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 2 

Abstract 1 

Coordinated cell movement is a fundamental process in organ formation. During heart 2 

development, bilateral myocardial precursors collectively move towards the midline 3 

(cardiac fusion) to form the primitive heart tube. Along with extrinsic influences such as 4 

the adjacent anterior endoderm which are known to be required for cardiac fusion, we 5 

previously showed that the platelet-derived growth factor receptor alpha (Pdgfra) is also 6 

required. However, an intrinsic mechanism that regulates myocardial movement 7 

remains to be elucidated. Here, we uncover an essential intrinsic role in the myocardium 8 

for the phosphoinositide 3-kinase (PI3K) intracellular signaling pathway in directing 9 

myocardial movement towards the midline. In vivo imaging reveals that in PI3K-inhibited 10 

zebrafish embryos myocardial movements are misdirected and slower, while midline-11 

oriented dynamic myocardial membrane protrusions become unpolarized. Moreover, 12 

PI3K activity is dependent on and genetically interacts with Pdgfra to regulate 13 

myocardial movement. Together our findings reveal an intrinsic myocardial steering 14 

mechanism that responds to extrinsic cues during the initiation of cardiac development. 15 
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 3 

Introduction 1 

 2 

During organogenesis, cell progenitor populations often need to move from their 3 

origin of specification to a new location in order to form a functional organ. Deficient or 4 

inappropriate movement can underlie congenital defects and disease. Directing these 5 

movements can involve extrinsic factors such as chemical and mechanical cues from 6 

neighboring tissues and the local environment as well as intrinsic mechanisms such as 7 

intracellular signaling and polarized protrusions (1). Progenitor cell movement occurs 8 

during cardiac development, where myocardial cells are specified bilaterally on either 9 

side of the embryo (2). To form a single heart that is centrally located, these bilateral 10 

populations must move to the midline and merge (3, 4). As they move, myocardial cells 11 

undergo a mesenchymal-to-epithelial (MET) transition forming intercellular junctions and 12 

subsequently moving together as an epithelial collective (5-9). This process is known as 13 

cardiac fusion and occurs in all vertebrates (10, 11).  14 

External influence from the adjacent endoderm is essential for the collective 15 

movement of myocardial cells towards the midline. Mutations in zebrafish and mice 16 

which inhibit endoderm specification or disrupt endoderm morphogenesis result in 17 

cardia bifida – a phenotype in which the bilateral myocardial populations fail to merge 18 

(9, 12-21). Similar phenotypes also occur in chicks and rats when the endoderm is 19 

mechanically disrupted (22-24). Studies simultaneously observing endoderm and 20 

myocardial movement have found a correlation between the movements of these two 21 

tissues, suggesting a model in which the endoderm provides the mechanical force that 22 
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 4 

pulls myocardial cells towards the midline (24-27). Yet, these correlations do not occur 1 

at all stages of cardiac fusion, indicating that myocardial cells may also use intrinsic 2 

mechanisms to actively move towards the midline. Indeed, recent studies revealing a 3 

role for the receptor tyrosine kinase, platelet-derived growth factor receptor alpha 4 

(Pdgfra) in the movement of myocardial cells have suggested a paracrine chemotaxis 5 

model, in which the myocardium senses chemokine signals from the endoderm and 6 

responds to them (28). However, the existence and identity of these intrinsic myocardial 7 

mechanisms remain to be fully elucidated.  8 

We have sought to identify the intracellular pathways downstream of Pdgfra that 9 

regulate the collective movement of the myocardium. The phosphoinositide 3-kinase 10 

(PI3K) pathway is known as an intracellular signaling mediator of receptor tyrosine 11 

kinases (e.g. Pdgfra). PI3K phosphorylates phosphatidylinositol (4,5)-bisphosphate 12 

(PIP2) to create phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a regulator of cellular 13 

processes such as proliferation and cell migration (29). The PI3K pathway has been 14 

shown to be important for both individualistic cell migration such as in Dictyostelium and 15 

neutrophils (30, 31) as well as collective cell migration such as in the movement of 16 

border cells in Drosophila and the movement of the anterior visceral endoderm during 17 

mouse gastrulation (32, 33). 18 

Using the advantages of external development and ease of live-imaging in the 19 

zebrafish model system (34), our studies reveal that myocardial PI3K signaling is 20 

required for proper directional movement towards the midline during cardiac fusion. In 21 

particular we find that inhibition of the PI3K pathway, throughout the embryo or only in 22 
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 5 

the myocardium, results in bilateral cardiomyocyte populations that fail to reach the 1 

midline (cardia bifida) or have only partially merged by the time wild-type myocardial 2 

cells are fully merged. High-resolution live imaging in combination with mosaic labeling 3 

further reveals that the orientation of myocardial membrane protrusions during cardiac 4 

fusion is dependent on PI3K signaling. Furthermore, we find that PI3K signaling and 5 

Pdgfra genetically interact to facilitate cardiac fusion. Altogether our work supports a 6 

model by which intrinsic Pdgfra-PI3K signaling regulates the formation of membrane 7 

protrusions that facilitate the collective movement of the myocardium towards the 8 

midline. Insight into the balance of extrinsic and intrinsic influences for directing 9 

collective movement of myocardial cells has implications for understanding a wide set of 10 

congenital and environmental cardiac defects as well as the pathogenic mechanisms of 11 

diseases broadly associated with collective movement.  12 
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 6 

Results 1 

 2 

The PI3K pathway is required for proper cardiac fusion 3 

In a search for intracellular signaling pathways that are important for cardiac 4 

fusion we examined the role of the phosphoinositide 3-kinase (PI3K) signaling pathway, 5 

by pharmacological inhibition of PI3K with LY294002 (LY) (35). Treatments were started 6 

at the bud-stage (10 hours post-fertilization - hpf), in order to exclude effects on 7 

mesodermal cells during gastrulation (36).  In wild-type or DMSO-treated embryos, 8 

bilateral myocardial populations move towards the midline and merge to form a ring 9 

structure between 20-21 hpf, which corresponds to the 20-22 somite stage (s) (Fig. 1A, 10 

A', F). However, in LY-treated embryos myocardial movement is disrupted and the 11 

bilateral myocardial populations fail to properly merge by 22s (Fig. 1B, B', F, Suppl. Fig. 12 

1A-C, M). To rule out possible off-target phenotypic artifacts of LY (37), we exposed bud 13 

stage embryos to two other PI3K inhibitors, Dactolisib (Dac) or Pictilisib (Pic) (38, 39). 14 

Exposure to either of these inhibitors also causes cardiac fusion defects (Fig. 1C, C', F, 15 

G, Suppl. Fig. 1D-F, N; Fig. 1D, D', F, G, Suppl. Fig. 1G-I, O, respectively), as does the 16 

mRNA injection of a truncated form of p85 (Fig. 1E, E', F, G, Suppl. Fig. 1J-L, P), which 17 

acts as a dominant negative inhibitor of PI3K (dnPI3K) activity (40). Furthermore, to 18 

ensure our analysis was not complicated by a developmental delay, we used 19 

developmentally stage-matched embryos (somite stage) rather than time-matched 20 

embryos (hours post-fertilization; hpf) to assess cardiac fusion phenotypes (see Suppl. 21 

Fig. 2 for embryos analyzed at 20 hpf). 22 
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 7 

 We also examined the morphology of the cardiac ring in PI3K-inhibited embryos 1 

and cellular processes known to be regulated by PI3K signaling. During the later stages 2 

of cardiac fusion as part of the subduction process, medial myocardial cells form a 3 

contiguous second dorsal layer (26) and develop epithelial polarity in which intercellular 4 

junction proteins such as ZO1 are localized to the outer-edge of the myocardium (5, 6) 5 

(Suppl. Fig. 3A-C). In PI3K-inhibited embryos, we found that myocardial cells form this 6 

second dorsal layer however, the localization of polarity markers and the tissue 7 

organization can appear mildly disorganized (Suppl. Fig. 3D-F). Furthermore, the PI3K 8 

signaling pathway is known to promote cell proliferation and cell survival (29) however, 9 

we did not find a difference in the number of cardiomyocytes in DMSO- or LY- treated 10 

embryos at 20s (Suppl. Fig. 3G-I). Similarly, no apoptotic cardiomyocytes were 11 

observed in DMSO- nor in 20 µM LY- treated embryos (n = 17, 19 embryos, 12 

respectively from 3 biological replicates). Apoptotic cardiomyocytes were however 13 

observed in DNAse-treated controls. These experiments reveal that PI3K signaling is 14 

required for proper cardiac fusion.  15 

 16 

The extent and duration of PI3K inhibition determines the penetrance and severity 17 

of cardiac fusion defects. 18 

PI3K-inhibited embryos display cardiac phenotypes at 22s that range from 19 

severe, in which the myocardial populations remain entirely separate (cardia bifida) (Fig. 20 

