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72076, Germany and 2International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute
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ABSTRACT

Transformer-based language models are successfully
used to address massive text-related tasks. DNA
methylation is an important epigenetic mechanism
and its analysis provides valuable insights into gene
regulation and biomarker identification. Several deep
learning-based methods have been proposed to identify
DNA methylation and each seeks to strike a balance
between computational effort and accuracy. Here, we
introduce a MuLan-Methyl, a deep learning framework
for predicting DNA methylation sites, which is based
on multiple (five) popular transformer-based language
models. The framework identifies methylation sites
for three different types of DNA methylation,
namely N6-adenine (6mA), N4-cytosine (4mC), and
5-hydroxymethylcytosine (5hmC). Each of the five
employed language models is adapted to the task using
the “pre-train and fine-tune” paradigm. Pre-training
is performed on a custom corpus consisting of DNA
fragments and taxonomy lineages using self-supervised
learning. Fine-tuning then aims at predicting the
DNA-methylation status of each type. The five
models are used to collectively predict the DNA
methylation status. We report excellent performance
of MuLan-Methyl on a benchmark dataset. Moreover,
we show that the model captures characteristic
differences between different species that are relevant
for methylation. This work demonstrates that language
models can be successfully adapted to this domain
of application and that joint utilization of different
language models improves model performance.

INTRODUCTION

DNA methylation is an important biological process. It
facilitates epigenetic regulation of gene expression, is
associated with various medical disorders (1–3), and has
other applications, such as a marker in metagenomic binning
(4). There are several different types of DNA methylation,
depending on which methyl group is attached to which
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type of nucleotide in the sequence. Here, we focus on
6-methyadenine (6mA), 5-hydroxymethylcytosine (5hmC),
and 4-methylcytosine (4mC) methylation (5–7). Different
organisms exhibit different patterns of methylation and this
gives rise to the computational problem of predicting the
location of methylation sites for a given genome sequence.
While much algorithmic work has been done on the question,
recent work has focused on the application of deep learning
methods (8, 9). However, there is significant room for
improvement of accuracy and comprehensiveness.

There is a large number of papers that address the problem
of identifying methylation sites, however, most of them focus
on specific form of modification (10–29), and only a few
methods address all three types of methylation mentioned
above (30–34), including iDNA-MS, iDNA-ABT, and iDNA-
ABF. Note that the database presented in (31) is now widely
used as a benchmark dataset for assessing model performance
(21, 23, 32–34).

While different deep-learning based methods all address the
same goal, they differ in the details of the features employed
and the model structure. Input features include an encoding
of the sequence, of course, but may also include biochemical
properties (10, 12), or a DNA molecular graph representation
(22), say. Utilized model structures include Convolutional
Neural Networks (CNN), Graph Convolutional Neural
Networks (GCN), Bidirectional Encoder Representation from
Transformers (BERT) (35), as well as machine learning
algorithms. The specific way that an approach combines
feature engineering and model structure determines its
performance, and is key to proposing a new framework.

Here, we phrase DNA methylation-site detection as a
Natural Language Processing (NLP) problem and propose a
novel framework to address it. Previous studies for identifying
methylation sites usually use BERT, a classic NLP approach,
or, in the context of DNA sequences, the variant DNABERT
(36), either as a model that accepts embeddings from
Word2vec, or as an encoder that generates embeddings for
input to a deep neural network (23, 25, 32, 33, 37).

Only few published approaches aim at predicting multiple
DNA modification sites. Moreover, many do not use
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taxonomic information as explicit features, although the
taxonomic identity of an organism has an impact on DNA
methylation (38). Here we seek to address both shortcomings
by providing a new framework that uses a set of collectively
training language models, including, but not limited to
BERT, to predict three types of methylation sites from DNA
sequences and taxonomic information.

Combining the transformer-based language model BERT
with the “pre-train and fine-tune” paradigm has become the
method of choice in NLP applications. In the pre-training step,
self-supervised learning of the Masked Language Modelling
(MLM) task and the Next Sequence Prediction (NSP) task are
initially performed on a corpus consisting of Wikipedia and
books. This allows the transformer-based language model to
capture the semantics of text input and contextual information
exceptionally well.

Transformer-based language models dynamically learn the
input’s representation through a multi-head self-attention
mechanism (39) and this leads to improved prediction over
classification models constructed using static embedding
approaches (40).

