
Springer Nature 2021 LATEX template

Low dimensional criticality embedded in high

dimensional awake brain dynamics

Antonio J. Fontenele1, J. Samuel Sooter1, V. Kindler
Norman1, Shree Hari Gautam1 and Woodrow L. Shew1

1Department of Physics, University of Arkansas, Fayetteville,
72701, AR, USA.

Contributing authors: shew@uark.edu;

Abstract

Cerebral cortex has been hypothesized to operate close to a critical
phase transition. This hypothesis offers an explanation of the observed
complexity of brain dynamics and is important because of poten-
tial computational advantages near criticality. However, in the awake
state, when cortex most needs computation, experimental evidence
for criticality has been inconsistent, especially when considering high
precision measurements, i.e. spikes of many single neurons measured
with millisecond resolution. The inconsistency of previous reports casts
doubt on the possibility that awake cortex operates near criticality.
Here we show that discrepant previous reports of critical phenom-
ena in the brain may be reconciled by considering dimensionality
and dimensionality reduction of brain dynamics. Indeed, fundamental
physics of critical phenomena emphasizes the importance of coarse-
graining of observables, which is a type of dimensionality reduction.
Many detailed microscopic degrees of freedom must be excluded to
reveal universal macroscopic features of criticality. We show that coarse
graining over neurons and time is a type of dimensionality reduc-
tion which reveals low-dimensional critical dynamics in a prominent
subspace (first few principal components) of awake cortical dynamics.

Fundamental physics of critical phenomena may govern the complex dynamics
of neurons in cerebral cortex [1–3]. Experimental evidence supporting this
hypothesis has come from measurements of spatiotemporal brain activity well-
described by power-laws and multifaceted scaling laws predicted to occur at
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2 Critical subspace in awake cortex

criticality. The most compelling evidence, i.e. the highest quality power-laws
and scaling laws, has been found when investigating collective brain signals,
like local field potential (LFP) [4–9], wide field imaging [10, 11], and human
brain imaging [7, 12]. These collective signals represent an aggregate of the
underlying spike activity of many individual neurons. However, when spikes
recorded in awake animals have been analyzed directly, results have been less
clear - some studies report support for criticality [13–22] while others do not
[6, 13, 20, 23–25]. Considering that spikes are the fundamental information
carriers underlying brain function, the equivocal support for criticality at the
level of spike measurements has created skepticism and confusion surrounding
the hypothesis [6, 25]. Why is evidence for criticality clear in collective signals,
but unclear in spike data?

A possible answer to this question is offered by basic physics of critical phe-
nomena. Specifically, in non-living physical systems at criticality, it is necessary
to coarse-grain the system observables to get beyond the detailed micro-
scopic differences and reveal shared, universal principles. Such coarse-graining
is fundamental to both theoretical understanding (e.g. the renormalization
group) and experimental tests of these theories [26]. (Naively, one might
suggest that everything is scale-invariant at criticality and therefore coarse-
graining should not matter, but this is incorrect; at a sufficiently fine scale,
scale-invariance breaks down in real systems.) Thus, it stands to reason that
collective neural signals, like LFP and wide-field imaging, may reveal universal
aspects of critical dynamics more reliably because they provide a macroscopic
coarse-grained view of the microscopic detailed spikes; “collective” is syn-
onymous with “coarse-grained”. In this view, the inconsistency of previously
reported evidence for criticality based on spikes may result from inconsistent
or inadequate coarse-graining.

The plausibility of this idea is supported by a closer look at previous reports
based on spike measurements in cerebral cortex of awake animals. Considering
22 experiments, a comprehensive list at the time of writing this paper (to
our knowledge), 9 reported power-law avalanche statistics and the remaining
13 reported non-power-law statistics (Supplementary Table 1). The common
feature of the 9 positive reports was that they performed substantial temporal
coarse-graining; spike timing details at time scales below ∼10 ms were coarse-
grained away. This temporal coarse-graining was either a deliberate step in
the data analysis [13, 19] or was due to limited time resolution of experimental
measurements [14, 15, 17, 20–22]. The most compelling negative reports, i.e.
the worst power-laws, were based on analyses at the millisecond time scale,
with little temporal coarse-graining.