1G – red; examples - Suppl. Fig 1C, F, I, L), to more mildly affected hearts in which the 21 

myocardial populations form a U-shaped structure, having merged at the posterior but 22 
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 8 

not anterior end (Fig. 1G – orange; examples Suppl. Fig. 1B, E, H, K). A subset of the 1 

PI3K-inhibited embryos also appear phenotypically normal (~25% for 20 µM LY, Fig. 1F, 2 

G) indicating incomplete penetrance. Increasing concentrations of PI3K inhibitor or 3 

dnPI3K mRNA increases the severity and penetrance of these phenotypes in a dose-4 

dependent manner (Suppl. Fig. 1.). Similarly, we confirmed that LY inhibits PI3K activity 5 

in a dose-dependent manner, as measured by the ratio of phosphorylated AKT (pAKT) 6 

to AKT (Fig. 1H). AKT is phosphorylated as a direct consequence of PI3K activity (41). 7 

Thus, the severity and penetrance of cardiac fusion defects depends on the efficacy of 8 

PI3K inhibition. 9 

 Since differing modes of movement (9) as well as cellular processes such as 10 

MET (5, 6) and subduction (26) occur at different times during cardiac fusion, we also 11 

evaluated the developmental stages over which PI3K signaling is required. Short 12 

exposures (<3 hours) just prior to 22s or starting at bud stage had no effect on cardiac 13 

fusion.  However, progressively longer times of exposure ending at 22s or starting at 14 

bud stage result in correspondingly more severe phenotypes and higher penetrance 15 

(Fig. 2A, B). These addition and wash-out experiments indicate that both the severity 16 

and penetrance of cardiac fusion phenotypes correlate with the duration of LY-17 

incubation and not a specific developmental stage inside the 3-20s window. Thus, 18 

myocardial movement is responsive to both the levels and duration of PI3K signaling 19 

throughout cardiac fusion. 20 

 21 
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 9 

PI3K signaling is required in the myocardium for proper cardiac fusion. 1 

Mutations affecting the specification or morphology of the anterior endoderm result 2 

in myocardial movement defects (13, 19, 42, 43), revealing a non-autonomous role for 3 

the anterior endoderm in cardiac fusion. However, when PI3K signaling is inhibited with 4 

15 or 25 µM LY starting at bud stage we did not observe differences in the expression of 5 

endoderm markers such as axial/foxa2 or Tg(sox17:egfp) compared to DMSO-treated 6 

embryos (Suppl. Fig 3J-L, N-P). Additionally, the overall morphology of the anterior 7 

endoderm appeared intact and the average anterior endoderm width was similar 8 

between PI3K-inhibited and DMSO-treated embryos (Suppl. Fig 3M, Q). 9 

To determine if PI3K signaling is specifically required within the myocardium, as 10 

opposed to the endoderm, we created a myocardial-specific dominant negative 11 

transgenic construct, Tg(myl7:dnPI3K). Our experimental design is outlined in Fig. 2C. 12 

In F1 embryos at 22s we observed embryos with normal cardiac rings and embryos with 13 

cardiac fusion defects (Fig. 2D-G'). Genotyping revealed that F1 embryos with normal 14 

cardiac rings (Fig. 2D-G) did not have the transgene (n = 71/71), while almost all sibling 15 

embryos with cardiac fusion defects (Fig. 2D'-G') were positive for the Tg(myl7:dnPI3K) 16 

transgene (n=40/41). And all embryos with the Tg(myl7:dnPI3K) transgene have a 17 

cardiac fusion defect (Fig. 2H). (F1 embryos from 4 independent founder pairs were 18 

analyzed since stable transgenics could not be propagated due to loss of viability, likely 19 

due to a requirement for PI3K signaling in cardiac contraction at later stages (44)). 20 

Statistical analysis reveals that the Tg(myl7:dnPI3K) transgene is significantly 21 
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 10 

associated with a cardiac fusion defect (Fisher’s test p = 5.56 x 10-31), indicating that 1 

PI3K signaling acts in the myocardium to regulate its movement during cardiac fusion. 2 

 3 

PI3K signaling is responsible for the steering and velocity of myocardial 4 

movements during cardiac fusion. 5 

Our analysis points to a role for PI3K signaling in the movement of myocardial 6 

cells. To identify the properties of myocardial movement regulated by PI3K signaling, 7 

we analyzed myocardial movement by performing in vivo time-lapse imaging with the 8 

Tg(myl7:egfp) transgene, which labels myocardial cells. A time-series using hand2 9 

expression to compare myocardial movement in DMSO-treated and PI3K-inhibited 10 

embryos reveals dramatic differences in myocardial movement beginning after 12s 11 

(Suppl. Fig. 4).  We thus focused our time-lapse imaging on the 14-20s developmental 12 

window. In time-lapse movies of DMSO-treated embryos, myocardial cells display 13 

coherent medially directed movement (Fig. 3A-B, E, Suppl. Fig. 5A-A''', Video-1) with an 14 

average velocity of 0.2334 ± 0.007 microns/min, which is consistent with previous 15 

studies (9, 28). In PI3K-inhibited embryos myocardial cells also display coherent, 16 

coordinated movement and do move in the general direction of the midline, however 17 

they make dramatically less progress (Fig. 3C-D, Suppl. Fig. 5B-B''', Video-2). 18 

Quantitative analysis of these myocardial cell tracks reveals that myocardial cells are 19 

slower (0.1879 ± 0.008 microns/min) and less efficient. Therefore, myocardial cells 20 

ultimately move less in LY-inhibited embryos compared to DMSO-treated embryos (Fig. 21 

3E, F, Video-3). Differences in velocity occur throughout cardiac fusion (Suppl. Fig. 5C). 22 
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 11 

However, the most dramatic difference between PI3K-inhibited and DMSO-treated 1 

myocardial cells is in the direction of their movement. Tracks of myocardial cells in 2 

DMSO-treated embryos are predominately oriented in a medial direction (average of 3 

31.1 ± 1.65 degrees), while tracks in LY-treated embryos are mostly oriented in an 4 

angular anterior direction (60.6 degrees ± 1.73, p-value = 2.77 x 10-12, Fig. 3G, H).  5 

Differences in directional movement occur mainly in the early stages of cardiac fusion 6 

when wild-type myocardial movement is mostly medial (Suppl. Fig. 5D). Together this 7 

analysis of myocardial cell tracks suggests that PI3K signaling is responsible for both 8 

steering and propelling myocardial cells towards the midline.  9 

 10 

Myocardial membrane protrusions are medially polarized by PI3K signaling 11 

The role of PI3K signaling in regulating the polarity of migratory protrusions in the 12 

dorsal epithelium in Drosophila and prechordal plate in zebrafish (36, 45) along with 13 

previous reports of the existence of myocardial membrane protrusions (7, 26), led us to 14 

next look for these protrusions in myocardial cells during cardiac fusion and to examine 15 

if they are disrupted in PI3K-inhibited embryos. To visualize membrane protrusions in 16 

the myocardium, we performed in vivo time-lapse imaging during cardiac fusion of 17 

embryos injected with myl7:lck-egfp plasmid DNA in order to mosaically label the 18 

plasma membrane of myocardial cells.  Despite myocardial cells being connected via 19 

intercellular junctions (5, 28), we observed that the lateral edges of myocardial cells in 20 

wild-type/DMSO-treated embryos are highly dynamic; transitioning from appearing 21 

smooth and coherent to undulating and extending finger-like membrane protrusions 22 
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away from the cell (Fig. 4A-A'''', Video-4). These protrusions are dynamic, actively 1 

extending and retracting, and are prevalent occurring on average 20.3 ± 6.7 times per 2 

hour per cell and lasting for an average of 2.3 ± 0.6 mins (Fig. 4A).  In LY-treated 3 

embryos we observed similar membrane protrusions extending from myocardial cells 4 

(Fig. 4B,Video-4), which occur at a similar rate (17 ± 7.4 per hour per cell, p-value = 5 

0.36), but with slightly longer persistence (3.23 ± 0.84 mins, p-value = 0.008). 6 

We further observed that in DMSO-treated embryos membrane protrusions occur 7 

predominantly in the medial direction (77.25 ± 21.76% of protrusions were in the 8 

forward direction, Fig. 4A-A'''', C, D), suggesting an association with the medial 9 

movement of the myocardial tissue. In contrast, in LY-treated embryos myocardial 10 

membrane protrusions do not display the same medial polarity, instead extending from 11 

all sides of a myocardial cell equally (only 46 ± 11.6% of protrusion were in the forward 12 

direction, Fig 4B-B'''', C, D). The finding that myocardial membrane protrusions are 13 

medially polarized in wild-type embryos but not in PI3K-inhibited embryos where 14 

myocardial cells are misdirected and slower to reach the midline suggests that PI3K 15 

signaling helps to steer and propel myocardial cells towards the midline through the 16 

polarization of these active protrusions. 17 

 18 

PI3K signaling is regulated by Pdgfra during cardiac fusion 19 

The improperly directed myocardial cells in PI3K-inhibited embryos (Fig. 3) are 20 

reminiscent of the steering defects observed in pdgfra mutant embryos (28). This 21 

similarity led us to investigate whether Pdgfra activates PI3K signaling to regulate 22 
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 13 

myocardial movement. We found that PI3K activity as measured by the ratio of 1 

phospho-AKT to AKT levels (41), is severely diminished in pdgfra mutant embryos 2 

during cardiac fusion (Fig. 5A). Conversely, when Pdgfra activity is increased during 3 

cardiac fusion through the over-expression of pdgf-aa, PI3K activity is up-regulated (Fig. 4 

