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Abstract 

Motivation:  

CRISPR-Cas-Docker is a web server for in silico docking experiments with CRISPR RNAs (crRNAs) 

and Cas proteins. This web server aims at providing experimentalists with the optimal crRNA-Cas pair 

predicted computationally when prokaryotic genomes have multiple CRISPR arrays and Cas systems, as 

frequently observed in metagenomic data. CRISPR-Cas-Docker provides two methods to predict the 

optimal Cas protein given a particular crRN sequence: a structure-based method (in silico docking) and a 

sequence-based method (machine learning classification). For the structure-based method, users can 

either provide experimentally determined 3D structures of these macromolecules or use an integrated 

pipeline to generate 3D-predicted structures for in silico docking experiments.   

Results:  

CRISPR-Cas-Docker is an optimized and integrated platform that provides users with 1) 3D-predicted 

crRNA structures and AlphaFold-predicted Cas protein structures, 2) the top-10 docking models for a 

particular crRNA-Cas protein pair, and 3) machine learning-based classification of crRNA into its Cas 

system type. 

Availability and implementation: 

CRISPR-Cas-Docker is available as an open-source tool under the GNU General Public License v3.0 on 

GitHub. It is also available as a web server. 
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1. Introduction 

CRISPR-Cas is a prokaryotic adaptive immune system [1,2] that consists of two genetic components: (1) 

CRISPR arrays with CRISPR RNAs (crRNAs) encompassing short palindromic repeats and unique 

spacers from previous infections and (2) CRISPR-associated systems (Cas) which form a complex of 

proteins to cleave invading foreign genetic elements. CRISPR-Cas systems have been repurposed as 

genome-editing tools [3,4] and antimicrobials [5,6], with this biotechnological potential driving the 

scientific community to discover novel types of CRISPR-Cas systems [7–9].  

CRISPR arrays are assumed to be associated with Cas systems when they are co-located in 

prokaryotic genomes (usually within ±10,000 base pairs). However, metagenomic data from diverse 

environments have revealed that prokaryotic genomes often have multiple CRISPR arrays and Cas 

systems. Such complexity in genomic architecture can lead to suboptimal RNA-protein interactions 

between the crRNA-Cas protein complex in CRISPR-Cas-based genomic tools [10]. In a previous study, 

we predicted crRNAs that bind optimally to a particular Cas protein through in silico docking 

experiments, suggesting that such in silico experiments can be adopted as a preliminary approach to 

design stable CRISPR-based antimicrobials using the newly discovered Cas13 proteins [11].  

 Here, we present a web application named CRISPR-Cas-Docker that offers an optimized and 

integrated pipeline to conduct in silico docking experiments between a crRNA and a Cas protein (Fig. 

S1). By leveraging our expertise with RNA structure prediction, AlphaFold-based protein structure 

prediction, and in silico macromolecular docking, we aim at providing experimentalists with a practical 

and user-friendly bioinformatics tool that can suggest the most optimal crRNA-Cas protein pairs to be 

tested in vitro.  
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2. Implementation  

2.1 Predicting the 3D structures of crRNAs and Cas proteins 

In silico docking requires the availability of the 3D structures of biological macromolecules, which can be 

obtained through experimental techniques such as X-ray crystallography, NMR, and cryoelectron 

microscopy [12]. If experimentally determined structures are not available, these 3D structures can be 

estimated rapidly and accurately through (1) deep learning-based protein structure prediction programs 

such as AlphaFold [13,14] and (2) a combination of 2D and 3D RNA structure prediction programs 

[15,16]. Using the experimentally determined structures of Cas proteins, we verified that AlphaFold is 

able to achieve an adequate level of prediction accuracy for large effector proteins such as Cas13 (Table 

S1). We used AlphaFold to fold four Cas13 proteins with and without a template. The average (standard 

deviation) of the TM-score was 0.992 (0.001) and 0.817 (0.012), with and without a template, 

respectively. CRISPR-Cas-Docker has an integrated option to generate a 3D-predicted RNA structure and 

an AlphaFold-predicted protein structure for a crRNA sequence and a Cas protein sequence, respectively 

(Fig. 1a, b). 

 

2.2 In silico docking of crRNAs and Cas proteins 

In earlier work, we determined the best program to conduct in silico experiments between crRNAs and 

Cas proteins to be HDOCK [17], leading to the best RNA-protein docking and binding affinity results 

using an experimentally validated dataset [11]. CRISPR-Cas-Docker uses the template-free docking 

approach of HDOCK to generate the top-10 docking models for a given crRNA-Cas protein pair, with the 

docking score of each model calculated by statistical mechanics-based energy scoring functions [18]. 