The fine-tuning step involves supervised training of the pre-
trained language model to adapt to specific downstream tasks,
here the prediction of three different types of methylation
sites. Using BERT as a starting point, and then varying the
network architecture and parameters, one can obtain five
different language models, (41–45). By pre-training on a
domain-specific custom corpus, BERT can be adapted to a
specific application scenario (46–49). While the analysis of
DNA sequences can be considered an application of NLP,
using language models that are trained on human languages
will not do well at capturing nucleotide rules. Hence, several
approaches, such as BERTax, DNABERT and LOGO (36,
50, 51), use large amounts of genomic sequence, instead of
Wikipedia, as a corpus or similar structure.

The main aim of this paper is to introduce MuLan-
Methyl, a novel deep learning framework that combines five
transformer-based language models to collectively predict
sites for three different types of methylation (see Figure 1A).
In this approach, each methylation-site sample is written as
a sentence that represents the surrounding DNA sequence
and the taxonomic identity of the corresponding genome. The
output of our model is based on the average of the prediction
probabilities obtained by five transformer-based language
models, namely BERT (35), DistilBERT (41), ALBERT (45),
XLNet (43) and ELECTRA (44).

Each of the five language models is trained according to
the “pre-train and fine-tune” paradigm. For this, we used a
custom corpus that contains the processed training dataset
and taxonomic lineage information downloaded from NCBI
(52) and GTDB (53). For each language model, we trained
a custom tokenizer on the custom corpus, using the same
configuration as the model’s default tokenizer. We use a
customized tokenizer to ensure that the represented DNA
sequences and taxonomic information associated with each
sample is captured effectively.

Each language model was pre-trained by training the MLM
task on the processed training dataset. We then obtained the
6mA model by fine-tuning the pre-trained language model
using the 6mA training dataset. Next, the 4mC prediction
model was obtained by fine-tuning the 6mA prediction model

using the 4mC training dataset. Finally, the 5hmC prediction
model was obtained by fine-tuning the 4mC prediction model
using the 5hmC training dataset.

In addition, we compared the performance of all models
contained in MuLan-Methyl.

A main contribution of this work is that we use both DNA
sequence and taxonomic identity as explicit features in the
model. Using the iDNA-MS (31) independent test set as a
benchmark, our approach shows improved performance over
previous methods, especially for certain genomes. MuLan-
Methyl is capable of making accurate predictions for genomes
whose taxonomy lineage is not present in the training
dataset. The interpretability of MuLan-Methyl facilitiates
the discovery of DNA methylation motifs and potential
associations between specific methylation sites and taxonomic
lineages.

This work demonstrates that adding features to a model is
not the only way to improve the accuracy of predictions. To the
best of our knowledge, this is the first application in biology
that achieves improved prediction performance by integrating
multiple transformer-based language models.

MATERIALS AND METHODS

Data processing
Data collection We downloaded a DNA methylation dataset
from http://lin-group.cn/server/iDNA-MS/download.html.
This is an open resource that was published with the iDNA-
MS method (31) and is now widely used for benchmarking.
The dataset contains three main types of DNA methylation
sites - 6mA, 4mC and 5hmC - across 12 genomes (one
bacteria and 11 eukaryotes), in total 250,599 positive
samples. In addition, the dataset provides the same number of
non-methylation sequences as negative samples.

The dataset is partitioned into a training set and a
independent test set at a 1:1 ratio. In the training dataset,
11 species contain samples associated with methylation
type 6mA, in more detail, the numbers are 53,800 for T.
thermophile, 15,937 for A. thaliana, 9,168 for H. sapiens,
8,608 for Xoc. BLS256, 5,596 for D. melanogaster, 3,981 for
C. elegans, 3,033 for C. equisetifolia, 1,893 for S. cerevisiae,
1,690 for Tolypocladium, 1,551 for F. vesca and 300 for
R. chinensis. The type 4mC type is present in 4 species,
where the numbers of samples are 7,899 for F. vesca,
7,664 for Tolypocladium, 990 for S. cerevisiae, and 183 for
C. equisetifolia. Finally, the numbers of samples for the type
5hmC are 1,840 for M. musculus sequences and 1,172 for
H. sapiens.

The samples are DNA segments of length 41; a positive
sample is always centered on an experimentally-verified
methylation site, whereas a negative sample is not.