5B).  5 

To determine if Pdgfra’s influence on PI3K activity is important for myocardial 6 

movement towards the midline, we examined whether these two genes genetically 7 

interact while regulating cardiac fusion. When pdgfra heterozygous mutant embryos are 8 

exposed to DMSO cardiac fusion occurs normally (Fig. 5D, F), even though there is a 9 

small reduction in PI3K activity (Fig. 5A). When wild-type embryos are exposed to 10µM 10 

LY, PI3K activity is modestly reduced (Fig. 1H) and a small percent of embryos display 11 

mild cardiac fusion defects (Average of 10.9 ± 7.39% of 10µM LY-treated embryos 12 

display mild U-shaped cardiac fusion defects, n= 36, 3 replicates, Fig 5C, F). However, 13 

when pdgfra heterozygous mutant embryos are exposed to 10µM LY, there is a 14 

synergistic increase in both the severity and penetrance of cardiac fusion defects. 100% 15 

of pdgfra heterozygous embryos exposed to 10µM LY display cardiac fusion defects, 16 

with the majority of embryos displaying severe cardia bifida phenotypes (Fig. 5E, F). 17 

Together these results suggest that PDGF signaling activates PI3K activity to promote 18 

myocardial movement towards the midline.  19 

 20 
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Discussion 1 

 2 

Our studies reveal an intrinsic PI3K-dependent mechanism by which the 3 

myocardium moves towards the midline during the formation of the primitive heart tube. 4 

Together with our previous studies revealing a role for the PDGF pathway in facilitating 5 

communication between the endoderm and myocardium (28), our current work 6 

suggests a model in which Pdgfra in the myocardium senses signals (PDGF ligands) 7 

from the endoderm and via the PI3K pathway directs myocardial movement towards the 8 

midline through the production of medially oriented membrane protrusions. While 9 

genetic and imaging studies in zebrafish and mice (5, 13, 18, 19, 25-27, 46, 47) along 10 

with embryological studies in chicks and rats (22-24, 48) have identified the importance 11 

of extrinsic influences – such as the endoderm and extracellular matrix, on myocardial 12 

movement to the midline, our studies using tissue-specific techniques identifies an 13 

active role for myocardial cells, providing insight into the balance of intrinsic and 14 

extrinsic influences that regulate the collective movement of the myocardial tissue 15 

during heart tube formation. 16 

Specifically, we found a requirement for PI3K signaling in cardiac fusion which is 17 

complemented by previous studies in mice examining Pten, an antagonist of PI3K (29). 18 

Pten mutant mice also display cardia bifida (33), indicating that appropriate PIP3 levels 19 

and localization are required for proper cardiac fusion.  Our spatial and temporal 20 

experiments further build on these studies by revealing a requirement for PI3K 21 

specifically in the myocardium and throughout the duration of cardiac fusion (Fig. 2). We 22 
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 15 

also observed a mild disorganization of the sub-cellular localization of intercellular 1 

junctions in the myocardium of PI3K-inhibited embryos (Suppl. Fig. 3). This finding is 2 

consistent with previous studies linking epithelial polarity to PI3K signaling (49). 3 

However, myocardial cells defective in apical-basal polarity still form a cardiac ring (50, 4 

51), suggesting that an apical-basal defect is unlikely to be the primary reason for 5 

myocardial movement defects. Instead, our studies showing that PI3K-inhibited 6 

myocardial cells move slower and most prominently are misdirected during the early 7 

stages of cardiac fusion indicate a role for PI3K signaling in the steering of myocardial 8 

movements medially towards the midline. Our finding that steering in PI3K-inhibited 9 

embryos is perturbed in the early stages of cardiac fusion is furthermore consistent with 10 

the different phases of myocardial movement identified by Holtzman et al. (9) and 11 

suggests that PI3K signaling could be part of a distinct molecular mechanism that drives 12 

these early medial phases of myocardial movement. We also found that similar to loss-13 

of-function pdgfra mutants, inhibition of PI3K signaling causes defects in directional 14 

movement. However, inhibition of PI3K signaling affects myocardial velocity and 15 

efficiency (~ 20%  µ/min decrease in velocity, and a 25% decrease in efficiency 16 

compared to DMSO-treated embryos) more noticeably than pdgfra mutants, in which no 17 

significant difference in velocity or efficiency were detected (28). These differences 18 

could simply be a result of differences in the extent of PI3K inhibition by 20µM LY 19 

compared to extent of loss-of-pdgfra function by the ref mutation. Alternatively, similar to 20 

the role of PI3K signaling in the velocity of gastrulating mesoderm cells as well as in 21 

migrating dictyostelium and neutrophil cells (30, 31, 36, 52) these differences could also 22 
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indicate a Pdgfra-independent PI3K function in regulating the velocity of myocardial 1 

movement.  2 

 Myocardial membrane protrusions were postulated by De Haan et al. ~50 years 3 

ago as a mechanism by which myocardial cells move towards the midline (53).  Here 4 

using mosaic membrane labeling of myocardial cells to visualize membrane protrusions, 5 

we have observed myocardial membrane protrusions that are oriented in the medial 6 

direction in a PI3K-dependent manner, confirming his hypothesis. These studies are 7 

complemented by previous studies in zebrafish which have observed myocardial 8 

protrusions prior to and after cardiac fusion (26, 54) as well as recent studies in the 9 

mice (7) indicating that these cellular processes are likely conserved. Indeed, similar 10 

observations of PI3K signaling orienting and stimulating protrusion formation in 11 

migrating Dictyostelium and neutrophil cells as well as in the collective movement of 12 

endothelial tip cells, the prechordal plate and the dorsal epithelium (30, 31, 36, 45, 55, 13 

56) support a conserved role for PI3K signaling in regulating protrusion formation.  14 

However, the question of how active membrane protrusions facilitate the 15 

collective medial movement of the myocardium to the midline remains to be addressed. 16 

Our studies indicate that directionality and to a lesser extent velocity and efficiency are 17 

compromised, when membrane protrusions are improperly oriented in PI3K-inhibited 18 

embryos (Fig. 3). These observations could suggest that the observed membrane 19 

protrusions are force generating, similar to protrusions from leader cells in the lateral 20 

line or in endothelial and tracheal tip cells (57-59). Alternatively, these protrusions could 21 

act more like filopodia sensing extrinsic signals and the extracellular environment (60). 22 
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Future studies examining myocardial protrusions and their role in the biomechanical 1 

dynamics of the myocardium will help to elucidate the role of membrane protrusions in 2 

the collective movement of the myocardium during cardiac fusion. 3 

Overall, our studies delineate a role for the PDGF-PI3K pathway in the 4 

mechanisms by which myocardial precursors sense and respond to extracellular signals 5 

to move into a position to form the heart.  These mechanisms are likely relevant to other 6 

organ progenitors including neural crest cells, endothelial precursors, endodermal 7 

progenitors, and neuromasts, all of which must move from their location of specification 8 

to a different location for organ formation. Although varying in their morphogenesis, 9 

many of these movements are collective in nature. Indeed, a similar Pdgfra-PI3K 10 

signaling cassette is important in the collective directional migration of several organ 11 

progenitors including the migration of mesoderm and neural crest cells (36, 61-67).  12 

Receptor tyrosine kinase (RTK)-PI3K pathways are also important across several 13 

cardiac developmental processes, including epicardial development, cardiac neural 14 

crest addition, cardiomyocyte growth, cardiac fibroblast movement and cardiomyocyte 15 

contraction (44, 68-72). Similarly, PDGF-PI3K and more generally RTK-PI3K signaling 16 

cassettes are activated in several diseases including glioblastomas, gastrointestinal 17 

stromal tumors and cardiac fibrosis (73-76). Thus, the role of this RTK-PI3K cassette in 18 

sensing and responding to extracellular signals is likely to be broadly relevant to the 19 

etiology of a wide array of developmental processes as well as congenital diseases.  20 

  21 
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Materials and methods 1 

 2 

Zebrafish husbandry, microinjections and plasmid construction: 3 

All zebrafish work followed protocols approved by the University of Mississippi IACUC 4 

(protocol #21-007). Wildtype embryos were obtained from a mixed zebrafish (Danio 5 

rerio) AB/TL background. The following transgenic lines of zebrafish were used: 6 

