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Abstract  

Honey bee ecology demands they make both rapid and accurate assessments of which flowers are 
most likely to offer them nectar or pollen. To understand the mechanisms of honey bee decision-
making we examined their speed and accuracy of both flower acceptance and rejection decisions. 
We used a controlled flight arena that varied both the likelihood of a stimulus offering reward and 
punishment and the quality of evidence for stimuli. We found that the sophistication of honey bee 
decision-making rivalled that reported for primates. Their decisions were sensitive to both the quality 
and reliability of evidence. Acceptance responses had higher accuracy than rejection responses and 
were more sensitive to changes in available evidence and reward likelihood. Fast acceptances were 
more likely to be correct than slower acceptances; a phenomenon also seen in primates and 
indicative that the evidence threshold for a decision changes dynamically with sampling time. To 
investigate the minimally sufficient circuitry required for these decision-making capacities, we 
developed a novel model of decision-making. Our model can be mapped to known pathways in the 
insect brain and is neurobiologically plausible. Our model proposes a system for robust autonomous 
decision-making with potential application in robotics. 
 

Keywords: action selection, decision-making, foraging, mushroom bodies, sequential sampling 
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Introduction  

Decision-making is at the core of cognition. A decision can be considered as the result of an evaluation of 

possible outcomes (Mobbs et al., 2018; Stevens, 2011), and animal lives are full of decisions. What we might 

consider to be a simple choice, for example choosing the best option from two alternatives, is rarely simple in 

an ecological setting (Mobbs et al., 2018). Consider the decisions a foraging bee makes. A bee, moment by 

moment, must decide whether a flower should be explored for pollen and nectar or whether it is not worth 

landing on. We could suppose that decision to be influenced by what the bee can sense about the flower, her 

past experiences with that flower type, the context (is a predator nearby?), the state of the bee (does she 

already carry a full load of nectar and pollen?) and the state of her colony (what does the colony need?) 

(Chittka, 2022; Conradt and Roper, 2005; Stephens, 2008). Even this simple decision is a whole-brain activity 

involving sensory systems, memory systems, motor systems, and the bee’s subjective state. Here, we studied 

honey bee foraging decisions in controlled conditions to establish their decision-making capacities. We then 

developed a simple model with the same capacities for decision-making as a bee to assist in hypothesising the 

necessary neural mechanisms supporting bees’ foraging decisions. 

 

Abstract theories and models of decision-making are well-developed, and these provide frameworks for 

evaluating animals’ decision-making capacity (Gold and Shadlen, 2007; Mobbs et al., 2018; O’Connell et al., 

2018). Here we apply signal detection theory to understand how bees make a decision (Green and Swets, 

1966, 1966; Sumner and Sumner, 2020; Wickens, 2001). Signal detection theory helps us think formally about 

the processes of signal discrimination, which is essential for making decisions (Wickens, 2001). It provides an 

abstract model and simple logic for how animals should respond given the signal they have received and their 

prior knowledge. Typically signal detection theory assumes that an individual must choose between 2 possible 

actions (acceptance or rejection) after detecting a signal. In such a scenario, there are four possible outcomes, 

which include two correct actions. These are: 1, correct acceptance when the subject accepts the correct 

stimulus (‘hit’), 2, correct rejection when the subject rejects the incorrect stimulus (correct rejection), 3, 

incorrect acceptance when the subject wrongly accepts the incorrect stimulus (‘false positive’, Type I error), 

4, incorrect rejection when the subject rejects the correct stimulus (‘false negative’, Type II error). The optimal 

decision is calculated by considering the expected payoffs of all four outcomes together. Both errors are 

integral parts of the decision-making process. In an ecological context, both errors typically differ in costs to 

an animal (Sumner and Sumner, 2020). For example, wrongly rejecting a food item might see an animal missing 

a meal, but wrongly accepting a food item could see an animal ingesting poison. Signal detection theory 

emphasises that both acceptance and rejection choices have to be assessed if decision-making is to be 

understood, but typically in studies of animal behaviour rejection behaviour is ignored (Ings and Chittka, 2008; 

Sumner and Sumner, 2020; Trimmer et al., 2017). 
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Decision-making processes are most often modelled with sequential sampling models, of which there are 

many variations (O’Connell and Hofmann, 2012; O’Connell et al., 2018). Sequential sampling models are built 

on the biologically realistic assumptions that sensory information on available options is noisy, but evidence 

for different options accumulates over time through sequential sampling (Gold and Shadlen, 2007). A decision 

is made when the cumulant reaches a threshold. Variations in sequential sampling models differ in the nature 

of the threshold for the decision. For example, in the race model (Vickers, 1970) a decision is made when 

evidence for one alternative reaches an upper threshold. Leaky competing accumulator (LCA) models to set 

the evidence for different options in competition such that as evidence for one option accumulates it inhibits 

evidence for the alternative and a decision is made when the difference in evidence for the two alternatives 

reaches a threshold (Barron et al., 2015; Bogacz et al., 2006). Sequential sampling models have proved very 

influential in neuroscience, psychology, and computer science. While they are highly abstract, they capture 

many features of biological decision-making, particularly a speed/accuracy trade-off (Barron et al., 2015; 

Bogacz et al., 2006; Gold and Shadlen, 2007; Pirrone et al., 2014). 

 

Investigation of the neural mechanisms of choice in primates has revealed interacting neural systems for the 

evaluation of different options and the selection of a choice that involve the frontal cortex, the basal ganglia, 

and the frontal and parietal cortices (Barron et al., 2015; Gurney et al., 2001; Seed et al., 2011; Shadlen and 

Kiani, 2013; Wang, 2012). This is a system of extreme complexity, involving billions of neurons. Most animal 

brains are orders of magnitude smaller than this.  How might smaller brains make effective decisions? To this 

end, we explored honey bee foraging decisions. We measured bees’ acceptance and rejection of different 

options under controlled conditions that manipulated the quality of available evidence and the probability of 

a rewarding outcome. To understand the properties of bee decision-making we explored our data with signal 

detection theory and also examined how accuracy varied with decision speed. Having identified the key 

properties of bee decision-making we then constructed the simplest sequential sampling model capable of 

the same decision-making capacities as the bee. Finally, we related this abstract model to the known systems 

of the bee brain to propose a hypothetical brain mechanism for autonomous decision-making in insects. 