Dataset preparation We processed each sample (a DNA
sequence of length 41) as follows. Using a sliding window
of length 6, we extract 36=41−6+1 individual 6-mers from
the DNA sequence, and embed these within a sentence,
together with a description of the taxonomic lineage of the
corresponding organism, as follows: “For this organism, its
species is species, its genus is genus, its family is family, its
order is order, its class is class, its phylum is phylum, its
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The DNA sequence is TATTAT ... CCTTTT. 
For this organism, its species is Fragaria 
vesca, its genus is Fragaria, its family is 
Rosaceae, its order is Rosales, its class is 
Magnoliopsida, its phylum is 
Streptophyta, its kingdom is
Viridiplantae, its domain is Eukaryota.
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Figure 1. The MuLan-Methyl workflow. (A) The framework employs five fine-tuned language models for joint identification of DNA methylation sites.
Methylation datasets (obtained from iDNA-MS) are processed as sentences that describe the DNA sequence as well as the taxonomy lineage, giving rise to
the processed training dataset and the processed independent set. For each transformer-based language model, a custom tokenizer is trained based on a corpus that
consists of the processed training dataset and taxonomy lineage data from NCBI and GTDB. Pre-training and fine-tuning are both conducted on each methylation-
site specific training subset separately. During model testing, the prediction of a sample in the processed independent test set is defined as the average prediction
probability of the five fine-tuned models. We thus obtain three methylation type-wise prediction models. We evaluated the model performance according to the
genome type that contained in the corresponding methylation type-wise dataset, respectively. In total, we evaluated 17 combinations of methylation types and
taxonomic lineages. (B) The general transformer-based language model architecture for pre-training and fine-tuning. The transformer-based language model is
pre-trained using the masked language modeling (MLM) task and then fine-tuned on the methylation type-wise processed training dataset.

kingdom is kingdom, its domain is domain.” We refer to a set
of sentences obtained from a set of samples as a “processed
dataset.” The full processed training dataset, containing all
three types of methylation sites, is used to generate the
custom corpus. For purposes of fine-tuning, both the processed
training dataset and the processed independent test set were
split into three sets by methylation types.

Corpus generation We require a custom corpus for pre-
training each language model to allow it to learn and
capture domain-specific words, which are not contained in a
text corpus such as Wikipedia. The custom corpus contains
the processed training dataset, which consists of sentences
containing DNA 6-mers and a description of the associated
taxonomic lineage. In addition, to enable the language to
detect words about taxonomy, we incorporated all taxonomic
lineages from the NCBI and GTDB taxonomies. In total, the
corpus contains 2,440,894 sentences and uses a vocabulary of
25,000 words.

External dataset We downloaded DNA methylation data
published with the Hyb4mC method (16) and with the i6mA-
pred method (54). As this data is not contained in the

our training or independent datasets, nor do the associated
taxonomic lineages coincide, it is ideal for evaluating the
performance of MuLan-Methyl more broadly. In more detail,
this data consists of sequence-based samples that were
processed using the above mentioned methods, including 320
4mC-site sequences from E. coli, 1,926 4mC-site sequences
from G. pickeringii, and 880 6mA-site sequences from Oryza
sativa L., along with the same number of corresponding
non-methylated sequences.

Training transformer-based language models
We pre-trained and fine-tuned five transformer-based language
models. In the following, we first describe the architecture
of each of the five employed language models. We then
discuss the details of the training process for the first method,
BERT, including tokenization, pre-training, and fine-tuning
(see Figure 1B). The other four languages are trained in a
similar way.

All code is written in Python 3.10, using the Pytorch and
Huggingface Transformers library (55). The experiments were
run on a Linux Virtual Machine (Ubuntu 20.04 LTS) equipped
with 4 GPUs, provided by de.NBI (flavor: de.NBI RTX6000 4
GPU medium).
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Transformer-based language models Our approach uses five
transformer-based language models, which we introduce in
the following.
(1) BERT is capable of modelling bidirectional contexts,
using denoising and autoencoding-based pre-training. For the
transformer architecture of BERTbase, it use 12 layers in the
encoder stack, 768 hidden units for feedforward networks and
12 attention heads; in total 110M parameters.
(2) A distilled version of BERT, DistilBERT, is obtained by
decreasing the number of layers. It has 40% the size of BERT
and is 60% faster, while only being 3% less accurate.
(3) ALBERT adopts a cross-layer parameter sharing technique
for 12 transformer encoder blocks and imports embedding
factorization between vocabulary and the hidden layer in order
to reduce the parameter size of BERT.
(4) XLNet uses an innovative pre-training step; its generalized
autoregressive pre-training method enables learning
bidirectional contexts by maximizing the expected likelihood
over all permutations of the factorization order, overcoming
the issues caused by BERT’s neglect of dependency between
masked positions.
(5) In contrast to the other architectures, ELECTRA trains
two transformer models; a generator replaces tokens in a
sequence and a discriminator tries to identify which tokens
were replaced by the generator, instead of training on MLM
task.