Tg(myl7: eGFP)twu34 (RRID:ZFIN_ZDB-GENO-050809-10)(77), Tg(sox17:eGFP)ha01 7 

(ZFIN_ZDB-GENO-080714-2)(78), Tg(hsp70l:pdgfaa-2A-mCherry;cryaa:CFP)sd44 8 

abbreviated hs:pdgfaa (ZDB-GENO-170510-4), and ref (pdgfrask16) (ZDB-GENO-9 

170510-2) (28). All embryos were incubated at 28.5 ºC unless otherwise noted. 10 

Transgenic Tg(myl7:dnPI3K; Cryaa:CFP) F0 founders were established using standard 11 

Tol2-mediated transgenesis (79). F0 founders pairs were screened by intercrosses 12 

looking for a high percentage of F1 embryos with CFP+ eyes and cardiac edema. 13 

Stable transgenic lines could not be propagated due to loss of viability. Based on the 14 

germline mosaicism of the F0 parents, only a proportion of the F1 embryos are 15 

expected to have the transgene. Embryos from 4 different F0 pairs were analyzed for 16 

cardiac fusion phenotypes. Due to germ-line mosaicism F1 embryos were genotyped 17 

after in situ hybridization for the presence of the transgene using standard PCR 18 

genotyping. Primer sequences are provided in Suppl. Table 1.  19 

Truncated p85 (dnPI3K) capped mRNA was synthesized from the pBSRN3-∆p85 20 

construct (40) and injected at the 1-cell stage. To mosaically label cells in the 21 

myocardium for protrusion imaging, myl7:lck-eGFP (30 ng/µl) DNA was injected along 22 
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with Tol2 transposase (40 ng/µl) into Tg(myl7:eGFP) heterozgyous embryos at the 1 1 

cell stage and embryos were subsequently allowed to develop at 28.5 ºC. 2 

Plasmids were constructed by using gibson assembly (NEB, E2621) to transfer 3 

lck-eGFP (80) or a truncated version of p85 (40) into the middle-entry vector of the tol2 4 

gateway system (81), which were verified by sequencing. Primer sequences are 5 

provided in Suppl. Table 1. Then gateway recombination between p5E-myl7 promoter, 6 

the constructed middle-entry clones, p3E-polyA and either pDESTTol2pA2 (81) or 7 

pDESTTol2pA4-Cryaa:CFP (28) was used to produced plasmids containing myl7:lck-8 

eGFP or myl7:dnPI3K; Cryaa:CFP, respectively. 9 

 10 

Inhibitor treatments: 11 

The following inhibitors were used: LY294002 (LY, Millipore-Sigma 154447-36-6), 12 

Dactolisib (Dac, Millipore-Sigma 915019-65-7), and Pictilisib (Pic, Millipore-Sigma 13 

957054-30-7). For each treatment, inhibitors were freshly diluted serially from stocks 14 

such that the same percentage (0.1%) of DMSO (Goldbio 67-68-5, Millipore-Sigma 67-15 

68-5) was added to 1X E3 in glass vials (Fisherbrand 03-339-22B). 0.1% DMSO was 16 

used as a control. 15 dechorionated embryos per vial were incubated in the dark at 28.5 17 

ºC. In the course of these studies, we noticed that incubation with pharmacological 18 

PI3K-inhibitors caused a delay in trunk elongation and somite formation along with 19 

defects in cardiac fusion (Suppl. Fig. 2). To ensure our analysis was not obfuscated by 20 

a developmental delay, we used somite number to stage match embryos. PI3K-inhibited 21 
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embryos thus develop approximately 2-3 hours longer than DMSO-treated embryos, 1 

prior to analysis. 2 

 3 

Immunoblot, Immunofluorescence, in situ hybridization:  4 

Embryos at 22s were prepared for immunoblots by deyolking (82). Primary and 5 

secondary antibodies include phospho-AKT (1:2000, Cell Signaling 4060, RRID: 6 

AB_2315049) and pan-AKT (1:2000, Cell Signaling 4691, RRID: AB_915783), Anti-7 

rabbit HRP-conjugated (1:5000, Cell Signaling 7074, RRID: AB_2099233). pAKT and 8 

AKT immunoblots were visualized (Azure 600 Imaging system, Azure Biosystems) and 9 

quantified using ImageJ (83) by calculating the ratio of pAkt to Akt. Ratios were 10 

normalized to DMSO. To identify pdgfra/ref heterozygous and homozygous embryos, 11 

embryo trunks were clipped and genotyped as described (28).  The body of the embryo 12 

including the heart was snapped frozen and stored at -80 ºC. After genotyping, they 13 

were pooled via their genotype and analyzed via immunoblot. To activate Pdgfra, 14 

embryos expressing the Tg(hsp701: pdgfaa-2A-mCherry) transgene were heat-shocked 15 

at bud stage as described (28) and collected at 22s. 16 

 Immunofluorescence performed on transverse sections used standard 17 

cryoprotection, embedding and sectioning (46). Primary, secondary antibodies and dyes 18 

include: anti-GFP (1:1000, Abcam ab13970, RRID: AB_300798), anti-ZO-1 (1:200, 19 

Thermo Fisher Scientific 33-9100, RRID: AB_87181), donkey anti-chicken-488 (1:300, 20 

Thermo Fisher Scientific A32931TR, RRID: AB_2866499), donkey anti-mouse-647 21 

(1:300, Thermo Fisher Scientific A32728, RRID:AB_2633277). TUNEL was performed 22 
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using the Cell Death detection kit, TMR red (Millipore Sigma 12156792910). Addition of 1 

DNaseI was used to confirm we could detect apoptotic cells. 2 

In situ hybridization was performed using standard protocols (Alexander et al., 3 

1998), with the following probes: myl7 (ZDB-GENE-991019–3), axial (ZDB-GENE-4 

980526–404) and hand2 (ZDB-GENE-000511–1). Images were captured with Zeiss 5 

Axio Zoom V16 microscope (Zeiss) and processed with ImageJ. 6 

 7 

Fluorescence Imaging: 8 

To analyze cardiac fusion (Fig. 1A'-E') Tg(myl7:eGFP) embryos were fixed, 9 

manually deyolked and imaged with a Leica SP8X microscope. To analyze the anterior 10 

endoderm (Suppl. Fig. 3N-P) Tg(sox17: eGFP) embryos were fixed and imaged with an 11 

Axio Zoom V16 microscope (Zeiss). 12 

 For live imaging, Tg(myl7:eGFP) embryos were exposed to DMSO or 20µM LY 13 

at bud stage and mounted at 12 somite stage as described (84). Mounted embryos 14 

were covered with 0.1% DMSO/20µM LY in Tricaine-E3 solution and imaged using a 15 

Leica SP8 X microscope with a HC PL APO 20X/0.75 CS2 objective in a chamber 16 

heated to 28.5 ºC. GFP and brightfield stacks were collected approximately every 4 min 17 

for 3 hours. After imaging, embryos were removed from the mold and incubated for 24 18 

hrs in E3 media at 28.5 ºC. Only embryos that appeared healthy 24 hours post imaging 19 

were used for analysis. The tip of the notochord was used as a reference point to 20 

correct embryo drift in the Correct 3D direct ImageJ plugin (85). Embryos were handled 21 
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similarly for imaging protrusions, except 15 confocal slices of 1µm thickness were 1 

collected every 1.5 min with a HC PL APO 40X/1.10 CS2 objective. 2 

 3 

Image analysis: 4 

Embryonic length (Suppl. Fig. 2) was measured from the anterior tip of the head 5 

to the posterior tip of the tail of each embryo using the free-hand tool of ImageJ. The 6 

endoderm width was measured 300 microns anterior from the posterior point of 7 

intersection of the two sides of the endoderm. The distance between the hand2 8 

expressing domains was measured at three equidistant positions (~200 microns apart) 9 

along the anterior posterior axis.  Tg(myl7:eGFP)+ cardiomyocytes were counted from 10 

blinded and non-blinded 3D confocal images of 20s embryos from 4 biological replicates 11 

using the cell counter addon in ImageJ. No difference between the blinded (1) and non-12 

blinded (3) replicates was detected. 13 

For live imaging of cell movements – the mTrackJ addon in ImageJ (86) was 14 

used. 20-25 cells per embryo whose position could be determined at each timepoint 15 

were chosen from the two most medial columns of myocardial cells on each side of the 16 

embryos. From these tracks, cell movement properties including overall displacement, 17 

velocity (displacement/time), efficiency (displacement/distance) and direction 18 

(atan(Δy/Δx)×57.295) were calculated. Rose plots in Fig. 3 display the direction of 19 

movement of the overall trajectory of individual cells. In these plots individual cells are 20 

grouped into 6 bins based on their net direction of movement; the length of each radial 21 

bar represents the percentage of cells in each bin. 22 
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For live imaging of myocardial membrane protrusions – stacks were processed in 1 