Another important point of view on the effects of coarse-graining comes
from many recent studies of spike activity measured in awake animals, which
have shown that the activity is quite high dimensional [27–29]. By performing
clever types of dimensionality reduction, specific subspaces have been revealed
to be associated with specific aspects of brain function [30–34]. Moreover, many
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subspaces appear to contain low amplitude fluctuations without a clear pur-
pose. Coarse-graining is also a type of dimsionality reduction, transforming
a high-dimensional detailed system down low-dimensional macroscopic vari-
ables, removing dimensions associated with microscopic details. Thus, if neural
systems operate near criticality, we should seek evidence for criticality in a
low-dimensional subspace and coarse-graining may be important to reveal this
subspace. This idea is consistent with a recent study showing that certain sub-
sets of neurons exhibited critical dynamics while other subsets of neurons in
the same neural circuit did not [22], as well as evidence that specific neurons
participate selectively in neuronal avalanches [35].

Here, we test two hypotheses: 1) criticality exists in a low-dimensional sub-
space, and 2) coarse-graining is essential to reveal the critical subspace. We
recorded cortical neural activity in awake mice and studied a computational
model. We confirmed our hypotheses showing that the critical subspace occu-
pies a very small fraction of the full dimensionality of awake brain dynamics
and that temporal coarse-graining is particularly important for revealing the
critical subspace. Our results suggest that traditionally used methods often
result in insufficient temporal coarse-graining, which conceals the critical sub-
space. As temporal coarse-graining is gradually increased, a low dimensional
subspace emerges with clear critical dynamics.

1 Critical subspace

We first address the hypothesis that scale-free fluctuations may reside in a
low dimensional subspace. We performed spike recordings of up to 247 units
in motor cortex of awake, behaving mice (Fig. 1a, 4 mice, 19 recordings, n=
104±43 single units, 44±18 multi units per recording, 44±9 minutes recording
duration, more details in methods). Our analysis of each recording begins with
generating an N × T spike count matrix (Fig. 1b, top), where N is the number
of neurons and T is the number of time bins (T = recording duration divided
by time bin duration ∆T ). The entry in the ith row and jth column is the
number of spikes fired by the ith unit during the jth time bin. We performed
principal component analysis on each spike count matrix, and found that the
activity is high dimensional, but much less than N dimensional; 45%± 0.05 of
principal components (PCs) were needed to explain 95% of variance (Fig. 1c).

Next, we performed avalanche analysis following previously developed
methods [19, 36, 37]. We created a 1-dimensional time series by summing spike
counts across all N neurons and defined each avalanche as a period when this
activity exceeds a threshold (Fig 1b, middle, see Methods). We found that
avalanche sizes and durations were power-law distributed (purple, Fig. 1d, h)
over a wide range of scales and the power-law exponents for size and duration
(τ and τT , respectively) were related according to the crackling noise scaling
law expected at criticality (Fig. 1i). Thus, we conclude that the awake spike
activity we observed here is in good agreement with predictions for a system
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Fig. 1 Low dimensional critical subspace. a Schematic of the head-fixed preparation.
The mouse is placed on top of a wheel, free to run, rest, groom, etc. High density recordings
were performed in motor cortex, using a Neuropixels 1.0 probe. b (Top) Example raster plot
for 208 units. (Middle) Spike count time series for entire population (∆T = 50ms). Dashed
line represents the avalanche threshold θ. (Bottom) Avalanche time series; each shaded event
represents one avalanche. c Cumulative variance of original activity explained by increasing
number of principal components. Dashed lines marks the number of PCs needed to explain
95% of the variance. d, h Distributions of avalanche size (S) and duration (T) for the
original data (purple), reconstructed data using the first five principal components (orange)
and removing the first five components (grey). e Same as in b, but using reconstructed data
based on the first five principal components. f Summed activity for reconstructed data based
on the exclusion of the first five principal components. g Power-law range for avalanche
size distributions as a function of PCs removed ascending/descending order (green/brown).
Dimension of critical subspace is defined as the number of PCs removed before power-law
range drops below 1.5 decades (dashed line). i, j Power-law scaling law relates size and
duration of spike avalanches for original (i) and reconstructed data (j). This relation does
not hold for the reconstructed data, after removing the first five components (inset). k
Histogram of critical subspace dimension for all 19 recording sessions.

operating at criticality. (This finding depends on the choice of time scale for
the time bins ∆T , which we will investigate further below.)