 

Results  

We individually trained 20 honey bees (Apis mellifera) on a colour discrimination task in which they learned 

to associate five distinct colours each with their visit history of reward and punishment. Over 18 training trials, 

each colour offered bees a different likelihood of reward and punishment (Figure 1A). The five colours offered 

the reward in 100%, 66%, 50%, 33% and 0% of training trials (Figure 1B) and were otherwise punished. The 

colour rewarded in 100% of training trials was never punished while the colour rewarded in 0% of training 
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trials was always punished. Each trial offered bees just one pair of colours with one colour in the pair rewarded 

more often than the other during training (See Method, Table 1). Following training, bees were given three 

tests. In the easy discrimination test, each honey bee was tested with the two colours rewarded at 100% and 

0% in  

 
Figure 1. Bees’ behaviour in a 

colour discrimination task. A & B) 

Each bee was given 18 training 

trials in which she could choose 

between two different colours: 

one rewarded and the other 

punished. The bee was free to 

select each colour and return to 

the hive when satiated marking 

the end of a trial. Stimuli positions 

in the arena were changed in each 

trial in a pseudo-random manner. 

Stimuli were 2cm diameter-

coloured disks on a small platform 

(5 cm tall). On the top of each 

colour was placed either 10 μl 

reward (50% sucrose) or 

punishment (quinine) in training, 

or distilled water in tests. Two 

different colours, four disks of 

each colour, were presented in 

each training trial and test. Five 

different colours were used in the 

training. The colours differed in 

the proportion of training bouts in 

which they offered reward and punishment (rewarded at 100, 66, 50, 33 and 0% of training bouts). Two groups of 

bees were trained with different likelihoods of reward and punishment from each colour (see Methods). C) Following 

training, the bee was given three unreinforced tests where the positive or negative reinforcements were replaced 

with distilled water. Bees’ responses were analysed from video recordings of the first 120s in the flight arena. In the 

easy colour discrimination test, bees were presented with three pairs of the 100% and 0% rewarded colours (blue 

and green). In the reduced reward likelihood test, bees were examined with 66% and 33% rewarded colours (yellow 

and orange).  In the reduced evidence test. bees were given two colours intermediate between green and blue D & 
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E) Examples of flight paths showing the inspection activity of a bee during the easy discrimination test in accepting 

blue (D) and rejecting green (E). Each black line on the flight path corresponds to the bee’s body orientation in a single 

video frame with 4ms intervals between frames. Line colour: flight speed 0.0 - 0.5 m/s (See Videos S2, S3). 

 

training. In the reduced evidence test bees were tested with two novel colours that were different blends of 

blue and green (the 100% and 0% rewarded colours) to determine how behaviour changed when the available 

evidence was degraded. One blend was closer to blue and one closer to green. In the reduced reward likelihood 

test bees were presented with the 66% and 33% rewarded colours to assess how bees’ behaviour changed 

when the likelihood of reward offered by a choice was less than 100%. In all tests, correct choices were 

considered as acceptance of the more rewarded colour, and rejection of the less rewarded colour. Bee’s 

acceptance and rejection responses were analysed from videos recorded during the training and tests (Figure 

1D). We employed the Matthew Correlation Coefficient (MCC) (MaBouDi et al., 2020a) to measure the 

performance of the bees in each test. This considered all types of responses (i.e., hit, correct rejection, false 

positive and false negative) to calculate decision accuracy. 

 

In our free-flight choice assay bees learned to prefer the 100% rewarded colour from the 0% rewarded colour 

(Figure 2A; Wilcoxon signed rank test: z = 3.62, n = 20, p = 2.93e-4). Bees’ performance in the reduced evidence 

test was lower but was still higher than chance (Figure 2A; Wilcoxon signed rank test: z = 2.10, n = 18, p = 

0.03). In the reduced reward likelihood test bees selected the 66% reward colour more frequently than chance 

(Figure S1). 

 

Bees spent longer in flight before their first landing in the tests than in the first training trial (Figure 2B; Kruskal-

Wallis test, chi-sq = 13, df = 7, p = 4.60e-3). This shows that during training bees developed a behaviour of 

assessing the available stimuli in the arena for longer before landing. There was a significant negative 

correlation between bees’ performance in the easy discrimination test and their time to first landing (assessed 

by the MCC: Spearman correlation, rho = -0.55, n = 20, p = 0.02). Poor performance in the test was associated 

with a longer time before a first choice (Figure 2C). 
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Figure 2. Characteristics of bee decision making. A) Matthew correlation coefficients (MCC) (mean ± 

SEM) for the easy discrimination and reduced evidence tests. This correlation is computed with respect 

to choosing the high-rewarded colours for each bee. A positive correlation (max at +1) indicates perfect 

correct performance while zero indicates chance level performance. Correlation coefficients were 

significantly greater than zero for both tests. B) Average time to the first choices for three tests and the 

first training trial. Bees näive to the stimuli made their first choice faster than bees trained on the stimuli 

(p=1.55e-3). C) Scatter plot showing a negative correlation between the MCC and the time to first 

acceptance in the easy discrimination test. A rapid first choice correlated with higher performance.  

**p<0.005 and *p<0.05. 

 

Investigation of bee decision-making using classical signal detection theory 

 

The signal detection theory provides a framework for understanding and predicting how animals make 

decisions under uncertainty by modelling the relationship between the sensory information they received and 

their ability to accurately discriminate between stimuli. Hence, the probability of a stimulus being correctly 

identified is assumed to be a function of the sensory information received. If we have two different stimuli (in 

our case the high and low rewarded colours) we can model how the probability of identifying them changes 

as perceived colour information is sampled from two overlapping normal distributions (Figure 3A). For each 

colour, it could be identified correctly or incorrectly. For a trained bee we would recognise this as four types 

of behavioural response. For the highly rewarded colour, these would be correct acceptance or incorrect 

rejection. For the low rewarded colour these would be correct rejection or incorrect acceptance (Figure 3A). 

Discriminability (d’) is the difference in the sensory information between the maximal responses to the two 
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different stimuli (Figure 3A).  From our data, we could calculate discriminability following (Sumner and 

Sumner, 2020) by modelling total accept and reject responses as cumulative distribution functions and 

considering the hit rate (correct acceptance / total acceptance) and the false positive rate (incorrect 

rejections/ total rejections) (Equation 2, Methods).  

 
 Figure 3. An investigation by classical signal 

detection theory. A) Probability of 

responding to the high (blue) and low 

(green) rewarded stimuli at different levels 

of sensory input. For a trained bee we 

recognise a threshold (decision criterion d.c.) 

at which their behaviour shifts from rejection 

to acceptance.  As a result, we have four 

types of behavioural responses.  d’ is the 

discriminability of the two stimuli. B)  

Discriminability was greatest in the easy 

discrimination task and was reduced in both 

reduced evidence and reduced reward 

likelihood tests. C) The decision criterion was 

negative for the easy discrimination and 

reduced evidence tests indicating fewer 

incorrect acceptances than incorrect 

rejections in these tests.  The decision 

criterion was closer to zero in the reduced 

reward likelihood test indicating similar 

accuracy of acceptance and rejection in this 

test. D) Plotting the ratio of correct to 

incorrect acceptances and rejections (crosses 

show the mean and SEM) for the three tests 

show that generally, bees were more 

accurate in acceptance than rejection 

responses. Acceptance accuracy fell in the 

reduced evidence and reduced reward 

likelihood tests. ∗∗p < 0.005 and∗p < 0.05.  
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When considering contrasting responses to two different stimuli using the signal detection theory we can 

identify a threshold sensory signal at which behaviour should shift from acceptance to rejection.  This is the 

decision criterion (d.c., Figure 3A). From our experimental data we can estimate the relative location of the 

d.c. by considering both the hit rate and the false positive rate ((Wickens, 2001), Equation 3 in the Methods 

section).  A value of 0 for the d.c. indicates that there were as many incorrect rejections as there were incorrect 

acceptances, or that the acceptance and rejection responses were equally accurate. A negative value for d.c. 

would move d.c. to the left in Figure 3A. This would result in fewer incorrect acceptances but more incorrect 

rejections. It would indicate acceptance responses are more precise than rejections. 

