a theoretical framework that linked GO statistics to a non-Euclidean
206  geometry of the ecological niche. The geometric GO, as well as the modified Rona
207 statistic, were implemented in the genetic gap function of the R package LEA (Gain
28 |and Francois, 2021)). As a result of the quantitative theory, interpretations in terms
200 Of fitness in the altered environment were proposed, unifying several existing ap-
;0 proaches, and addressing some of their limitations. Based on extensive numerical
s simulations and on data collected in a common garden experiment, our study indi-
;2 cated that GO statistics are important tools for conservation management in the face

303 of climate change.

« Materials and Methods

s GEA studies. GEA studies and estimates of environmental effect sizes were per-
25 formed based on LEMMs in the computer package LEA v3.9 (Caye et al., 2019; |Gain
s [and Francgois, 2021). In LEMMs, allelic frequencies are modelled at each genomic
w8 locus of a genotype matrix as a mixed response of observed environmental variables
w0 with fixed effects and K unobserved latent factors. The number of latent factors
;0 was estimated from the screeplot of a principal component analysis of the genotype
su  matrix. Loci with minor allele frequency less than 10% were filtered out the analysis.
sz Statistical significance was determined by using the R package qvalue at a level of

a3 false discovery rate equal to 10%.
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su GO computations. RDA was performed by using principal components of fitted
a5 values of the GEA regression model. Rona was computed as the average value of
ss  the absolute distance between predicted allelic frequencies across genomic loci (de
a7 [Aquino et al., 2022; Rellstab et all 2016). GF computations were performed using
s1s the R package gradientForest version 0.1. For consistency, we reported squared
a0 values of GO statistics in RDA and GF. Unless specified, GO statistics were computed
20 on the loci detected in the GEA study, i.e., a same set of loci for all methods. To
;1 correct statistics for the confounding effect of population structure, all analyzes were
2 performed conditional on the factors estimated in the LEMM analysis (Supporting

2 Information: “GO computations”).

24 Simulation study. Spatially-explicit individual-based simulations were performed
»s using SLiM 3.7 (Haller and Messer} |2019) (Supporting Information: “Extended simu-
26 lation study”). Each individual genome contained neutral mutations and quantitative
w7 trait loci (QTLs) under local stabilizing selection from a two-dimensional environ-
»s ment. The probability of survival of an individual genome in the next generation was
19 computed as the product of density regulation and fitness. We designed four classes
10 of scenarios, including weakly or highly polygenic traits, and weak or high correlation
s of environment with population structure. In scenarios with high polygenicity, traits
32 controlled by 120 mutations with additive effects were matched to each environmental
;13 variable by local stabilizing selection. In weakly polygenic scenarios, the traits were
s34 controlled by 10 mutations. Scenarios with high confounding effects were initiated
15 in a demographic range expansion process, creating correlation between environment

16 and allelic frequencies at the genome level. For each scenario, thirty replicates were

17
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;7 run with distinct seed values of the random generator. At the end of a simulation, in-
18 dividual geographic coordinates, environmental variables and individual fitness values
;9 before and after instantaneous environmental change were recorded. Paired t-tests
a0 were used to test statistical differences in the mean of predictive performances for

s the geometric GO and the other GO statistics.

2 Empirical study. Methods regarding the common garden experiment on Pearl
33 millet landraces conducted in Sadoré (13° 14”07 N, 2° 17" 0”7 E, Niger, Africa) were
e described by Rhoné et al. (2020). For each of 170 landraces grown in the common gar-
us den, the total weight of seeds was measured by harvesting the main spike in ten plants
us  per landrace sown during two consecutive years and was used as a proxy of landrace
a7 fitness. For each landrace grown in the common garden, environmental predictors,
us X, were obtained at the location of origin of the landrace, and x* corresponded to
s the local conditions in Sadoré. We made the hypothesis that the mean total weight
30 of seeds for a landrace was proportional to w(x,x*) in the common garden. Using
;51 100 plants per landrace in a pool-sequencing design, allelic frequencies were inferred
2 at 138,948 single-nucleotide polymorphisms. Climate data were used to compute 157
33 metrics in three categories, precipitation, temperature (mean, maximum and min-
3¢ imum near surface air temperature), and surface downwelling shortwave radiation,
35 that were reduced by principal component analysis (27 axes). GO statistics were
36 computed using the climate condition (x) at the location of origin of the landrace
37 and the climate conditions (x*) at the experimental site. For each GO statistic, we
s estimated a linear relationship with the logarithm of the mean total weight of seeds

0 and used Pearson’s squared correlation to evaluate the goodness of fit. The J-test

18
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w0 was used to test differences between predictive performances, corresponding to R-
s1 squared for distinct regression models, of the geometric GO and other GO statistics

32 (Davidson and MacKinnon| [1981)).

3 Data Availability. The pearl millet data have already been published, and have

s permissions appropriate for fully public release.

s Code Availability. The codes necessary to reproduce the simulations and data
s analyses of this study are available at https://github.com/bcm-uga/geneticgap
s under GNU General Public License v3.0 The geometric GO is implemented in the
s genetic gap function of the R package LEA (version number > 3.9.5) available from
30 the public repository bioconductor and https://github.com/bcm-uga/LEA (latest

w0 version).
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Figure 1. Geometric offset (genetic gap) under local Gaussian stabilizing
selection. The two points, z(x) = z and z(x*) = 2z*, represent locally optimal
values of an adaptive trait in respective environments x and x*. The curves display
the fitness values for the trait in each environment. An organism with trait z(x),
optimal in environment X, being placed in altered environment x*, has a fitness value
equal to w* = exp(—G?(x, x*)/2V;), where G?(x, x*) is the genomic offset (horizontal
dashed line), and V; is defined in text.
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Figure 2. Simulation of fitness traits and geometric offset. a) Spatial
individual-based forward simulations: Adaptive traits were matched to ecological
gradients by local Gaussian stabilizing selection. b) Geographic maps of four envi-
ronmental predictors before and after change. ¢) Logarithm of altered fitness values
as a function of geometric offset. The eigenvalues of the covariance matrix of envi-
ronmental effect sizes are displayed in the top left corner. d) Geographic maps of the
logarithm of altered fitness values (left) and geometric offset (right).
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Figure 3. Predictive performances of GO statistics. Proportion of variance
of fitness in the altered environment explained by GO statistics (coefficient of deter-
mination). Four scenarios with distinct levels of polygenicity in adaptive traits and
correlation of environmental predictors with population structure were implemented.
Significance values were based on paired t-tests of the difference in mean performance
for each GO statistic relative to the geometric GO (***: P < 0.001). Boxplots display
the median, the first quartile, the third quartile, and the whiskers of distributions.
The upper whisker extends from the hinge to the largest value no further than 1.5
inter-quartile range (IQR) from the hinge. The lower whisker extends from the hinge
to the smallest value at most 1.5 IQR of the hinge. Extreme values are represented
by dots.
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Figure 4. Interpolated fitness gradient and genomic offset for pearl millet
landraces. A) Fitness values (log) measured as the mean total seed weight for each
pearl millet landrace in the common garden experiment located in Sadoré (Niger). B)
Values of the geometric genomic offset. Locations of landrace origin are represented
as dots. Values at unsampled locations were interpolated from the nearest sampled
location using the inverse distance weighting method.
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Figure 5. Logarithm of fitness in the common garden as a function of the
GO statistic. Latent factor corrections were included in the calculation of all GO
statistics (ten factors). Fitness was evaluated as the mean total weight of seed for
170 pearl millet landraces. GO values for GF were multiplied by a factor of ten.
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