Custom tokenizer A tokenizer must be used to convert
samples into the format that is expected by the transformer
block of a language. In our study, such a tokenizer is obtained
by training the language’s default tokenizer on our custom
corpus. Once trained, the tokenizer can capture any sample
represented by a sentence consisting of 6-mer DNA words and
a textual description of taxonomic lineage.

After tokenization, each input sample is represented by a
list of tokens, starting and ending with special tokens [CLS]
and [SEP], respectively, and padded to a length of 100 using
padding tokens [PAD].

Model pre-training The BERT language model is pre-trained
by performing unsupervised training of the MLM task on the
custom corpus. Pre-training was conducted on the model using
an architecture that is the same as bert-base-uncase, but with
setting the embedding size of input to 25,000 to match the
vocabulary size of the corpus.

During training of the MLM task, 15% of all WordPiece
tokens of a sample are selected at random as masking
candidates. Of these, 80% are replaced by a special token
[MASK] and 10% are replaced by a random token. Then the
original tokens are predicted.

Pre-training was conducted by using 8 epochs, a batch size
of 64 per GPU, and a learning rate of 5e-4, which is achieved
after 100 steps of warmup.

Model fine-tuning Fine-tuning is performed for each of the
three methylation-site types separately, and so the processed
training dataset is split into three training subsets, 6mA, 4mC
and 5hmC, listed in order of decreasing size. Each training
subset is split into a training set and a validation set at a ratio
of 8:2. The target model used to be fine-tuned depend on the
subset’s size. First, for the 6mA subset, we simply fine-tuned

the pre-trained language model that was trained on the custom
corpus. Second, the 4mC fine-tuned model was then obtained
by fine-tuning the 6mA fine-tuned model. Finally, 5hmC fine-
tuned model was obtained by fine-tuning the 4mC fine-tuned
model. We fine-tune the fine-tuned models in this way to make
the predictions more accurate on the smaller training subsets.

In all three cases, fine-tuning is performed using an early-
stopping strategy, with a maximum of 32 epochs, a batch size
of 64 per GPU, and a learning rate of 1e-5, which is achieved
after 100 steps of warmup.

Multi-language model
For each of the three types of methylation sites, five language
models are trained and then the MuLan-Methyl framework
integrates these, computing prediction probabilities that are
obtained by averaging over the probabilities returned by the
five models.

Interpretability of MuLan-Methyl
Transformer-based language models learn different and
distant dependencies in the input, by virtue of the multi-
head self-attention mechanisms that are present in each
encoding layer. For example, BERT contains 12 encoder
layers containing 12 attention heads each. For one layer, the
multi-head self-attention can be described as

MultiHead(Q,K,V )=Concat(head1,··· ,headn)WO,

where Query(Q)∈Rn×dk , K ey(K)∈Rn×dk , V alue(V )∈
Rn×dv and WO∈Rhdv×dmodel .

The ith self-attention head is computed as

headh=Attention
(
QWh

Q,KWh
K ,V Wh

V
)
V and

Attentionh=

(
QKT

√
dk

)
V,

where Attentionh=
{
aij
}

is a scoring matrix, in which aij
denotes the attention weight that the Query token ti gets from
then Key token tj . This matrix is widely used for representing
and exploring the binding between tokens (33, 49, 56).

Whereas the language models are fine-tuned on the
methylation-sites prediction task, in the last layer of our
model, a softmax function that acts as a classifier is placed
on the special token [CLS] that is present at the beginning of
each input sentence.

For each token, we sum the attention weights assigned
to [CLS] over the 12 heads and regard this as the token’s
contribution to sample prediction.

To analyze the impact of the DNA sequence of a sample on
the taxonomic lineage of the sample, we extract the attention
weights assigned by the DNA tokens to the taxonomic
hierarchy tokens.

Note that the WordPiece algorithm, which is used by the
tokenizer employed in BERT, DistilBERT and ELECTRA,
provides word-wise tokens, so it makes sense to view the
attention weights of tokens as contribution scores.
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Here we conduct the above computation on these three fine-
tuned models of each methylation type in MuLan-Methyl,
respectively, and the tokens importance score of MuLan-
Methyl is evaluated as the average score of sub-models.

The token importance score for MuLan-Methyl is obtained
as the average score achieved on each of the three site-specific
models.

RESULTS

Comparison with encoders from language models
To illustrate the effectiveness of the approaches we proposed
for training language models for DNA-based applications, we
compare the encoder of our pre-trained language model with
that of both BERT and DNABERT (see Figure 2A).