 

The reduced evidence test significantly decreased the discriminability of more and less rewarded stimuli 

(Figure 3B; Wilcoxon rank sum test: z = 1.81, n = 20, p = 0.03). Discriminability was also reduced in the reduced 

evidence test in which the two stimuli were closer in their likelihood of being rewarded (Figure 3B; Wilcoxon 

rank sum test: z = 3.94, n = 20, p = 8.01e-5). This shows that for bees discriminability is influenced by both 

available evidence and reward likelihood. 

 

When the likelihood of reward for the two stimuli was more similar the decision criterion was closer to zero 

(Figure 3C; Wilcoxon signed rank test: z = -2.21, n = 20, p = 8.4e-3) indicating that the accuracy of acceptance 

and rejection were more similar when the reward outcomes for the two stimuli were more similar. Otherwise, 

in both the easy discrimination and reduced evidence tests (in which one stimulus was always rewarded and 

one punished) acceptance was more accurate than rejection (Figure 3C; Wilcoxon signed rank test: z = -3.62, 

n = 20, p = 2.93e-4 for easy discrimination test, z = -2.91, n = 18, p = 3.5e-3 for reduced evidence test). Finally, 

Comparing the ratio of correct and incorrect acceptance and rejection in the three tests (Fig 3D) showed that 

acceptance accuracy was sensitive to both evidence and reward likelihood, but rejection accuracy was lower 

overall and more influenced by reward likelihood than available evidence (Figure 3D). This indicates that the 

evidence thresholds for accept and reject decisions were different (see Discussion section). 

 

How quality of evidence and reward likelihood influence decision accuracy and decision speed 

In the easy discrimination test, there were more rejections than acceptances (Figure 4B; Wilcoxon signed rank 

test: z = -3.62, n = 20, p = 2.9e-4) and bees’ accuracy (the difference between the number of correct and 

incorrect choices) of acceptance was higher than rejection (Figure 4B; Wilcoxon signed rank test: z = 3.42, n = 

20, p = 6.1e-4). Also, bees’ accuracy of acceptance in the easy discrimination test was higher than bees’ 

responses in the reduced evidence test (Figure 4B, 4C; Wilcoxon signed rank test: z = 3.77, n = 18, p = 1.57e-

4). While the number of correct rejections is higher than the number of incorrect rejection responses in the 

easy discrimination test (Figure 4B; Wilcoxon signed rank test: z = 1.94, n = 20, p = 0.43), in the reduced 
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evidence test there was no difference in the number of correct and incorrect rejection responses (Figure 4C; 

Wilcoxon signed rank test: z = -0.66, n = 20, p = 0.50). Hence, we propose that acceptance responses are more 

accurate than rejection responses, but reducing the available evidence reduced the capacity of bees to 

distinguish the correct and incorrect options. 

Classical signal detection theory does not consider how signals might be influenced by sampling time, but in 

our data, we noticed bees differed in the time they spent inspecting stimuli. To explore this, we analysed how 

bees’ response times influenced their choices. 

Prior to bees accepting or rejecting stimuli, we noticed the bees hovered close to and facing the stimulus 

(Figure 4A). We hypothesise bees were sampling information about the stimulus. In the easy discrimination 

test bees accepted the correct colour faster than the incorrect one (Figure 4C; Wilcoxon signed rank test: z = 

-2.62, n = 20, p = 8.8e-3), but rejection times did not differ for correct and incorrect colours (Figure 4C; 

Wilcoxon signed rank test: z = -0.40, n = 20, p = 0.68). This shows the acceptance response was more accurate 

than the rejection. In the reduced evidence test there was little difference between correct and incorrect 

response times (Figure 4E; Wilcoxon signed rank test: z = -0.25, n = 20, p = 0.79 for acceptances; z = -1.28, n = 

18, p = 0.19 for rejections), and longer acceptance times overall (Figure 4E; Wilcoxon signed rank test: z = 1.98, 

n = 18, p = 0.046), suggesting bees struggled to distinguish the correct and incorrect options in the reduced 

evidence test. 

We calculated the Conditional Accuracy Functions (CAF) for acceptance and rejection responses, which is the 

subject’s accuracy as a function of the decision time (Figures 4F & G) (Murphy et al., 2016). For each bee, we 

assessed the response time for all acceptance responses (both correct and incorrect) in the reduced evidence 

and easy discrimination tests. Response times were divided into 0.5 second bins and for each bin, we calculated 

the proportion of correct acceptances as the number of correct acceptances/ total acceptances in that 

response time bin. The negative slope of the CAF curves for acceptance indicates that bees made correct 

acceptances faster than incorrect acceptances (Figure 4F; Spearman correlation, rho = -0.43, n = 20, p = 3.0e-

3). However, the CAF for the reduced evidence test was lower than the CAF for the easy discrimination test 

for almost the entire range of the response time (Figure 4F; Spearman correlation, rho = -0.25, n = 18, p = 6.5e-

2). The gradient of the CAF curve was decreased by reducing the available evidence. This shows that decisions 

based on reduced evidence are slower and less accurate, and accuracy varied less with decision time. The CAF 

for the rejection response showed that rejection time did not vary with accuracy (Figure 4G; Spearman 

correlation, rho = 0.07, n = 20, p = 0.87 for easy discrimination test; rho = 0.02, n = 18, p =0.81 for reduced 

evidence test). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 3, 2023. ; https://doi.org/10.1101/2023.01.02.522517doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.02.522517
http://creativecommons.org/licenses/by/4.0/


10 
 

 
Figure 4. Response times of bee 

decisions. A) Bees inspected the 

coloured stimuli prior to accepting or 

rejecting a colour. B) The number of 

rejections was higher than the number 

of acceptances in the easy 

discrimination test. The difference 

between the correct and incorrect 

acceptances was larger than the 

difference between correct and 

incorrect rejections. C) In the easy 

discrimination test bees accepted 

correct colours faster than incorrect 

colours, but there was no difference in 

the response time for correct and 

incorrect rejections. D) in the reduced 

evidence test there were still more 

correct acceptances than incorrect 

acceptances, but the number of correct 

acceptances decreased. E) Acceptance 

times for the correct colour were 

increased in the reduced evidence test.  

