Abstract
The CRISPR/Cas9 platform holds promise for modifying fish traits of interest as a precise and versatile tool for genome manipulation. To reduce introgression of transgene and control reproduction, catfish species have been studied for upscaled disease resistance and intervening of reproduction to lower the potential environmental risks of introgression of escapees’ as transgenic animals. Taking advantage of the CRISPR/Cas9-mediated system, we succeeded in integrating the cathelicidin gene from an alligator (Alligator sinensis; As-Cath) into the target luteinizing hormone (LH) locus of channel catfish (Ictalurus punctatus) using two delivery systems assisted by double-stranded DNA (dsDNA) and single-stranded oligodeoxynucleotides (ssODNs), respectively. In this study, high knock-in (KI) efficiency (22.38%, 64/286) but low on-target was achieved using the ssODN strategy, whereas adopting a dsDNA as the donor template led to an efficient on-target KI (10.80%, 23/213). On-target KI of As-Cath was instrumental in establishing the LH knockout (LH−_As-Cath+) catfish line, which displayed heightened disease resistance and reduced fecundity compared to the wild-type sibling fish. Furthermore, implanting with HCG and LHRHa can restore the fecundity, spawnability and hatchability of the new transgenic fish line. Overall, we replaced the LH gene with an alligator cathelicidin transgene and then administered hormone therapy to gain complete reproductive control of disease-resistant transgenic catfish in an environmentally sound manner. This strategy not only effectively improves the consumer-valued traits, but also guards against genetic contamination. This is a breakthrough in aquaculture genetics to confine fish reproduction and prevent the establishment of transgenic or domestic genotypes in the natural environment.
Competing Interest Statement
The authors have declared no competing interest.