Leica LASX and/or Imaris Viewer (Bitplane) to position the medial edge to the right of 2 

the image. Videos of the myocardium were inspected frame by frame in ImageJ for a 3 

protrusion. Only cells that were not neighbored by other labeled cells on their medial 4 

and lateral edges were analyzed. The direction of protrusion was measured using the 5 

“straight line” function a line to draw a line from the bottom of the protrusion to the tip. 6 

All protrusions of each cell over the entire recording were measured. Graphs, cartoons 7 

and figures were created with Prism (Graphpad), Excel (Microsoft), and Indesign 8 

(Adobe). 9 

 10 

Statistics and replication: 11 

All statistical analysis was performed in R or Prism (Graphpad). Sample sizes were 12 

determined based on prior experience with relevant phenotypes and standards within 13 

the zebrafish community. Deviation from the mean is represented as standard error 14 

mean or box-whisker plots. In box-whisker plots, the lower and upper ends of the box 15 

denote the 25th and 75th percentile, respectively, with a horizontal line denoting the 16 

median value and the whiskers indicating the data range. All results were obtained from 17 

at least three separate biological replicates, blinded and non-blinded. All replicates are 18 

biological. Samples were analyzed before biological sex is determined (87). Raw data 19 

and full p-values included in the source file. 20 

 21 

22 
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Legends 1 

 2 
Fig. 1. The PI3K pathway is required for cardiac fusion. A-E Dorsal views, anterior 3 

to the top, of the myocardium labeled with myl7 (A-E) at 22 somite stage (s) or 4 

Tg(myl7:egfp) (A'-E') at 20s. In contrast to a ring of myocardial cells in DMSO-treated 5 

embryos (A, A'), in embryos treated with PI3K inhibitors LY294002 (LY, B, B'), 6 

Dactolisib (Dac, C, C'), or Pictilisib (Pic, D, D') at bud stage or injected with dnPI3K 7 

mRNA (750pg) at the one-cell stage (E, E') cardiac fusion fails to occur properly with 8 

embryos displaying either cardia bifida (B, C) or fusion only at the posterior end (D, E). 9 

F, G Graphs depict the percentage (F) and range (G) of cardiac fusion defects in control 10 

and PI3K-inhibited embryos. Dots represent the percent of embryos with cardiac defects 11 

per biological replicate. Total embryos analyzed n = 37 (DMSO), 31 (20µM LY), 39 12 

(40µM Dac), 38 (50µM Pic), 86 (dnPI3K). Blue – cardiac ring/normal; Orange – fusion 13 

only at posterior end/mild phenotype, Red – cardia bifida/severe phenotype. H 14 

Representative immunoblot and ratiometric analysis of phosphorylated Akt (pAkt) to Akt 15 

protein levels in DMSO and LY treated embryos reveals a dose-dependent decrease in 16 

PI3K activation.  Bar graphs indicate mean ± SEM, dots indicate pAKT/AKT ratio per 17 

biological replicate, normalized to DMSO. Three biological replicates per treatment. 18 

One-Way ANOVA tests – letter changes indicate differences of p < 0.05 (F, H). Scale 19 

bars, 40 µm (A-E), 42 µm (A'-E'). Raw data and full p-values included in the source file. 20 

21 
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Fig 2: PI3K is required in the myocardium throughout cardiac fusion. A, B 1 

Graphical representation of the PI3K inhibitor addition (A) and wash-out (B) experiments 2 

used to determine the developmental stage over which PI3K is required. In (A) LY is 3 

added to embryos at different developmental stages and incubated until 22s, when 4 

cardiac fusion is assessed. In (B) LY is added at bud stage and washed-out at different 5 

developmental stages, after which embryos are incubated in normal media till 22s, 6 

when cardiac fusion is assessed. Bar graphs indicate the average proportion of 7 

embryos displaying different phenotypes. Blue – cardiac ring/normal; Orange – fusion 8 

only at posterior end/mild phenotype, Red – cardia bifida/severe phenotype. n = 45 9 

embryos per treatment condition from three biological replicates. C Schematic outlines 10 

experimental design to test requirement for PI3K in the myocardium. Pink – cells with 11 

the Tg(myl7:dnPI3K) transgene. F0 animals are mosaic for the transgene, while all cells 12 

in F1 embryos either have the transgene (pink) or do not (clear). The myl7 promoter 13 

restricts dnPI3K expression to the myocardium in Tg(myl7:dnPI3K) embryos. D-G 14 

Dorsal view of the myocardium labeled with myl7 in embryos at 22s from 4 different 15 

founder pairs (D-D',	E-E', F-F', G-G'). F1 embryos without the Tg(myl7:dnPI3K) 16 

transgene (as determined by genotyping) display normal cardiac fusion (D-G, n = 23/24, 17 

16/16, 16/16, 16/16, per founder pair), while F1 siblings with the Tg(myl7:dnPI3K) 18 

transgene display cardiac fusion defects (D'-G', n = 6/6, 13/13, 11/11, 13/13), indicating 19 

that PI3K signaling is required in myocardial cells. H Graph indicating the average % of 20 

wild-type and Tg(myl7:dnPI3K)+ embryos with cardiac fusion defects. Letter difference 21 

indicates a significant Fisher’s exact test p = 5.56 x 10-31. Scale bar, 40µm. 22 
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Fig 3: PI3K signaling regulates the medial movement and velocity of the 1 

myocardium during cardiac fusion. A-D Time points from a representative time-lapse 2 

video of myocardial cells visualized with the Tg(myl7:egfp) transgene in embryos 3 

treated with DMSO (A, B, Video-1) or 20µM LY (C, D, Video-2) from bud - 22s. 3D 4 

reconstructions of confocal slices (A, C) reveal the changes in conformation and 5 

location of the myocardium at 3 major stages of cardiac fusion: early medial movement 6 

towards the embryonic midline (A-A', C-C'), posterior merging of bilateral populations 7 

(A'', C'') and anterior merging to form a ring (A''', C'''). Representative tracks (B, D) show 8 

the paths of a subset of myocardial cells over ~2.5 hr timelapse. Yellow dots indicate 9 

the starting point of each track. E-H Graphs depict box-whisker plots of the velocity (E), 10 

efficiency index (F) and angle of movement (H) of myocardial cells. The direction of 11 

movement is visualized by rose plots (G). Myocardial cells in PI3K-inhibited (LY-treated) 12 

embryos show an overall direction of movement that is angular (60-90 degrees) and is 13 

slower than in DMSO-treated embryos. Scale bar, 60µm. 96 and 125 cells were 14 

analyzed from five DMSO- and six 20μM LY- treated embryos, respectively. Two 15 

sample t-test, letter change indicates p < 0.05. Raw data and full p-values included in 16 

the source file. 17 

  18 
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Fig 4: Myocardial membrane protrusions are misdirected in PI3K-inhibited 1 

embryos. A-B'''' timepoints from representative timelapse videos (see Video-4) of 2 

myocardial cells whose membrane has been labeled with myl7:lck-eGFP (black), medial 3 

to the right, in a DMSO- (A-A'''') or a 20µM LY- (B-B'''') treated embryo. Red arrowheads 4 

indicate representative protrusions, which are oriented medially, coincident with the 5 

direction of movement in DMSO-treated embryos (A-A'''') but are oriented in all 6 

directions in LY-treated embryos (B-B''''). C, D Rose (C) and Bar (D) graphs displaying 7 

the orientation of membrane protrusions in DMSO- (left) or LY- (right) treated embryos. 8 

The length of each radial bar in (C) represents the percentage of protrusions in each 9 

bin. Bar graph displays the total percentage of forward or backward protrusions. 10 

Forward protrusions: 270-90 degrees, pink. Backward protrusions: 90-270 degrees, 11 

black. n = 425 protrusions from 11 cells in 5 embryos (DMSO), and 480 protrusions 12 

from 11 cells in 4 embryos (20µM LY). Fisher’s exact test, P value < 0.0001. Error bars, 13 

mean ± SEM. Scale bar, 30 µm. Raw data and full p-values included in the source file. 14 

 15 
 16 
 17 
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Fig 5: Pdgfra activates and genetically interacts with PI3K signaling to regulate 1 

cardiac fusion. A, B Immunoblot and ratiometric analysis of phosphorylated Akt (pAkt) 2 

compared to total Akt levels reveals reduced pAkt levels in loss-of-function pdgfrask16 3 

heterozygous (-/+) or homozygous (-/-) mutant embryos at 22s (A), and elevated pAkt 4 

levels at 22s when PDGF signaling is activated with the hs:pdgfaa transgene (B). Bar 5 

graphs display averages from three separate experiments. C-E Dorsal views, anterior to 6 

the top, of the myocardium labeled with myl7 at 22s. In contrast to a normal ring of 7 

myocardial cells in wild-type embryos treated with 10µM LY starting at bud stage (C) or 8 

pdgfra heterozygous embryos (D), when pdgfra heterozygous mutants are exposed to 9 