Bees took longer to accept stimuli with 

reduced evidence comparing to 

rejection responses, for both correct or 

incorrect choices. F) Conditional 

Accuracy Function (CAF) plot for 

acceptance responses in the reduced 

evidence and easy discrimination tests. 

Lines show the best fit of piece-wise 

logistic regressions to the bee’s 

response time. Error bars indicate the 

SEM of data points. Acceptance accuracy declined with increasing response time. G) CAF curve for 
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rejections in both easy discrimination and reduced evidence tests. The accuracy of rejection did not change 

significantly with response time. **p<0.005, *p<0.05 and n.s., p>0.05. 

Collectively our analyses show that acceptance behaviour is very accurate and therefore very sensitive to 

available evidence, whereas rejection behaviour is less accurate, and hence is less sensitive to changes in 

evidence. 

Bees' choice strategy is sensitive to the history of reward  

In the reduced reward likelihood test bees were more likely to reject than accept stimuli (Figure 5A; Wilcoxon 

signed rank test: z = -3.46, n = 20, p = 5.35e-4). In the reduced reward likelihood test bees had experienced 

both stimuli as rewarded and punished (33% and 66% punished) during training. We observed acceptance and 

rejection responses to both stimuli, most likely because bees were displaying the strategy of matching their 

choices to the probability each stimulus was rewarded in training (MaBouDi et al., 2020b). In the reduced 

reward likelihood test, there was no difference in times to accept and reject (Figure 5B; Wilcoxon signed rank 

test: z = -0.51, n = 20, p = 0.60 for acceptances; z = -1.15, n = 20, p = 0.24). Comparing the acceptance time of 

the easy discrimination, reduced evidence and reduced likelihood reward tests showed that fast acceptance 

is associated with more reliable evidence and certainty of outcome and slower acceptance times are 

associated with less reliable evidence or less certainty of reward (comparing Figures 4C and 5B). No negative 

slope of CAF curves was observed for either acceptance or rejection behaviour in the reduced likelihood 

reward test (Figure 5C). Acceptance time decreased with increasing reward expectation (Figure 5D; Spearman 

correlation, rho = 0.04, n = 20, p = 0.78 for acceptances; rho = -0.11, n = 20, p =0.39 for rejections). Generally, 

our results show that bees were more likely to reject when either the available evidence or the reward 

likelihood was reduced. 
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Figure 5.  A) In the reduced 

reward likelihood test bees made 

more rejection than acceptance 

responses.  Bees accepted the 

highly rewarded colour more than 

the low-rewarded colour, but 

there was no difference in 

rejections of the two colours. (B) 

Response times did not differ for 

either colour or response. C) CAF 

curves for acceptance and 

rejection response. The accuracy 

of acceptance or rejection 

responses did not change with 

response time in the reduced 

reward likelihood test (see Figures 

4F&G). D) Comparing acceptance 

times in the easy discrimination 

and reduced evidence tests allowed us to compare acceptance times for stimuli with different likelihoods 

of reward in training. Bees accepted the stimuli with higher reward likelihood faster. *p<0.05 and n.s., 

p>0.05 

 

A minimal model for honey bee decision-making capacity 

e assessed various computational sequential sampling models to explore what kinds of computation are 

necessary for these capacities of decision-making. We used well-established abstract models of decision-

making (Bogacz et al., 2006). Our first model had separate accumulators for acceptance or rejection responses 

(𝑃! , 𝑃"). Both accumulators receive sensory input and they provided inputs to acceptance (A) and rejection (R) 

command cells, respectively (Figure 6A). A decision is made either when one of the command cells reaches a 

predetermined threshold, or when a maximal decision time is exceeded. In this case, the command cell 

(𝐴	𝑜𝑟	𝑅) with the highest activity determines the decision (see Method section). It is more common in 

sequential sampling models to assume accumulators for specific stimuli, with each stimulus channel activating 

a different specific response. This structure is not biologically feasible as it would demand separate 

accumulators for every possible visible stimulus.  Hence, we modelled accumulators for response (accept and 
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reject) and provided both with sensory input. Simulations showed this model could neither correctly accept 

nor reject stimuli at above chance levels. 

 

We then added to the model cross-inhibitory feedback signals from command cells back to the accumulators 

(Figure 6B). In this model, as evidence accumulates in one command cell, it dampens the accumulation of 

evidence in the other accumulator. To build a model with a higher threshold for acceptance than the rejection 

response we set a stronger inhibitory connection between the reject command cell and the accept 

accumulator (𝑣" > 𝑣!). This difference between the strength of cross-inhibitory feedback signals makes the 

model more likely to reject a stimulus whenever the evidence is insufficient. This model did indeed reject 

stimuli more often than accept (Figure 6B), but it still made an equal number of correct and incorrect choices 

and therefore could not discriminate between correct and incorrect decisions (Figure 6B).  

 

To improve the accuracy of the model in acceptance responses we added learning cells (𝐿1 and 𝐿2) to the 

model (Figure 6C) that receive input from the sensory cells on the identity of the colours and send different 

inhibitory outputs to the accumulator cells (Figure 6C). Following a model approach by (MaBouDi et al., 2020b) 

𝐿1 is activated when the low rewarded colours were presented to the model. 𝐿2 is activated by the high 

rewarded colour. The two accumulators receive different levels of inhibition from the learning cells based on 

the reward likelihood of the presented colour. If a highly rewarded colour is presented to the model, 𝐿2	is 

activated and inhibits the reject accumulator more than the accept accumulator. This lowers evidence 

accumulation in the rejection accumulator. Conversely, a low rewarded colour activates 𝐿1 which inhibits the 

accept accumulator. The model with learning cells could discriminate between the high rewarded and low-

rewarded colours but in simulations, it made equal numbers of correct acceptance and correct rejection 

responses (Figure 6C). This differed from the behaviour of bees (Figure 4B). In summary, none of the classical 

sequential sampling models in Figure 6 were able to reproduce the experimental data.  

 

Our final model included parallel accumulators for accept and reject, learning cells and the cross-inhibitory 

feedback signals from the command cells (Figure 7A) This model could reproduce the features of bee choice 

behaviour (Figures 4 & 5). 1) in this model there was a higher threshold for acceptance than rejection, and 

acceptance was more accurate than rejection (Figure 7C); 2). When the available evidence was reduced, the 

model showed reduced discriminability (Figure 7D). The model was sensitive to reward likelihood (Figure 7E) 

4). Finally changing evidence and reward likelihood influenced acceptance and rejection response times.  
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Figure 6. Models of decision making. A) A simple model with independent accumulators and command 

cells for acceptance and rejection was not able to reproduce the features of bee decisions.  Correct and 

incorrect choices were made at equal frequency. B) When cross-inhibitory feedback from the command 

cells was added to the model, the model was still not able to discriminate between the correct and 

incorrect choices, despite the number of rejections now being higher than acceptances. C) A model 

with parallel pathways and learning cells that inhibit the accumulators with different values (i.e. 𝑤#" >
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𝑤$" 	𝑎𝑛𝑑	𝑤#! < 𝑤$!) had the ability to discriminate between stimuli, but the proportion of accepting 

correct colours and rejecting the incorrect colours are equal.  