Previously, we verified that a docking score is a strong indicator of the binding affinity between crRNA-

Cas protein complexes [11]. We compared the docking scores between all combinations of 

experimentally determined and computationally predicted crRNAs and Cas proteins (Fig. S2). According 
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to this performance study, AlphaFold-predicted proteins docked equally well or even better with the 

experimental crRNA and the 3D-predicted crRNA (Fig. 1c, d). From these results, we conclude that the 

effectiveness of docking is not affected by the use of predicted structures instead of experimental 

structures. The final step of CRISPR-Cas-Docker requires human expertise to identify the best in silico 

docking model from the generated top-10 docking models, using biological information such as the 

location of binding sites and the orientation of bound crRNA. 

 

2.3 Machine learning-based classification of crRNAs 

CRISPR-Cas-Docker includes support for machine learning-based classification of an input crRNA 

sequence into its associated Cas system type [7–9]. This feature is a sequence-based prediction of the 

optimal Cas protein for a particular crRNA sequence, which is an alternative method to the structure-

based prediction of optimal crRNA-Cas pairs. To learn the associations between CRISPR arrays and Cas 

systems, we first created a dataset of CRISPR arrays labeled with their co-localized Cas system type (Fig. 

S3-S7). To that end, we extracted the CRISPR-Cas systems from the CRISPRCasdb [19] and labeled the 

CRISPR arrays co-localized within ± 10,000 base pairs with their corresponding Cas system (Table S2). 

Next, on the curated dataset, we trained a supervised machine learning method that is known as K-Nearest 

Neighbors (KNN) [20]. Although KNN is one of the simplest classifiers in the area of machine learning, 

it has been used widely in the fields of gene and protein prediction, thanks to its interpretability, even 

when making use of complex data [21–24]. The classification analysis shows an overall prediction 

accuracy of 92.3%, confirming the ability of KNN to act as an accurate and efficient classifier of crRNAs 

into their associated Cas system type (Table S3, Figure S8). 
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4. Conclusion  
Designed for experimental biologists, CRISPR-Cas-Docker addresses the need to predict optimal crRNA-

Cas protein pairs in silico before conducting expensive and time-consuming experiments. As 

metagenomic data become widely available, this bioinformatics tool enables performing a rapid 

preliminary study to disentangle the complex associations between multiple CRISPR arrays and Cas 

systems in prokaryotic genomes. Currently, CRISPR-Cas-Docker produces 3D-predicted structures of 

crRNAs and Cas proteins, top-10 docking models, and interactive graphs to visualize the machine 

learning-based classification of an input crRNA into its Cas system type. As future prospects, we aim at 

integrating AlphaFold-Multimer as a protein prediction program, making it possible to have Cas proteins 

with multi-unit effectors as an input to CRISPR-Cas-Docker. 
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Data and Code Availability 
2D RNA structures and 3D RNA structures were predicted with ViennaRNA v.2.5.1 and RoseTTAFold 
v.2.0.0, respectively. In silico docking experiments were performed with HDOCK v.1.1.0. Protein 
structures were predicted with AlphaFold2, available under an open-source license at 
https://github.com/deepmind/alphafold. As protein structure similarity metrics, we used TM-align 
(https://zhanggroup.org/TM-align). 3-D structure visualizations were created with 3Dmol.js 
(https://3dmol.csb.pitt.edu/doc/tutorial-embeddable.html). For data analysis purposes, Python 3.8.13 
(https://www.python.org), NumPy v.1.23.4 (https://github.com/numpy/numpy), Seaborn v.0.12.0 
(https://github.com/mwaskom/seaborn), Matplotlib v.3.5.3 (https://github.com/matplotlib/matplotlib), and 
Pandas v.1.4.3 (https://github.com/pandas-dev/pandas) were used. 
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Fig. 1: CRISPR-Cas-Docker. 
(a) Workflow used by CRISPR-Cas-Docker. (b) Results page generated by CRISPR-Cas-Docker, 
showing the downloadable PDB files of an AlphaFold-predicted Cas protein structure, a 3D-predicted 
crRNA structure, and the top-10 docking models. (c) Performance of CRISPR-Cas-Docker, using 
individual boxplots to show the docking scores obtained for different Cas13 proteins. (d) Performance of 
CRISPR-Cas-Docker, showing the distribution of docking scores obtained for different types of Cas 
proteins with GTP and PP combined. According to the HDOCK server, a lower docking score indicates a 
better docking model. (GTP: Ground Truth Cas Protein; GTR: Ground Truth crRNA; PP: Predicted Cas 
Protein (AlphaFold); PR: Predicted crRNA (RoseTTAFold)). 
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