10µM LY, cardiac fusion is defective with embryos displaying severe phenotypes such 10 

as cardia bifida (E). F Bar graph depicts the average distribution of cardiac fusion 11 

defects in DMSO-treated wild-type and pdgfra heterozygous mutants as well as 10µM 12 

LY-treated wild-type and pdgfra heterozygous mutant embryos. The total number of 13 

embryos examined over three separate biological replicates are 47 (DMSO, +/+), 25 14 

(DMSO, -/+), 36 (10µM LY, +/+), and 31 (10µM LY, -/+). Blue - cardiac ring/normal; 15 

Orange - fusion only at posterior end/mild, Red - cardia bifida/severe. Bar graphs, mean 16 

± SEM. One-way ANOVA (A, C) or Student’s T-test (B), letter change indicates p < 17 

0.05. Scale bar, 60µm. Raw data and full p-values included in the source file. 18 
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 30 

Supplemental Fig. 1: The penetrance and severity of cardiac fusion defects in 1 

PI3K-inhibited embryos is dose-dependent. A-L Dorsal views, anterior to the top, of 2 

the myocardium labeled with myl7 at 22s. Incubation of embryos with LY (A-C), Dac (D-3 

F), Pic (G-I) from bud stage to 22s or injection of embryos with dnPI3K mRNA (J-L) at 4 

the one-cell stage results in dose-dependent cardiac fusion defects at 22s. M-P Graphs 5 

depict the distribution of cardiac fusion defects in embryos treated with increasing 6 

concentrations of LY (M), Dac (N), Pic (O) or injected with increasing amounts of 7 

dnPI3K mRNA (P). Graphs reveal that both the percentage of embryos displaying 8 

cardiac fusion defects and the severity of those defects are dose-dependent. Total 9 

number of embryos analyzed (n) from > 3 treatments or injections at the indicated 10 

concentrations in (M-P):  LY- 40, 40, 30, 31, 31; Dac: 38, 34, 39; Pic: 37, 39, 38, dnPI3K 11 

mRNA: 73, 52, 61, 57, 52, respectively. Dots indicate the percent of embryos displaying 12 

a specific phenotype per incubation. Blue - Cardiac ring/normal; Orange - fusion only at 13 

posterior end/mild, Red - cardia bifida/severe. Bar graphs, mean ± SEM. One-Way 14 

ANOVA comparing percent of cardiac fusion defects- letter change indicates p < 0.05. 15 

Scale = 60 µm. Full p-values included in the source file. 16 
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Supplemental Fig. 2: LY-incubation results in trunk extension and somite 1 

formation delays. A-B, D-E Lateral brightfield views of 20 hours post fertilization (hpf) 2 

embryos treated with DMSO (A, D) or 20µM LY (B, E) at bud stage. C, F Box-whisker 3 

plot depicting the average embryonic length (yellow curved line in A, B) or somite 4 

number (yellow dots in D, E) at 20 hpf. Total number of embryos (n) from > 3 separate 5 

incubations = 40 (DMSO), 40 (20µM LY) for (C), and 39 (DMSO), 42 (20µM LY) for (F). 6 

Dots = measurements from individual embryos. Two sample t-test; p-value = 4.527x10-4 7 

and 7.624x10-5, respectively. G-H Dorsal views, anterior to the top, of the myocardium 8 

labeled with myl7 at 20 hpf. Embryos treated with DMSO at bud stage show cardiac 9 

rings (G) whereas those treated with 20µM LY show cardia bifida at 20 hpf (H). I Graph 10 

depicts the average percentage of cardiac fusion defects in embryos treated with DMSO 11 

or 20µM LY. The total number of embryos examined from three separate incubations (n) 12 

= 45 (DMSO), 45 (20µM LY). Two sample t-test; p-value = 4.56x10-5. Dots indicate the 13 

percent of embryos with cardiac fusion defects per incubation. Letter changes (C, F, I) 14 

indicate p-values < 0.05. Raw data and full p-values included in the source file. 15 

 16 
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Supplemental Fig 3: The morphologies of the myocardium and anterior endoderm 1 

are not compromised in PI3K-inhibited embryos. A-F Representative transverse 2 

cryosections, dorsal to the top, compare the morphology of the myocardium, visualized 3 

with Tg(myl7:eGFP) (green), ZO1 (purple) and DAPI (blue) between DMSO- (A-C) and 4 

20µM LY- (D-F) treated (bud-20s) embryos. Box (A, D) indicate region magnified in B, 5 

C, E, F. G-I Representative 3D confocal images of the myocardium at 20s, which were 6 

used to count myocardial cells in DMSO- (G) or 20µM LY - (H) treated embryos. Yellow 7 

dots indicate individual myocardial cells counted using ImageJ. Graph depicts box-8 

whisker plots for the average number of myocardial cells. 21 (DMSO) and 25 (LY) 9 

embryos from 4 separate bud-20s incubations were analyzed (I). J-Q Dorsal views, 10 

anterior to the top, of the anterior endoderm labeled with axial (J-L) or the 11 

Tg(sox17:eGFP) transgene (N-P) at 30s. Embryos incubated with either DMSO (J, N) or 12 

15µM LY (K, O) or 25µM LY (L, P) from the bud stage to 30s show no observable 13 

difference in the appearance or width of the anterior endoderm. Box-whisker plots of the 14 

average width of the anterior endoderm labeled with either axial (M) or Tg(sox17:eGFP) 15 

(Q). 47 (axial) and 42 (Tg(sox17:egfp)) embryos per inhibitor concentration from three 16 

separate incubations were analyzed. Yellow lines: width of the endodermal sheet. 17 

Purple dots (I, M, Q) indicate individual embryos. Letter differences indicate a p-value < 18 

0.05 as tested by 1-way ANOVA. Scale bars, 10 (A-F), 42 (G-H), 60 (J-L), and 50 (N-P) 19 

µm. Raw data and full p-values included in the source file. 20 
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 1 
Supplemental Fig. 4: Myocardial movement towards the midline is disrupted in 2 

PI3K-inhibited embryos throughout cardiac fusion. A-H Dorsal views, anterior to the 3 

top, of embryos displaying the expression of hand2 in the anterior lateral plate 4 

mesoderm (ALPM) at (A, E) 12s, (B, F) 14s, (C, G) 18s and (D, H) 20s, treated with 5 

either DMSO (A-D) or 20µM LY (E-H) at bud stage. I Box-whisker plots depict the 6 

average distance between the sides of the ALPM. Although, hand2 is properly 7 

expressed in LY-exposed embryos, ALPM convergence is affected as early as the 10s 8 

stage, with a dramatic difference in convergence starting at 12s. The total number of 9 

embryos analyzed (n), from 3 separate incubations at the noted stages (I) are: n =  34, 10 

33, 31, 32, 34, 34 (DMSO); 32, 29, 30, 34, 31, 28 (20µM LY), respectively. Dots indicate 11 

the distance between ALPM sides per embryo. Student’s t-test: asterisk indicates p 12 

values < 0.05. Scale bar, 100µm. Raw data and full p-values included in the source file. 13 
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Supplemental Fig. 5. PI3K signaling directs myocardial movement during the 1 

early stages of cardiac fusion and regulates velocity throughout cardiac fusion. 2 

A-B Time-lapse confocal reconstructions from Figure 3 overlaid with cell movement 3 

tracks, starting at t = 0 (yellow dots). Scale bar, 60µm. C, D Box-whisker plots display 4 

the average velocity (C) and direction of movement (D) sub-divided at three distinct 5 

stages of cardiac fusion: early movement (0 - 48min), posterior fusion (49 - 99min) and 6 

anterior fusion (100 - 153min). The average velocity of myocardial cells in LY-treated 7 

embryos is consistently slower than the velocity of DMSO-treated embryos which is 8 

consistent throughout cardiac fusion (C). However, in LY-treated embryos myocardial 9 

cells display a more angular average direction of movement compared to DMSO-treated 10 

embryos during the early stages of cardiac fusion (Early movement, Posterior fusion), 11 

after which wild-type myocardial cell movement becomes more angular matching 12 

myocardial cell movements in LY-treated embryos. Two sample t-test, letter change 13 

indicates p < 0.05.  14 
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Video 1. Myocardial cells in DMSO-treated embryos collectively move towards the 1 

midline and form a ring during cardiac fusion. A-C Representative time-lapse movie 2 

of myocardial cells visualized with Tg(myl7:egfp) during cardiac fusion in a DMSO-3 

treated embryo (A), tracks show movement of selected cells from the timelapse video 4 

(B) and overlay of eGFP and tracks (C). Time-lapse images are of three-dimensional 5 

reconstruction of confocal slices taken at 4:32 min intervals for 2.5 hours, beginning at 6 

14s. 7 
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Video 2. Myocardial cells in PI3K-inhibited embryos fail to move properly towards 1 

the midline. A-C Representative time-lapse movie of myocardial cells visualized with 2 