Each pre-trained language model is applied to 10% of the
positive DNA sequences in the independent test set, obtaining
their sentence representation by extracting the embedding of
[CLS], with a dimension of (1, 768). The samples are then
clustered and visualized using UMAP, colored by taxonomic
lineage.

Since the original corpus that BERT is trained on does
not explicitly includes DNA fragments, during tokenization,
BERT will represent each DNA 6-mer with the special symbol
[UNK], or cuts it into small pieces, unware that it is a
biological sequence. Consequently, the DNA sequences are
embedded into a sparse space distribution by this encoder,
with a poor ability to distinguish different species .

DNABERT is trained on genome sequences and has a better
ability to capture DNA sequence features, as reflected in the
absence of significant gaps between the distribution of DNA
sequence representation obtained by its encoder. However, the
cluster groups representing different species are mixed.

In comparison, the MuLan-Methyl-BERT encoder is better
at identifying DNA fragments and differentiating sequences
by taxonomic lineage. This shows that pre-training the
language model using a custom corpus that contains both
DNA 6-mers and taxonomic lineages, significantly improves
the models ability to capture potential information in this
application scenario.

Comparison with single language sub-models
The MuLan-Methyl framework uses five language models.
In this section, we establish that the average prediction
probability of this integrated approach is better than using
any of the individual sub-models, by comparing model
performance using AUC values.

In summary, MuLan-Methyl outperforms the sub-models,
displaying the highest AUC across different taxonomic
lineages and for each methylation-site type.

In more detail, for 6mA-site prediction, MuLan-Methyl
had the most significant benefit while predicting on
Tolypocladium, with an AUC gain of 1.7% over the AUC
calculated by ALBERT, which was the best-performing sub-
model. The average increase of AUC compared to the
taxonomic-lineage-specific best sub-model is 0.68%. For
4mC-site prediction, the average gain of AUC computed from
MuLan-Methyl is 0.85%, where the biggest improvement
using MuLan-Methyl happened on S. cerevisiae, with an
AUC increase of 1.48% over XLNet, the best sub-model for

this taxonomic lineage. Moreover, MuLan-Methyl performed
slightly better than ELECTRA at identifying 5hmC-sites on
the H. sapiens genome, with a 0.05% AUC rise. Moreover,
we assessed the performance of MuLan-Methyl for each
methylation-site type and report on this for each taxonomic
lineage using multiple metrics, including accuracy, F1-score,
recall and precision, and AUC (see Table 1, Table 2, Table 3),
as well as their ROC curve (see Figure 2B).

For each of the three methylation-site types, and for each of
the five sub-models included in MuLan-Methyl, we evaluated
the performance of sub-models on the corresponding
independent test set. For each of the 12 taxonomic lineages,
we ranked the give sub-models based on their AUC values.
Also, we determined the occurrence frequency of each sub-
model at each rank. This is shown in Figure 2C.

We observed that XLNet most frequently shows better AUC
than the other sub-models for predicting 6mA-sites, ranked
first for 6 lineages. In contrast, BERT and ELECTRA both
perform very poorly.

XLNet also performs best in 4mC-site predictions,
achieving the highest AUC on 3 out of 4 taxonomic lineages.
The lowest AUC from 4 taxonomic types are distributed
equally over four other models. XLNet and ELECTRA
perform best on 5hmC-site. Again, BERT performs worst.

Comparison with existing methods
To demonstrate the advantage of MuLan-Methyl over existing
methods, we compared the method against iDNA-ABF and

Table 1. MuLan-Methyl prediction performance on 6mA-sites

Lineage AUC Accuracy F1 Recall AUPR

T. thermophile 0.9473 0.8849 0.8924 0.9543 0.9334
A. thaliana 0.9385 0.8654 0.8621 0.8419 0.9427
H. sapiens 0.9694 0.9076 0.9072 0.9028 0.9726
Xoc. BLS256 0.9485 0.8799 0.8764 0.8515 0.9459
D. melanogaster 0.9739 0.9299 0.9296 0.9251 0.9768
C. elegans 0.9701 0.9171 0.9181 0.9294 0.9692
C. equisetifolia 0.8371 0.7618 0.7540 0.7300 0.8510
S. cerevisiae 0.9117 0.8328 0.8246 0.7861 0.9230
Tolypocladium 0.8711 0.7928 0.7845 0.7543 0.8773
F. vesca 0.9839 0.9429 0.9426 0.9362 0.9852
R. chinensis 0.9671 0.9114 0.9118 0.9164 0.9704