 

Discussion 

Our study has shown both sophistication and subtlety in honey bee decision-making. Honey bee choice 

behaviour is sensitive to the quality of the available evidence and the certainty of the outcome (Figures 3 & 

4). Acceptance and rejection behaviours each had different relationships with reward quality and the 

likelihood of reward or punishment as an outcome (Figure 5). Acceptance had a higher evidence threshold 

than rejection, and the response time to accept was longer than the time to reject (Figures 3 & 4). As a 

consequence, acceptance was more accurate. We observed a large number of erroneous rejections but far 

fewer erroneous acceptances (Figure 4). Acceptance behaviour was more sensitive to reductions in reward 

quality and reductions in the certainty of a rewarding outcome than rejection. Correct acceptance responses 

were faster than incorrect acceptances (Figure 4) which seems counter to the well-known psychophysical 

speed/accuracy trade-off (Chittka et al., 2003; Hanks et al., 2014; Heitz, 2014). The complexity of honey bee 

decision-making only became apparent because we scored both acceptance and rejection behaviour. Signal 

detection theory has always highlighted the importance of considering both acceptance and rejection 

responses to understand choices but typically in animal behaviour studies rejection behaviour is usually 

ignored (Figure 3; (Trimmer et al., 2017; Wickens, 2001)). 

How animal decision-making is influenced by sampling time has been studied in species from insects to 

humans (Chittka and Niven, 2009; O’Connell and Hofmann, 2012; O’Connell et al., 2018). The sophistication 

of honey bee decision-making has features in common with primates. For example, for honey bees’ correct 

acceptance decisions were faster than incorrect acceptance decisions (Figure 4). A similar phenomenon has 

been reported for primates (Churchland et al., 2008; Hanks et al., 2014; Murphy et al., 2016; Thura and Cisek, 

2016) found that for humans in a situation requiring an urgent decision, decision accuracy decreased with 

increasing response times. 

Primates and honey bees then appear to be behaving opposite to the expectation of the well-known speed-

accuracy trade-off which predicts greater accuracy for slower decisions (Chittka et al., 2003; Heitz and Schall, 

2012; Marshall et al., 2006; Wickelgren, 1977). How can this be? The speed-accuracy trade-off is considered a 

general psychophysical property of decision-making. It is assumed that if a signal is noisy (for any reason) 

evidence of the identity of the signal will build up with time. As a consequence of this decision, accuracy should 

increase with increasing sampling time (Chittka et al., 2009; Heitz, 2014). This psychophysical approach to 

animal decision-making assumes that the threshold of evidence for making a decision is fixed and does not 
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change with the amount of time spent sampling. Ecologically that is rarely the case because sampling time 

incurs costs; be they energetic costs of sampling, risk of predation or opportunity costs (McNamara and 

Houston, 1985; McNamara and Trimmer, 2019; Mobbs et al., 2018). If sampling is costly and the consequences 

of an error are severe then a better strategy is to vary the evidence threshold for making a decision with 

sampling time (Drugowitsch et al., 2012; Frazier and Yu, 2007; Malhotra et al., 2018; Thura et al., 2012). One 

strategy under these conditions is to restrict sampling time, only to accept options for which there is very high 

confidence in a short sampling interval, and to reject everything else (Chittka and Osorio, 2007; Group et al., 

2014; Ings and Chittka, 2008; Mobbs et al., 2018; Murphy et al., 2016; Trimmer et al., 2008). A consequence 

of this strategy is that a very high proportion of acceptances made quickly will be correct (because the 

evidence threshold is high for rapid acceptance). For slower acceptances, the proportion of correct choices 

will be lower because the evidence threshold is lower for slower decisions. This gives an appearance of a 

reversed speed/accuracy relationship, but it is a consequence of the dynamic variation of the evidence 

threshold with increasing sampling time. The strategy of asymmetric errors that bees have taken in their 

decision is also predictable from the well-known optimal weighting rule from decision theory (Freund and 

Schapire, 1997; Grofman et al., 1983), drift-diffusion model (Marshall et al., 2017; Ratcliff, 1978) and reported 

neural data (Kiani and Shadlen, 2009; Shadlen and Kiani, 2013). With this strategy, the number of rejections 

should be high overall, the number of erroneous rejections should be high and rejection accuracy less time-

dependent. These were all features we observed in honey bee decision-making. Hence, we propose in this 

study bees were following a time-dependent decision-making strategy similar to this (Kiani and Shadlen, 2009; 

Malhotra et al., 2018; Marshall et al., 2017; Murphy et al., 2016; O’Connell et al., 2018). 

Chittka et al., 2003 reported that for bumblebees, accuracy was positively correlated with choice time (Chittka 

et al., 2003). In this study choice time was the flight time between flowers, and they did not report an actual 

response time of each decision. Rejections were not reported at all. In our study recording times for all 

responses (acceptance and rejection) gave a more nuanced interpretation of the honey bee decision-making 

strategy.  This emphasises the importance of recording rejections as well as acceptances. 

Because rejection behaviour has a lower evidence threshold for the response it operates rather like a ‘default’ 

response to a stimulus and acceptance of a stimulus is more considered. This could be considered adaptive 

since accepting a flower is more risky for a bee than rejecting a flower. Rejection is performed in flight and 

honey bees in flight have high manoeuvrability and are only exposed to aerial predators. Accepting and landing 

exposes bees to far greater predation risk. Many bee predators, particularly mantids and spiders, have evolved 

as flower mimics and/or hide in vegetation close to flowers (Nieh, 1993; O’Hanlon et al., 2014). A foraging bee 

feeding on a flower is therefore exposed to greater risks than a bee in flight. Ecologically accept and reject 
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behaviours carry different costs and benefits, and it is beneficial for bees to have separate evidence thresholds 

and sensitivities to evidence for acceptance and rejection. 

 

The properties of acceptance behaviour were not fixed and were sensitive to the history of reinforcement 

experienced at a stimulus. Previously we have shown that in response to variable rewards bees match their 

choice behaviour to the probability a stimulus offers a reward (MaBouDi et al., 2020b). Such a probability 

matching strategy is the most likely ecologically rational strategy, and the best option in circumstances where 

the rewards offered by different options are unknown and liable to change. Here we showed that even 

individual choices were influenced by the history of reinforcement (MaBouDi et al., 2020b). Faced with stimuli 

that offered both reward and punishment in training, bees' acceptance time increased, indicating the 

threshold for acceptance increased when there was a chance of a negative outcome from the stimulus. This 

shows that bees adjust how they respond to specific stimuli according to the totality of their prior experience 

with that stimulus.  