Tg(myl7:egfp) (A), tracks of selected cells (B), and overlay of tracks and eGFP (C) from 3 

an embryo treated with 20µM LY from bud-20s. Time-lapse was acquired as described 4 

in Video 1.  5 
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Video 3. PI3K signaling promotes the medial directional movement of myocardial 1 

cells towards the midline. A, B Side-by-side comparison of myocardial movement in 2 

DMSO- (A, video 1) and LY- (B, video 2) treated embryos reveals that inhibition of PI3K 3 

signaling by LY prevents myocardial cells from being adequately directed towards the 4 

midline. Selected analyzed tracks (white lines) overlaying 3D reconstructions of the 5 

Tg(myl7:egfp) transgene (green) in DMSO (A) and 20µM LY (B) treated embryos. 6 

 7 
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Video 4. Dynamic medially oriented myocardial membrane protrusions are 1 

lacking in PI3K-inhibited embryos. Representative time-lapse movies of myocardial 2 

membrane protrusions during cardiac fusion, visualized by injecting myl7:lck-eGFP 3 

plasmids at the 1-cell stage, in DMSO- (left panel) or 20µM LY – (right panel) treated 4 

embryos. Left panel highlights membrane protrusions (red arrowheads) in a set of 5 

posterior myocardial cells in a DMSO-treated embryo. Myocardial membrane 6 

protrusions in DMSO-treated embryos are mostly directed in the medial orientation 7 

(towards the right in both panels). Right panel highlights myocardial membrane 8 

protrusions (red arrowheads) in PI3K-inhibited embryos during cardiac fusion. Medial 9 

membrane protrusions (towards the right) are lacking in PI3K-inhibited embryos. DMSO 10 

or LY treatment from bud-20s. Time-lapse movies are 3D reconstruction of confocal 11 

images of membrane protrusions taken at ~90s intervals for 2 hours. Scale bar, 10µm.  12 
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Supplemental Table S1. Primers for genotyping and cloning. 1 
 2 
 Name Sequence (5'-3') 

Primers to screen 
for the 
Tg(myl7:dnPI3K) 
transgene in F1 
embryos 

dnPI3K_F1 GCGGGAAGAGGACATTGACT  

dnPI3K_R1 GCGGGAAGAGGACATTGACT 

Primers to clone 
lck-emGFP into 
the middle-entry 
vector of the tol2 
gateway system 

Hifi_lck_1F CAGTCGACTGGATCCGGTACAGATCCGCTAGCCACCATG  

Hifi_lck_1R CAGTCGACTGGATCCGGTACAGATCCGCTAGCCACCATG  

Hifi_emgfp_2F GGTCGCCACCGTGTCCAAGGGCGAGGAG 

Hifi_emgfp_2R GGTCGCCACCGTGTCCAAGGGCGAGGAG 

 3 
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Source data: Excel file organized by figure containing data from which graphs and 1 

charts were derived including complete p-values, primer sequences and uncropped 2 

immunoblots. 3 

 4 
 5 
 6 
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Figure 1

Fig. 1. The PI3K pathway is required for cardiac fusion. A-E Dorsal views, anterior to the top, 
of the myocardium labeled with myl7 (A-E) at 22 somite stage (s) or Tg(myl7:egfp) (A'-E') at 20s. 
In contrast to a ring of myocardial cells in DMSO-treated embryos (A, A'), in embryos treated with 
PI3K inhibitors LY294002 (LY, B, B'), Dactolisib (Dac, C, C'), or Pictilisib (Pic, D, D') at bud stage 
or injected with dnPI3K mRNA (750pg) at the one-cell stage (E, E') cardiac fusion fails to occur 
properly with embryos displaying either cardia bifida (B, C) or fusion only at the posterior end (D, 
E). F, G Graphs depict the percentage (F) and range (G) of cardiac fusion defects in control and 
PI3K-inhibited embryos. Dots represent the percent of embryos with cardiac defects per biological 
replicate. Total embryos analyzed n = 37 (DMSO), 31 (20μM LY), 39 (40μM Dac), 38 (50μM Pic), 
86 (dnPI3K). Blue - cardiac ring/normal; Orange - fusion only at posterior end/mild phenotype, 
Red - cardia bifida/severe phenotype. H Representative immunoblot and ratiometric analysis of 
phosphorylated Akt (pAkt) to Akt protein levels in DMSO and LY treated embryos reveals a dose-
dependent decrease in PI3K activation.  Bar graphs indicate mean ± SEM, dots indicate pAKT/AKT 
ratio per biological replicate, normalized to DMSO. Three biological replicates per treatment. One-
Way ANOVA tests - letter changes indicate differences of p < 0.05 (F, H). Scale bars, 40 μm (A-E), 
42 μm (A'-E'). Raw data and full p-values included in the source file.
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Fig 2: PI3K is required in the myocardium throughout cardiac fusion. A, B Graphical 
representation of the PI3K inhibitor addition (A) and wash-out (B) experiments used to determine 
the developmental stage over which PI3K is required. In (A) LY is added to embryos at different 
developmental stages and incubated until 22s, when cardiac fusion is assessed. In (B) LY is added 
at bud stage and washed-out at different developmental stages after which embryos are incubated 
in normal media till 22s when cardiac fusion is assessed. Bar graphs indicate the average proportion 
of embryos displaying different phenotypes. Blue - cardiac ring/normal; Orange - fusion only at 
posterior end/mild phenotype, Red - cardia bifida/severe phenotype. n = 45 embryos per treatment 
condition from 3 biological replicates. C Schematic outlines experimental design to test requirement 
for PI3K in the myocardium. Pink – cells with the Tg(myl7:dnPI3K) transgene. F0 animals are mosaic 
for the transgene, while all cells in F1 embryos either have the transgene (pink) or do not (clear). 
The myl7 promoter restricts dnPI3K expression to the myocardium in Tg(myl7:dnPI3K) embryos. 
D-G Dorsal view, anterior to the top, of the myocardium labeled with myl7 in embryos at 22s from 4 
different founder pairs (D-D', E-E', F-F', G-G'). F1 embryos without the Tg(myl7:dnPI3K) transgene 
(as determined by genotyping) display normal cardiac fusion (D-G, n = 23/24, 16/16, 16/16, 16/16, 
per founder pair), while F1 siblings with the Tg(myl7:dnPI3K) transgene display cardiac fusion 
defects (D'-G', n = 6/6, 13/13, 11/11, 13/13), indicating PI3K signaling is required in the myocardium. 
H Graph indicating the average % of wild-type and Tg(myl7:dnPI3K)+ embryos with cardiac fusion 
defects. Letter difference indicates a significant Fisher’s exact test p = 5.56 x 10-31. Scale bar, 40μm. 
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Fig 3: PI3K signaling regulates the medial movement and velocity of the myocardium 
during cardiac fusion. A-D Time points from a representative time-lapse video of 
myocardial cells visualized with the Tg(myl7:egfp) transgene in embryos treated with 
DMSO (A, B, Video-1) or 20μM LY (C, D, Video-2) from bud - 22s. 3D reconstructions of 
confocal slices (A, C) reveal the changes in conformation and location of the myocardium 
at 3 major stages of cardiac fusion: early medial movement towards the embryonic midline 
(A-A', C-C'), posterior merging of bilateral populations (A'', C'') and anterior merging to form 
a ring (A''', C'''). Representative tracks (B, D) show the paths of a subset of myocardial cells 
over ~2.5 hr timelapse. Yellow dots indicate the starting point of each track. E-H Graphs 
depict box-whisker plots of the velocity (E), efficiency index (F) and angle of movement (H) 
of myocardial cells. The direction of movement is visualized by rose plots (G). Myocardial 
cells in PI3K-inhibited (LY-treated) embryos show an overall direction of movement that 
is angular (60-90 degrees) and is slower than in DMSO-treated embryos. 96 and 125 
cells were analyzed from five DMSO- and six 20μM LY- treated embryos respectively. 
Two sample t-test, letter change indicates p < 0.05. Scale bars, 60 μm. Raw data and full 
p-values included in the source file.
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Fig 4: Myocardial membrane protrusions are misdirected in PI3K-inhibited 
embryos. A-B'''' timepoints from a representative timelapse video (see Video-4) of 
myocardial cells whose membrane has been labeled with myl7:lck-eGFP (black), 
medial to the right, in a DMSO- (A-A'''') or a 20 μM LY- (B-B'''') treated embryo. Red 
arrowheads indicate representative protrusions, which are oriented medially coincident 
with the direction of movement in DMSO-treated embryos (A-A'''') but are oriented in all 
directions in LY-treated embryos (B-B''''). C, D Rose (C) and bar (D) graphs displaying 
the orientation of membrane protrusions in DMSO- (left) or LY- (right) treated embryos. 
The length of each radial bar in (C) represents the percentage of protrusions in each bin. 
Bar graph displays the total percentage of forward or backward protrusions. Forward 
protrusions: 270-90 degrees, pink. Backward protrusions: 90-270 degrees, black. n = 425 
protrusions from 11 cells in 5 embryos (DMSO), and 480 protrusions from 11 cells in 4 
embryos (20μM LY). Fisher’s exact test, P value < 0.0001. Error bars, mean ± SEM. Scale 
bar, 30 μm. Raw data and full p-values included in the source file.
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Fig 5: Pdgfra activates and genetically interacts with PI3K signaling to regulate cardiac 
fusion. A, B Immunoblot and ratiometric analysis of phosphorylated Akt (pAkt) compared to total Akt 
levels reveals reduced pAkt levels in loss-of-function pdgfrask16 heterozygous (-/+) or homozygous 
(-/-) mutant embryos at 22s (A), and elevated pAkt levels at 22s when PDGF signaling is activated 
with the hs:pdgfaa transgene (B). Bar graphs display averages from three separate experiments. 
C-E Dorsal views, anterior to the top, of the myocardium labeled with myl7 at 22s. In contrast to a 
normal ring of myocardial cells in wild-type embryos treated with 10μM LY starting at bud stage (C) 
or pdgfra heterozygous embryos (D), when pdgfra heterozygous mutants are exposed to 10μM LY, 
cardiac fusion is defective with embryos displaying severe phenotypes such as cardia bifida (E). F 
Bar graph depicts the average distribution of cardiac fusion defects in DMSO-treated wild-type and 
pdgfra heterozygous mutants as well as 10μM LY-treated wild-type and pdgfra heterozygous mutant 
embryos. The total number of embryos examined over three separate replicates are 47 (DMSO, 
+/+), 25 (DMSO, -/+), 36 (10μM LY, +/+), and 31 (10μM LY, -/+). Blue - cardiac ring/normal; Orange 
- fusion only at posterior end/mild, Red - cardia bifida/severe. Bar graphs, mean ± SEM. One-way 
ANOVA (A, C) or Student’s T-test (B), letter change indicates p < 0.05. Scale bar, 60μm. Raw data 
and full p-values included in the source file.
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Suppl. Figure 1