If these scale-free dynamics exist in a subspace then they might be robust
to removal of many PCs. Initially, we tested this on the example case in Fig. 1.
We generated a new N × T activity matrix, using only the first five PCs,
excluding the other 203 dimensions (Methods). We found that the population
spike count time series based on the reconstructed data was very similar to the
original Fig. 1e. Moreover, the avalanche statistics for this 5-dimensional recon-
struction remained in good agreement with predictions for criticality (orange,
Fig. 1d,h,j). In contrast, if we reconstructed the data using PCs 6-208, the
avalanche sizes and durations were not power-law distributed. Thus, for this
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example, we conclude that the critical dynamics are primarily contained within
the subspace defined by the first 5 PCs.

This example raises interesting questions. Is the dimensionality of this
“critical subspace” exactly 5; is it higher or lower? Does the critical sub-
space always exist within the first several PCs? To address these questions,
we repeated the avalanche analysis using low-dimensional reconstructed data,
but systematically varying the cutoff dimension from 1 to N. For each cutoff
dimension dc (dc = 5 in the example above) we performed avalanche anal-
ysis on two data sets; one reconstructed using PCs 1 through dc, the other
reconstructed using PCs dc + 1 through N. For each case, we quantified the
range of the avalanche size distribution that was well-fit by a power law. When
reconstructed using PCs 1-dc, the power-law range remained high, largely inde-
pendent of dc (Fig. 1g, brown). Consistent with the dc = 5 example above,
this suggests that the avalanche statistics are not impacted by the activity
in the dimensions defined by the high PCs. Indeed, when we reconstructed
the data using PCs dc through N, the power-law range dramatically dropped
when dc exceeded a relatively small number (Fig. 1g, green). Thus, the critical
subspace is highly dependent on the first few PCs. This observation suggests
a convenient and quantitative definition for the dimensionality of the critical
subspace - the number of PCs that can be removed (starting from PC 1) before
the power-law range drops below 1.5 decades. Using this definition, we found
that the critical subspace was rarely larger than 3 (10 at most, Fig. 1k). Thus,
we conclude that the critical subspace is always low dimensional and is always
spanned by the first few PCs.

2 Importance of coarse-graining

The activity in the critical subspace manifests as large amplitude fluctuations,
coordinated across many neurons. Previous studies suggest that the spatiotem-
poral structure of such population activity can depend on the time scale of
observation [13, 38–40]. Moreover, theory of critical phenomena suggests that
temporal coarse-graining, i.e. excluding details at the small time scales, may be
required to reveal universal properties of critical dynamics, as discussed above.
Therefore, we next sought to determine how the critical subspace depends on
the time scale of observation ∆T (for the results in Fig. 1, ∆T = 50 ms). In
many previous studies [6, 13, 24, 41], a common approach has been to set ∆T
to the average interspike interval for the entire population of recorded neurons,
following the approach pioneered by Beggs and Plenz (2003). We note, how-
ever, that this approach was originally developed for LFP events, not spikes.
For our recordings here, the average spike rate across neurons was about 3 Hz.
Thus, for a typical recording of 200 neurons, the interspike interval is about 1.5
ms. Obviously, this will be even smaller in cases with more recorded neurons.
Here we systematically investigated a range of ∆T between 1 ms and 500 ms.

First, since the critical subspace coincides with the first several PCs, we
quantified how the importance of these PCs depends on ∆T . We found that
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Fig. 2 Temporal coarse-graining reveals critical subspace. a, Total explained vari-
ance for the first five principal components is sensitive to temporal coarse-graining, sharply
rising for ∆T > 10 ms, indicating the emergence of a low-dimensional subspace. b, Fraction
of neurons ρ engaged with (loading > 0.1) at least one of the first five principal components
increases with ∆T . c, Similarity between the original summed population activity and that
reconstructed using the first five principal components increases with ∆T. d, Large power-
law range emerges near ∆T ∼ 10 ms for the original data and PCs 1-5, but not for PCs 6-N.
For all panels, solid lines represent the mean across all recordings and shaded areas repre-
sents standard error.