 

A neurobiological model for honey bee decision-making 

Our exploration of race and LCA modelling (Figures 6&7A) showed that the simplest forms of the race model 

were not sufficient to capture the dynamic features of bee decision-making. Modelling all the properties of 

bee decisions required two channels for processing stimulus information, one of which was modifiable by 

learning (Figure 7A). These channels interacted with populations of neurons that accumulated evidence for 

different available options, with feedback from the command cells into the accumulator populations. Our 

identified model was the simplest found capable of reproducing all the qualitative features of bee decision-

making (Figure 7C, D and E). There was a striking similarity between the features of this minimal model and 

our understanding of the sensory-motor transformation in the insect brain (Figure 7). 

In the bee brain, visual input is processed by the lamina and medulla in the optic lobes (Figure 7B). The medulla 

projects to the protocerebrum directly, and also indirectly via a third-order visual processing centre, the 

lobula, (Hertel and Maronde, 1987; Paulk et al., 2009; Strausfeld, 1976; Strausfeld and Okamura, 2007). In 

parallel, the medulla and lobula project to the mushroom bodies (Strausfeld, 1976). The mushroom bodies are 

considered the cognitive centres of the brain. They receive multimodal input and support learning and 

classification (Bräcker et al., 2013; Giurfa and Sandoz, 2012; Heisenberg, 2003; Li et al., 2017). The 

protocerebrum is a complex region that is not completely characterised in honey bees, but in Drosophila the 

protocerebrum is thought to establish the valence of stimuli: whether it is attractive or repellent (Das 

Chakraborty and Sachse, 2021; MaBouDi et al., 2017; Parnas et al., 2013). The protocerebral regions have been 

hypothesised to contain “action channels” that help to organise different kinds of behavioural output (Galizia, 
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2014). We believe the protocerebrum could feasibly contain neural populations acting like accumulators for 

accept or reject responses (Aso et al., 2014; Dolan et al., n.d.).  

 

 

Figure 7. Neurobiologically plausible model for honey bee foraging choices. A) The model shows the 

connectivity of the components of the minimum circuitry of bee decision-making, including sensory cells, 

two parallel accumulators, learning cells and motor commands (See method). Synaptic connection 

classes are represented at the left-hand side. B) The diagram shows a part of the insect brain involved in 

the decision-making process. The photoreceptors provide input from the eye to the lamina, which then 
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sends its projections to the medulla. The medulla connects to the protocerebrum and, in parallel, to a 

third-order visual processing centre, the lobula, which then sends inputs via several tracts into the 

protocerebrum. In parallel, neurons in the optic lobe regions: medulla and lobula neuron branch in the 

mushroom body. The anterior portions of the protocerebrum receive outputs from mushroom body 

output neurons (MBONs), supporting learning and memory. The output from the protocerebrum are 

premotor neurons. MB: Mushroom bodies; AL: Antennal lobe; la & me: lamina and medulla neuropils; lo: 

lobula; pro: protocerebrum.  Our model reproduces the bees’ responses to easy discrimination (C), 

reduced evidence (D), and reduced reward likelihood tests (D). The average percentage of correct choices 

(acceptance or rejection) made by the model bees within blocks of 25 trials. All non-overlapping SEM 

error bars are significantly different (p<0.05).  

 

That valence can be modified by learning via the outputs of the mushroom body (Dolan et al., n.d.; Eschbach 

et al., 2020; Lewis et al., 2015; Sayin et al., 2019). These are inhibitory projections to the protocerebrum 

(Mauelshagen, 1993; Rybak and Menzel, 1993; Strausfeld, 2002). Finally, protocerebrum interneurons connect 

with premotor regions such as the lateral accessory lobes and central complex with output commands for 

turning and hence have the capacity to transform an accept or reject signal into an approach or avoid 

manoeuvre (Cheong et al., 2020; Guo and Ritzmann, 2013; Namiki et al., 2018; Steinbeck et al., 2020; Varela 

et al., 2019). 

From these features of the insect brain, we can identify the functional elements needed for our minimal 

decision model and propose how sophisticated decisions might be possible in the insect brain (Figure 7B). 

Recent evidence from Drosophila has highlighted the role of the fly mushroom body in decision-making 

(Groschner et al., 2018). In a simple binary choice task, the fly mushroom body accumulated evidence on 

different available options using separate pools of Kenyon cells that were connected to each other by 

reciprocal inhibition. These experimental findings lend support to how we have mapped our model against 

the insect brain, but our results suggest that the fly story may be incomplete. The fly experiments did not score 

rejection responses, nor did they explore if the properties of the decision were sensitive to evidence quality 

or reward likelihood, hence the bioassay might not have exposed all the decision-making capabilities of the 

insect. For bees at least the mushroom body pathway cannot be the only system contributing to the decision, 

as dual interacting pathways were necessary (Barron et al., 2015; Cheong et al., 2020). Further 

electrophysiological or neurogenetic work is needed to test whether our dual pathway model is an appropriate 

abstraction of the insect decision system. Our model proposes a simple decision architecture that is capable 

of responding adaptively to the kinds of variable evidence and circumstances encountered in real-world 

situations. This type of model could prove of value in autonomous robotics applications (de Croon et al., 2022; 

Kelly and Barron, 2022; Stankiewicz and Webb, 2021; Webb, 2020). 
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Materials and Methods 

Bees and flight arena. Experiments were conducted at the Sheffield University Research Apiary with four 

standard commercial hives of honey bees (Apis mellifera). To source honey bees for our experiments, we 

provide them with a feeder containing 20% sucrose solution (w/w). Some bees visiting the feeder were given 

individually distinctive marks with coloured paints on their abdomen and/or thorax using coloured Posca 

marking pens (Uni-Ball, Japan). Experiments were performed in a (100 x 80 x 80 cm) flight arena made from 

expanded PVC foam boards with a roof of UV-transparent Plexiglas. The fight arena is fully described in 

MaBouDi et al. (2020). The method of attracting bees into the arena is described in (MaBouDi et al., 2020b). 

Training and testing Stimuli. Bees were trained to visit coloured stimuli inside the arena. Stimuli were disks 

(2.5 cm in diameter) of coloured paper covered with transparent laminate (Figure 1A) placed on small inverted 

transparent plastic cups (5 cm in height). Two additional colours intermediate between green and blue were 

designed for the reduced evidence test (Figure 1B). All colours were distinguishable for bees (MaBouDi et al., 

2020b).  