Table 2. MuLan-Methyl prediction performance on 4mC-sites

Lineage AUC Accuracy F1 Recall Precision

C. equisetifolia 0.9091 0.8361 0.8315 0.8087 0.9231
F. vesca 0.9262 0.8522 0.8562 0.8801 0.9142
S. cerevisiae 0.8100 0.7371 0.7294 0.7088 0.8270
Tolypocladium 0.8161 0.7385 0.7325 0.7160 0.8108

Table 3. MuLan-Methyl prediction performance on 5hmC-sites

Lineage AUC Accuracy F1 Recall AUPR

M. musculus 0.9824 0.9649 0.9651 0.9685 0.9810
H. sapiens 0.9688 0.9488 0.9503 0.9787 0.9533
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S. cerevisiae (area = 0.8100) 
C. equisetifolia (area = 0.9091) 
Tolypocladium (area = 0.8161) 
F. vesca (area = 0.9262)

H. sapiens (area = 0.9688) 
M. musculus (area = 0.9824)

S. cerevisiae (area = 0.9117) 
A. thaliana (area = 0.9385)
H. sapiens (area = 0.9694)
D. melanogaster (area = 0.9739) 
Xoc BLS256 (area = 0.9485) 
C. equisetifolia (area = 0.8371) 
R. chinensis (area = 0.9671)
T. thermophile (area = 0.9473) 
Tolypocladium (area = 0.8711) 
C. elegans (area = 0.9701)
F. vesca (area = 0.9839)

MuLan-Methyl (area = 0.8882)
iDNA-ABF A. thaliana (area = 0.8340)
iDNA-ABF C. equisetifolia (area = 0.8783)
iDNA-ABF F. vesca (area = 0.8941) 
iDNA-ABF R. chinensis (area = 0.8064) 
iDNA-ABT A. thaliana (area = 0.6071) 
iDNA-ABT C. equisetifolia (area = 0.8210) 
iDNA-ABT F. vesca (area = 0.8526)

MuLan-Methyl (area = 0.8322)
iDNA-ABF C. equisetifolia (area = 0.7495) 
iDNA-ABF F. vesca (area = 0.7642) 
iDNA-ABF S. cerevisiae (area = 0.6458) 
iDNA-ABF Tolypocladium (area = 0.6925) 
iDNA-ABT C. equisetifolia (area = 0.8158) 
iDNA-ABT F. vesca (area = 0.7683) 
iDNA-ABT S. cerevisiae (area = 0.6713) 
iDNA-ABT Tolypocladium (area = 0.6975)

MuLan-Methyl (area = 0.8890)
iDNA-ABF C. equisetifolia (area = 0.7366) 
iDNA-ABF F. vesca (area = 0.7399) 
iDNA-ABF S. cerevisiae (area = 0.7074) 
iDNA-ABF Tolypocladium (area = 0.7861) 
iDNA-ABT C. equisetifolia (area = 0.6487) 
iDNA-ABT F. vesca (area = 0.7864) 
iDNA-ABT S. cerevisiae (area = 0.7035) 
iDNA-ABT Tolypocladium (area = 0.7786)
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Figure 2. Model analysis and performance comparison of MuLan-Methyl. (A) UMAP clustering of sample representations encoded by different pre-trained
models, namely BERT, DNABERT, and MuLan-Methyl BERT (from left to right). Samples are colored by taxonomic lineage. (B) For MuLan-Methyl predictions
of the three methylation-site types, 6mA, 4mC, and 5hmC, we present ROC curves for each of the 12 taxonomic types in the dataset. The AUC values are shown in
brackets. (C) For each of the three methylation-site types, and each of the five language models, BERT, DistilBERT, ALBERT, XLNet, and ELECTRA, we show
the ranking of models over all taxonomic lineages in terms of AUC scores. Moreover, the frequency with which each fine-tuned model appeared in indicated as
the width of the corresponding block. (D) Comparion of MuLan-Methyl against two published methods, iDNA-ABF and iDNA-ABT, on an additional dataset that
only contains taxonomic lineages that were not used to train the methods. From left to right, we show the ROCs obtained for the prediction of 4mC-sites in E. coli,
4mC-sites in G. pickeringiin data, and 6mA-sites in O. sativa L. data, respectively. (E) Comparison of MuLan-Methyl against iDNA-ABF and iDNA-ABT, on
the iDMA-MS independent test set. We display the AUC scores for all three methods, for each of the three methylation-site types and each of the 12 taxonomic
lineages.

iDNA-ABT, two state-of-the-art methods, that are both
able to predict methylation-sites for all three types, across
different taxonomic lineages. For this, we used the iDNA-MS
independent test set, which is considered a benchmark dataset.
We report the AUC scores in Figure 2E.