the variance explained by the first 5 PCs is relatively small for small ∆T ,
but rises sharply around ∆T ∼ 10 ms (Fig. 2a). Next we asked how many
neurons are involved in the first 5 PCs. In principle, it is possible that as
few as 5 neurons are fully responsible for the first 5 PCs. We measured the
fraction of neurons with strong engagement (loading > 0.1, Methods) with
at least one of the first five PCs. We found that, as we increased ∆T , the
fraction of neurons engaged with this low-dimensional subspace grows from
10% up to 30% (Fig. 2b); note that 30% is around 30 to 60 neurons for our
recordings. Thus, the importance of the first 5 PCs is hidden for small time
scales, and emerges only after temporal coarse-graining. In our initial example
with ∆T = 50 ms we saw that the population summed activity of the full
population was very similar to that reconstructed from PCs 1-5 (Fig. 1e).
Next, we asked how the similarity between these two signals depends on ∆T .
We found that they were not strongly correlated for small ∆T ; this correlation
sharply increased around ∆T ∼ 10 ms (Fig. 2c). Finally, we determined how
∆T impacts the avalanche analysis on the original population summed activity
and that based on PCs 1-5. We quantified the range of good power-law fit
(number of decades) for the avalanche size distribution; we interpret a larger
power-law range as better evidence for criticality. For both the full population
and the PC 1-5 subspace, we found that at small time scales evidence for
criticality is weak (power-law range is small) (Fig. 2d). The power-law range
rises around ∆T ∼ 10 ms. If we consider avalanches based on the PC 6-N
subspace, evidence for criticality is weak for all ∆T (Fig. 2d, grey). Taken
together, the results in Fig. 2 show that the critical subspace will be missed
if spike data are not sufficiently coarse-grained in time. The critical subspace
emerges for timescales above about 10 ms.

An additional aspect of avalanche analysis that relates to coarse-graining is
the choice of threshold used for defining avalanches (dashed line in Fig. 1b). A
high threshold excludes many spikes from avalanches and the spikes that are
excluded tend to be those that are not coordinated with the population. For
example, neurons that fire asynchronously at a high rate would contribute a
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Fig. 3 Parametric study of the avalanche activity. a, single animal parametric map of
power-law range of avalanche size distribution obtained for multiple thresholds (Percentile)
and time bin widths (∆T). b, group results for power-law range of avalanche size distribution
as a function of ∆T, each curve stands for a threshold value. c, same as in a for power-law
range of avalanche duration distribution. d, group results for power-law range of avalanche
duration distribution as a function of ∆T, each curve stands for a threshold value. e, same
as in a for crackling-noise scaling relation. f, group results for the crackling-noise scaling
relation as a function of ∆T, each curve stands for a threshold value

steady, below-threshold background level to the population sum, and therefore,
would not contribute to avalanches. Some previous studies have used a median
threshold [22, 37], some have used the 35th percentile [19, 20], and many have
used a zero threshold [6, 13, 18, 23–25, 41]. Our results in Fig. 1 and Fig. 2 are
based on an 6th percentile threshold. To better understand the impact of the
threshold together with temporal coarse-graining, we performed parametric
avalanche analysis for a wide range of thresholds and ∆T , systematically varied
from 0 to 60th percentile and from 1 ms and 500 ms, respectively. We found
that for small ∆T , there was no choice of threshold that resulted in power-
law avalanches (Fig. 3a-d). Above about ∆T ∼ 10 ms, the threshold with the
largest power-law range for avalanche size grew together with ∆T ; a larger
threshold was needed for larger ∆T to reveal critical dynamics (Fig. 3a-d). This
is consistent with previous work based on coarse-grained signals [7]. Moreover,
we found that distributions of avalanche sizes and durations with large power-
law range (Fig. 3a-d), as well as the crackling noise scaling law (Fig. 3e-f),
emerge together at the same ∆T where the low dimensional subspace emerges
Fig. 2. Thus, we conclude that the critical subspace in (Fig. 1) emerges only
for sufficient temporal coarse-graining and often requires a non-zero threshold.
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Fig. 4 Binary neuron model has one-dimensional critical subspace, matching
coarse-grained experiment a, Spike raster from a subset of neurons in the model. b,
Population sum time series is nearly identical to the PC1 time series, while remaining PCs
have very weak fluctuations. c,d, Avalanches based on the population sum (or just PC1)
have power-law distributed sizes and durations (magenta). Avalanches based on remaining
PCs are not power-law distributed (blue). Reverse temporal coarse-graining abolishes power-
law statistics, matching the experimental results with small ∆T (cyan).