Supplemental Fig. 1: The penetrance and severity of cardiac fusion defects in PI3K-
inhibited embryos is dose-dependent. A-L Dorsal views, anterior to the top, of the 
myocardium labeled with myl7 at 22s. Incubation of embryos with LY (A-C), Dac (D-F), Pic 
(G-I) from bud stage to 22s or injection of embryos with dnPI3K mRNA (J-L) at the one-
cell stage results in dose-dependent cardiac fusion defects at 22s. M-P Graphs depict the 
distribution of cardiac fusion defects in embryos treated with increasing concentrations 
of LY (M), Dac (N), Pic (O) or injected with increasing amounts of dnPI3K mRNA (P). 
Graphs reveal that both the percentage of embryos displaying cardiac fusion defects and 
the severity of those defects are dose-dependent. Total number of embryos analyzed (n) 
from > 3 treatments or injections at the indicated concentrations in (M-P):  LY- 40, 40, 30, 
31, 31; Dac: 38, 34, 39; Pic: 37, 39, 38, dnPI3K mRNA: 73, 52, 61, 57, 52, respectively. 
Dots indicate the percent of embryos displaying a specific phenotype per incubation. Blue - 
Cardiac ring/normal; Orange - fusion only at posterior end/mild, Red - cardia bifida/severe. 
Bar graphs, mean ± SEM. One-Way ANOVA comparing percent of cardiac fusion defects- 
letter change indicates p < 0.05. Scale = 60 μm. Data with full p-values included in the 
source file.
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Supplemental Fig. 2: LY-incubation results in trunk extension and 
somite formation delays. A-B, D-E Lateral brightfield views of 20 hours post 
fertilization (hpf) embryos treated with DMSO (A, D) or 20μM LY (B, E) at bud 
stage. C, F Box-whisker plot depicting the average embryonic length (yellow 
curved line in A, B) or somite number (yellow dots in D, E) at 20 hpf. Total 
number of embryos (n) from >3 separate incubations = 40 (DMSO), 40 (20μM 
LY) for (C), and 39 (DMSO), 42 (20μM LY) for (F). Dots = measurements from 
individual embryos. Two sample t-test; p-value = 4.527x10-4 and 7.624x10-5, 
respectively. G-H Dorsal views, anterior to the top, of the myocardium labeled 
with myl7 at 20 hpf. Embryos treated with DMSO at bud stage show cardiac 
rings (G) whereas those treated with 20μM LY show cardia bifida at 20 hpf (H). 
I Graph depicts the average percentage of cardiac fusion defects in embryos 
treated with DMSO or 20μM LY. The total number of embryos examined over 
three separate incubations (n) = 45 (DMSO), 45 (20μM LY). Two sample t-test; 
p-value = 4.56x10-5. Dots indicate the percent of embryos with cardiac fusion 
defects per incubation. Letter changes (C, F, I) indicate p-values < 0.05. Raw 
data and full p-values included in the source file.
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Supplemental Fig 3: The morphologies of the myocardium and anterior endoderm are not 
compromised in PI3K-inhibited embryos. A-F Representative transverse cryosections, dorsal to 
the top, compare the morphology of the myocardium, visualized with Tg(myl7:eGFP) (green), ZO1 
(purple) and DAPI (blue) between DMSO- (A-C) and 20μM LY- (D-F) treated (bud-20s) embryos. 
Box (A, D) indicate region magnified in B, C, E, F. G-I Representative 3D confocal images of the 
myocardium at 20s, which were used to count myocardial cells in DMSO- (G) or 20μM LY - (H) 
treated embryos. Yellow dots indicate individual myocardial cells counted using ImageJ. Box-whisker 
plots depict the average number of myocardial cells. 21 (DMSO) and 25 (LY) embryos from 4 
separate bud-20s incubations were analyzed (I). J-Q Dorsal views, anterior to the top, of the anterior 
endoderm labeled with axial (J-L) or the Tg(sox17:eGFP) transgene (N-P) at 30s. Embryos incubated 
with either DMSO (J, N) or 15μM LY (K, O) or 25μM LY (L, P) from the bud stage to 30s show no 
observable difference in the appearance or width of the anterior endoderm. Box-whisker plots of 
the average width of the anterior endoderm labeled with either axial (M) or Tg(sox17:eGFP) (Q). 47 
(axial) and 42 (Tg(sox17:egfp)) embryos per inhibitor concentration from three separate incubations 
were analyzed. Yellow lines: width of the endodermal sheet. Purple dots (I, M, Q) indicate individual 
embryos. Letter differences indicate a p-value < 0.05 as tested by 1-way ANOVA. Scale bars, 10 (A-
F), 42 (G-H), 60 (J-L), and 50 (N-P) μm. Raw data and full p-values included in the source file.
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Supplemental Fig. 4: Myocardial movement towards the midline is disrupted in PI3K-inhibited 
embryos throughout cardiac fusion. A-H Dorsal views, anterior to the top, of embryos displaying 
the expression of hand2 in the anterior lateral plate mesoderm (ALPM) at (A, E) 12s, (B, F) 14s, (C, 
G) 18s and (D, H) 20s, treated with either DMSO (A-D) or 20μM LY (E-H) at bud stage. I Box-whisker 
plots depict the average distance between the sides of the ALPM. Although, hand2 is properly 
expressed in LY-exposed embryos, ALPM convergence is affected as early as the 10s stage, with a 
dramatic difference in convergence starting at 12s. The total number of embryos analyzed (n), from 
3 separate incubations at the noted stages (I) are: n =  34, 33, 31, 32, 34, 34 (DMSO); 32, 29, 30, 
34, 31, 28 (20μM LY), respectively. Dots indicate the distance between ALPM sides per embryo. 
Student’s t-test: asterisk indicates p values < 0.05. Scale bar, 100μm. Raw data and full p-values 
included in the source file.
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Supplemental Fig. 5. PI3K signaling directs myocardial movement during the early stages 
of cardiac fusion and regulates velocity throughout cardiac fusion. A-B Time-lapse confocal 
reconstructions from Figure 3 overlaid with cell movement tracks, starting at t = 0 (yellow dots). 
Scale bar, 60μm. C, D Box-whisker plots display the average velocity (C) and direction of movement 
(D) sub-divided at three distinct stages of cardiac fusion: early movement (0 - 48min), posterior 
fusion (49 - 99min) and anterior fusion (100 - 153min). The average velocity of myocardial cells 
in LY-treated embryos is consistently slower than the velocity of DMSO-treated embryos which is 
consistent throughout cardiac fusion (C). However, in LY-treated embryos myocardial cells display a 
more angular average direction of movement compared to DMSO-treated embryos during the early 
stages of cardiac fusion (Early movement, Posterior fusion), after which wild-type myocardial cell 
movement becomes more angular matching myocardial cell movements in LY-treated embryos. Two 
sample t-test, letter change indicates p < 0.05. Raw data and full p-values included in the source file.
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