Training protocol. Each bee was separately trained with five different coloured stimuli in a colour 

discrimination task for 18 bouts of training. In each trial a bee was presented with a pair of colours; one 

rewarded colour and the other punished (Figure 1A) and four stimuli of each colour. Stimuli were placed 

randomly in the arena. The five different colours were each assigned a different likelihood of reward during 

the training trials: 100%, %66, %50, %33, and %0 of training trials (Figure 1B). Colour pairs were organised 

such that in every trial one colour was rewarded and one punished (Table 1). Stimuli were rewarded with 10 

μl sucrose solution 50% (w/w) or punished with 10 μl of saturated quinine hemisulphate solution. To evaluate 

any effect of the innate colour preference of bees on their decision, bees were randomly assigned to one of 

two groups: A and B. For group A, colours were ordered as: blue = 100%, yellow = 66%, pink = 50%, orange = 

33%, green = 0%. For group B, the colours were ordered as: green = 100%, orange = 66%, white = 50%, yellow 

= 33%, blue = 0%. Specific details on the reflectance spectrum of each colour are given in MaBouDi et al., 2020. 

Over 18 training trials, bees experienced all combinations of the five colours twice, with the exception that 

bees in training never experienced %66 rewarded paired with %33 rewarded colours. This pairing was 

excluded from training so that in the post-training, reduced reward likelihood test, we could examine how 

trained bees evaluate a colour pair based on the reward likelihood of colours. To control the effect of the 

training sequence on bees’ colour preferences, bees were randomly assigned to one colour group (A or B) and 

one of two different sequences of training bouts (protocols P1 and P2; Table 1). In each training bout, bees 

were able to freely choose and feed from rewarded stimuli. 10 μL drops of 50% sucrose solution were replaced 
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on depleted rewarded stimuli until the bee had fed to satiation and left the arena via the roof. Bees returned 

to the arena by their own volition. Typically, the inter-trial interval was 5-10 minutes. Between trials, all stimuli 

and the arena were cleaned with soap water and then 70% ethanol and water to remove any possible 

pheromonal cues left by the bee. They finally were air-dried before reuse. 

 
Table 1. Two different sequences of training trials were used. 10 bees were trained with the protocol P1 and 

10 with the protocol P2.  

Testing: Each bee was given three tests. Each test was video recorded for 120 sec. In all tests, all stimuli 

provided 10 μl water. The easy colour discrimination test presented bees with the colours that had been 

rewarded in 100% and 0% of training trials. The reduced reward likelihood test presented bees with 66% and 

33% rewarded colours – a combination they never experienced in training. In the reduced evidence test bees 

were given two novel colours that were similar to but intermediate to the 100% and 0% rewarded colours. 

The sequence of the three tests was pseudo-randomised for each bee. To maintain the bees’ motivation to 
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visit the arena, one or two refreshment trials were given between tests. In a refreshment trial, the bees were 

allowed to feed from 10 μL sucrose drops placed on eight disks of transparent laminate positioned in the 

arena. As in training, stimuli and the arena were cleaned between each test. 

Automatic bee tracking algorithm. The flight arena was equipped with an iPhone 6 camera placed at the top 

of the arena facing down that captured the full base of the flight arena in the field of view (Figure 1A). The 

camera was configured to record at 30 FPS (at a resolution of 1080 pixels) in the training phase, and 240 FPS 

at 720 pixels in the testing phase. The first 120 seconds of the test and the first bout of the training phase were 

used to analyse bees’ flights. Examples of a recorded flight path are shown in Supplementary videos S1 and 

S2. 

A bee’s flight path was determined frame by frame extracting the x, y coordinates of the bee’s body and its 

body orientation. From each frame, the background was subtracted using the average of the previous 50 

frames. By modifying MATLAB’s blob detection function with a threshold set close to the size of the bee very 

few candidate positions for the bee were found in each frame. We associated each pixel in each frame of the 

video with either a bee or the background. The bee’s position at each frame obtained from the algorithm 

became a single point in the trajectory over time. The obtained trajectory represents the position of the bee 

as a function of time. An elliptic filter was applied to the frame at the position of the detected bee to evaluate 

the bee’s body orientation. The smoothing function, ‘smoothdata’, was used to exclude outlier locations from 

the trajectory.  

The flight path began when the bee entered the arena. Hovering time prior to accepting or rejecting a stimulus 

was assessed as the total time the bee’s body was within a 5cm radius of the centre of the stimulus (Figure 

1D). Paths with length < 0.2s close to the edge of the focal area were excluded from analyses. A bee accepted 

a colour when it made contact with the colour (antennae at least contacting the platform; figure 1C). This 

translated to an automatically count bees’ landings algorithm. This algorithm counts bee’s landing and utilises 

a threshold flight speed classifier based on the k-means algorithm that was applied to flight paths that crossed 

over the stimuli (MaBouDi et al., 2021). In this dynamic threshold determination, the speed of bees within the 

border of the colours was clustered into two groups: acceptance (very low-speed paths) and reject (high-speed 

paths). The boundary between the two groups obtained by the K-means algorithm was set as a defined rule 

to determine whether the bee chose or did not choose the colour. 

Flight analysis and statistics. In each test, we evaluated bees’ performance from their choices during their 

first 120 sec in the arena. Choices were scored as accepting (made a contact with colour) or rejecting a stimulus 

(flying away without landing). If the bee accepted the colour more likely to be rewarded in training, we 

considered this a correct choice. If the bee rejected the colour more likely to be punished in training, we also 
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considered this a correct choice. Hence the bees’ decision was classified into four distinct responses: 1) correct 

acceptance (CA), landing on the more rewarded colour 2) incorrect acceptance (IA), landing on the less 

rewarded colour 3) correct rejection (CR), rejecting the less rewarded colour and 4) incorrect rejection (IR), 

rejecting the more rewarded colour. To summarise the bees’ performance in the tests, the Matthew 

correlation coefficient (MCC) was used as follows (MaBouDi et al., 2020a; Matthews, 1975): 

𝑀𝐶𝐶 = %!"×	%!#(%$"×%$#
)(%!"+%$")(%!"+%$#)(%!#+%$")(%!#+%$#)

								(Equation 1)	

where 𝑛-., 𝑛-/, 𝑛0. and 𝑛0/  represent the number of CA, CR, IA and IRs for a bee in a test. The MCC has a 

scale from -1 to +1. High positive values indicate mostly correct acceptance and rejection choices. Negative 

values correspond to bees making mostly incorrect choices. Zero indicates bees choose colours randomly. A 

Wilcoxon signed rank test was applied to the MCC values to compare bees’ performance. Finally, the 

relationship between bees’ MCC and their scanning behaviours in the tests was evaluated by the Spearman’s 

correlation tests. All statistical tests were performed in MATLAB 2019 (MathWorks, Natick, MA, USA). 