In this study, MuLan-Methyl outperforms the other two
methods on 13 out of 17 combinations of methylation types
and taxonomic lineages. First, for 6mA-site prediction,
MuLan-Methyl improves over the other methods by

between 0.19% to 3.91% AUC, whereas for R. chinensis,
C. equisetifolia, Tolypocladium, and T. thermophile, the
improvement is by more than 1%. Second, for 4mC-
site prediction, our method shows an increase of 2.03%
and 0.02% AUC, on S. cerevisiae and C. equisetifolia,
respectively. Finally, for 5hmC-site prediction, our method
show an increase of 0.28% and 0.11% on M. musculus and
H. sapiens, respectively.
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The iDNA-ABF method has higher AUC scores in the
remaining 4 cases, namely for 6mA-site prediction on H.
sapiens and Xoc. BLS256, with an improvement of 0.01% and
0.21%, and for 4mC-site prediction on Tolypocladium and F.
vesca, with an improvment of 0.52%, and 0.23%, respectively,
over MuLan-Methyl.

Explainability of MuLan-Methyl aids motifs discovery
To assess the contribution of each token toward correct
methylation-site detection, we use the average attention
weight assigned by each token to [CLS] in the fine-tuned sub-
model, based on the positive sample from the independent test
set.

The importance scores of each position in a DNA sequence
has a Gaussian distribution across 17 different combinations of
methylation-site types and taxonomic lineages (see Figure 3D-
F). Positions of higher importance are concentrated around the
center of the samples, and the central position always has high
significance.

This observation underlines the rationale used for
constructing the iDNA-MS dataset, namely to use, as positive
samples, DNA segments of length 41 that are each centered
on an experimentally verified methylation site. It also suggests
the existence of DNA motifs that are closely associated with
DNA methylation.

We observe, for all 17 combinations, that the importance
score starts low and then reaches a local maximum at position
±15. It then steadily increases from ±16 to the center of each
sample (of length 41). This suggests that 41 is an ideal sample
length for methylation detection, neither wasting resources to
store unimportant positions, nor missing important sequence.

The 6-mers with high importance may be considered
DNA-methylation “motifs” (see Figure 3A-C). For a fixed
taxonomic lineage, the three different methylation-site types
each have different motifs. However, for a fixed methylation-
type-site, some motifs occur across different taxonomic
lineages.

For example, the motif CGAAGT is important for 6mA
methylation for several taxonomic lineages, namely S.
cerevisiae, Tolypocladium, and Xoc. BLS256. Note that
the former two are eukaryotes, whereas the latter is
bacterial. Moreover, for 5hmC methylation, H. sapiens
and M. musculus share many motifs. Similarly, for 4mC
methylation, C. equisetifolia and F. vesca share many motifs.

Explainability of MuLan-Methyl reveals relationships
between DNA sequence and taxonomic lineage
Integrating DNA sequences with taxonomic lineage as an
explicit feature adds information and thus increases detection
accuracy. Moreover, during fine-tuned model prediction,
the association between DNA sequence and taxonomy can
be measured by extracting the attention weights assigned
from DNA tokens to the tokens that represent taxonomic
lineage (see Figure 3G-I).

The impact of DNA sequence on taxonomic lineage
varies across the 17 combinations of methylation-site types
and taxonomic lineages. Overall, sequence locations that
determine taxonomic lineage are concentrated around the
center of samples, where the discussed methylation motifs are
also clustered.

Of the eight taxonomic ranks used to specify taxonomic
lineage, the highest (kingdom) and lowest rank (species), in
particular, are assigned larger attention weights by a wide
range of positions in the sequence.

However, not all combinations follow this rule. For
example, the impact of DNA sequence on species is
weaker than on genus and family for the combinations
6mA + D. melanogaster and 5hmC + M. musculus. On
combinations 6mA + R. chinensis, 6mA + S. cerevisiae,
6mA + C. elegans, 4mC + S. cerevisiae, and
5hmC + H. sapiens, we observed that the high scores assigned
to the taxonomy lineages are quite sparsely distributed over
the different ranks.

These observations demonstrate that the explainability of
MuLan-Methyl can shed light on the relationships between
DNA sequences and taxonomic lineage.