Signal Detection theory. Signal detection theory (Wickens, 2001) was used to analyse bee decisions. Signal 

detection theory proposes that bees evaluate a signal (stimulus with strength x) as either rewarded or 

punished. We assume that the probability of either accepting or rejecting a perceived signal can be described 

by two distributions that are normal in shape with equal variance (Figure 3A). We also assume a decision 

criterion (d.c.) of the perceived signal at which the response changes from accept to reject (Figure 3A).  From 

the positions of the distributions and the location of the criterion, we can estimate the expected probabilities 

of correct acceptances (hits) correct rejections, incorrect acceptance (false negative), and incorrect rejections 

(false positive) (Figure 3A). The location of d.c. can be influenced by training and the experience of each signal 

as either punished or rewarded as well as the consequences of correct and incorrect acceptance and rejection 

choices (Wickens, 2001). Discriminability (d’) is the difference in signal between the maximum likelihood of 

acceptance and rejection responses (Figure 3A).  If d’ is low the acceptance and rejection distributions overlap. 

Hence more errors are made. 

Discriminability (𝑑′) and the decision criteria (𝑑. 𝑐.) can be calculated from the empirical measurements of hit 

and false positive rates as follows 

 𝑑1 = 𝑍(ℎ𝑖𝑡	𝑟𝑎𝑡𝑒) − 𝑍(𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒)       (Equation 2) 

and 

  𝑑. 𝑐. = −(𝑍(ℎ𝑖𝑡	𝑟𝑎𝑡𝑒) + 𝑍(𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒))/2       (Equation 3) 
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where the function 𝑍(. ) is the inverse of the standard normal cumulative distribution function (CDF). The hit 

rate is the ratio of correct acceptance to all acceptances (𝑛-./(𝑛-. + 𝑛0.)) and the false positive rate is the 

ratio of incorrect rejections to all rejections (𝑛0//(𝑛0/ + 𝑛-/)).  

Modelling honey bee decision-making  

We started with the simple and well-defined sequential sampling model (Bogacz et al., 2006; Pike, 1966; 

Vickers, 1970) which we adjusted to provide a better fit to experimental data for both accuracy and reaction 

times (Figures 4 & 5). Our adjustments to the sequential sampling model were constrained by the types of 

processing considered plausible to derive both acceptance and rejection responses through two parallel 

pathways. 

 

In the model, evidence favouring each alternative (𝐼) accumulated in separate accept (𝑃!) or reject (𝑃") 

accumulators over time (Figure 6A). Biologically plausible leaky accumulators (with decay rate, 𝑘 ) were used. 

At each time step, accept and reject accumulators send signals to the accept (𝐴) and rejection (𝑅) command 

cells, respectively. The output of command cells of accept and rejection was calculated by 𝐴 = 𝑚𝑎𝑥	(0.1, 𝑃!) 

and 𝑅 = 𝑚𝑎𝑥	(0.1, 𝑃") with the baseline activity at 0.1. A decision was made either when one of the command 

cells reached a predetermined threshold, or when a decision was forced by exceeding a maximal assessment 

time in which case the decision associated with the command cell with the highest activity was chosen. The 

accumulation of evidence in the model is governed according to the following stochastic ordinary differential 

equations: 

 

𝑑𝑃!(𝑡) = (−𝑘𝑃!(𝑡) + 𝐼)𝑑𝑡 + 𝑑𝑊$(𝑡),					(Equation 4)	

𝑑𝑃"(𝑡) = (−𝑘𝑃"(𝑡) + 𝐼)𝑑𝑡 + 𝑑𝑊#(𝑡).     (Equation 5) 

 

At time zero, the evidence accumulated 𝑃! and 𝑃"  are set to zero; 𝑃!(0) = 𝑃"(0) = 0. Brownian random 

motions 𝑑𝑊!	and 𝑑𝑊"  are added to represent noise in input and model the random walk behaviour.  

To add inhibitory feedback signals from the command cells into the accumulators (Figure 6B), both accept and 

reject accumulators received feedback inhibitory signals from the opposite command cells as:  

𝑃!(𝑡) = 𝑃!(𝑡) + 𝑑𝑃!(𝑡) − 𝑣"𝑅(𝑡),					(Equation 6)	

 and  

𝑃"(𝑡) = 𝑃"(𝑡) + 𝑑𝑃"(𝑡) − 𝑣!𝐴(𝑡).				(Equation 7)	

Here,	𝑣! and 𝑣" 	are the fraction of command outputs that inhibit the alternative accumulator. 
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Two types of learning cells (𝐿$, 𝐿#) were added to the model (Figure 6C). Both learning cells received the 

sensory input and sent different inhibitory outputs to the accumulators based on the reward likelihood of the 

colours. 𝑤$!	, 𝑤$" , 𝑤#! and 𝑤#"  are the value of inhibitory signals that the accept and reject accumulators 

received from the learning cells (𝐿$, 𝐿#) such that 𝑤$!	 > 𝑤#! and 𝑤$"	 < 𝑤#!. The model activates the first 

learning cell, 𝐿$ = 𝛼𝐼, if the high rewarded colour is presented to the model, and activates the second learning 

cell, 𝐿# = 𝛼𝐼, if the low rewarded colour is presented to the model. 0 ≤ 𝛼 ≤ 1 represent the rate of the 

learning cells activity based on the input signal (𝐼). Synaptic weights 𝑤$!	, 𝑤$" , 𝑤#! and 𝑤#"  were updated for 

each presented stimulus during training such that the accumulation of evidence in the model proceed 

according to the following equations:  

𝑑𝑃!(𝑡) = (−𝑘𝑃!(𝑡) − 𝑤$!𝑀$ −𝑤#!𝑀# + 𝐼)𝑑𝑡 + 𝑑𝑊$(𝑡),						(Equation 8)	

𝑑𝑃"(𝑡) = (−𝑘𝑃"(𝑡) − 𝑤$"𝑀$ −𝑤#"𝑀# + 𝐼)𝑑𝑡 + 𝑑𝑊#(𝑡).    (Equation 9) 

 

Our final model, (Figure 7A) accumulated evidence following Equations 8 and 9. The accumulators received 

cross-inhibitory signals from the command cells according to Equations 6 and 7.  

 

Model evaluation  

The models are presented with 25 trials in which high-rewarded and low-rewarded stimuli were randomly 

presented. Each model responded after each trial by accepting or rejecting the presented stimulus. The 

performance of the model was evaluated by counting the number of correct and incorrect acceptances or 

rejections and their corresponding response times. 20 different model bees with different random factors 

were examined and reported in this study. The final model could be simplified to emphasise the effect of the 

contributions of learning and feedback from command cells. In this way, the final model (Figure 7A) was also 

examined with learning cells inactive (𝛼 = 0) or without the contribution of command cells by synaptic 

weights 𝑣! and  𝑣"  set to zero. We assumed the accept and reject pathways process the input interdependently 

(i.e. no interaction between pathways) if 𝛼 = 0, 𝑣! = 0 and  𝑣" = 0.  
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