Performance on the external dataset
MuLan-Methyl was trained on 17 combinations of DNA
methylation-site types and taxonomic lineages. Fine-tuned
models aim at performing well on input whose distribution
is consistent with the training dataset, however are not
guaranteed to perform well on other data.

To explore the performance of MuLan-Methyl on
other data, we applied the approach to the external
dataset that contains three combinations of methylation
types and taxonomic lineages, namely 4mC + E. coli,
4mC + G. pickeringi and 6mA + O. sativa L. Note that these
three taxonomic lineages do not appear in the iDNA-MS
datasets.

For the sake of comparison, we also calculated predictions
using the servers provided by iDNA-ABF and iDNA-ABT.
Since both approaches provide independent models for each
combination, we run all taxon-wise models for 4mC-site
detection, and the appropriate ones for 6mA-site detection.

MuLan-Methyl performed much better than the other two
models on the 4mC + E. coli combination, achieving an
AUC of 0.89, more than 10% better than the others. Our
method also performed best on the 4mC + G. pickeringi
combination, with an advantage of 1.64% over iDNA-ABT
(using its C. equisetifolia model). On the third combination,
6mA + O. sativa L, MuLan-Methyl performed slightly worse
(0.59%) than iDNA-ABF (using its F. vesca model). See
Figure 2D.

DISCUSSION AND CONCLUSION

Previous studies have focused on adapting BERT to specific
biological tasks using the pre-train and fine-tune paradigm,
with the aim of applying this popular NLP approach to tasks
in genomics, phylogenetics and other areas of computational
biology.

However, BERT is not the only transformer-based language
model and it is important to choose the best model for a given
task. Our proposed framework MuLan-Methyl consists of five
transformer-based language models for identifying three types
of DNA methylation sites across several taxonomic lineages,
including both Eukaryota and Bacteria. With this work, we
extend the list of transformed-based language models that
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Figure 3. Interpretation of MuLan-Methyl by attention weights resulting from transformer self-attention mechanism. In (A)–(C), we use box-plot to show the
distribution of attention weights for the ten 6-mer of hightest average importance scores, for the combinations 6mA + A. thaliana, 5mC + C. euisetifolia and
5hmC + H. sapiens, respectively. In (D)–(F), we indicate the importance score for each position in the DNA sequences of length 41, obtained by merging 6-mer
fragments, for the same three combinations listed above, respectively. In (G)–(I), for each taxonomic rank of a lineage, we indicate the attention weight assigned
by MuLan-Methyl to each position of the sequence for generating the taxon of the given rank, for the same three combinations listed above, respectively.

have been successfully adapted to tasks involving biological
sequences.

Each sub-model in MuLan-Methyl is pre-trained and fine-
tuned on the training dataset, and they then collectively
predict methylation sites on an independent test dataset. The
performance of MuLan-Methyl was evaluated by multiple
metrics and in comparison with two existing approaches, and
the method showed very good performance.

Our study also indicates that models with enhanced
algorithms in the pre-training step, such as XLNET, and
models with fewer parameters and less memory consumption,
such as ALBERT, are more appropriate than BERT in
situations with limited storage and computational resources.

In contrast to other biological domain-adaption language
models, the custom corpus that we trained MuLan-Methyl on
contains multi-modal data, consisting of both DNA sequences
from iDNA-MS and taxonomy lineage in text format from the
NCBI and GTDB taxonomies. To the best of our knowledge,
MuLan-Methyl is the first language-model framework to take
taxonomy information into consideration.

This improves model accuracy and feature contribution
analysis. The DNA methylation motifs found by MuLan-
Methyl greatly benefited from the self-attention mechanism
of transformer structure. In addition, the attention weights
assigned to taxonomic lineage by DNA sequences help to
analyze the relationship between nucleotide sequences and
taxonomy lineage.

Previous approaches build a separate classifier for each
taxonomic lineage and each methylation-site type, giving rise
to 17 different classifiers, for the data used here. In contrast,
MuLan-Methyl considers taxonomic lineage as a feature and

so only gives rise to three classifiers, one for each type of
methylation-site.

In conclusion, we have proposed a framework that
integrates five popular NLP approaches to solve an important
biological problem. MuLan-Methyl is able to detect DNA
methylation sites reliably for DNA sequences from known
taxonomic lineages, with slightly better performance than
current state-of-the-art methods.

This study demonstrates that BERT is not the only choice
when one wants to adapt a transformer-based language model
to a specific domain, one should also consider its variants.
It also shows that integrating multiple language models can
offset the deficiencies of the individuals models, to some
extent, so as to obtain an improved ensemble prediction
performance.
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