3 Model of coarse-grained activity

How do these findings relate to computational models and theory of critical
dynamics? Here we offer an answer to this question that draws upon fun-
damental concepts of the renormalization group [26, 42]. According to the
renormalization group, simple models of critical phenomena are successful
at explaining macroscopic phenomena precisely because their simplifications
(compared to the real system or more complex models) exclude non-universal
details that differ from one system to another. Similarly, a simple binary
model of critical dynamics in neural systems has been successful at describ-
ing measurements of critical dynamics in macroscopic brain signals like LFP
[8, 9, 43, 44]. Here we show in Fig. 4, that a simple binary model is success-
ful at describing our spike recordings, but only after the experimental data
are temporally coarse-grained. The model included N=1000 binary, proba-
bilistic neurons with synaptic interactions tuned near criticality (Methods).
We performed PCA on the model dynamics and found that the model is low
dimensional; the first principal component alone is nearly identical to the
population sum (Fig 1b). This low dimensional fluctuation exhibits critical
dynamics, i.e. power-law distributed avalanche sizes and durations (Fig. 4c,d).
All PCs except PC1 are devoid of critical dynamics (Fig. 4b). Thus, the model
has a low-dimensional critical subspace like the experiments. However, the
model matches the experiments only if the experiments are temporally coarse
grained. For very small ∆T , the experimental data are high dimensional with
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no power-laws not matching the model. Thus, we interpret the simple model as
representing the temporally coarse-grained experiment. (Another clue which
supports this interpretation is that the spike rate of model neurons matches
that in the experiments only if we interpret one time step in the model as
approximately 10 to 100 ms, i.e. rather coarse-grained).

If the binary model should indeed be interpreted as a model of coarse
grained experimental data, then “reverse” coarse-graining the model data
should abolish the power-law avalanche statistics, and better match the
experiments with small ∆T . This turns out to be correct. We considered a
parsimonious reverse coarse-graining scheme for the model data, which adds
details at finer time scales without changing anything at coarse time scales.
Before reverse coarse-graining, the model spike times are discrete, with no
details at time resolutions finer than one time step. A spike that originally
occurred at time step t was randomly assigned a new timestamp from the
interval [t-1,t]. After such reverse coarse-graining, the model agrees well with
the experiment across time scales. It produces power-law avalanches at large
∆T , but not for small ∆T .

In conclusion, we have shown that critical dynamics reside in a prominent,
low-dimensional subspace of spike activity recorded from motor cortex in awake
mice. This critical subspace is revealed only after sufficient coarse-graining,
which may explain why some previous studies did not report critical dynam-
ics from awake spike data. Our empirical observations match well with simple
models, but only if we acknowledge that these models, by construction, repre-
sent the coarse grained experimental data, with non-universal details already
excluded. Additional interesting implications of our work arise when consid-
ering the other subspaces (those orthogonal to the critical subspace). These
subspaces seem to contain relatively asynchronous neural activity, compared
to the large amplitude correlated fluctuations in the critical subspace. Previous
work suggests that some aspects of cortical information processing are optimal
near criticality, while other aspects are better suited to a more asynchronous
regime [45–47]. Taken together with our results here, it may be that the com-
putations that benefit from criticality are performed in the critical subspace,
while other computations - those that benefit from an asynchronous regime -
are performed outside the critical subspace. In line with this possibility, one
recent study showed that subsets of neurons with critical dynamics are more
strongly correlated to behavior (e.g. run speed and whisking) compared to sub-
sets without critical dynamics [22]. Further studies are needed to explore these
potential functional implications of the critical subspace and other subspaces.
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4 Methods

4.1 Animals

All procedures followed the Guide for the Care and Use of Laboratory Ani-
mals of the National Institutes of Health and were approved by University
of Arkansas Institutional Animal Care and Use Committee (protocol 21022).
We studied adult male C57BL6/6J mice (Jackson Labs). After acclimatization
to handling, a small aluminum plate (0.5 g), was attached to the skull with
dental cement. Then, mice were trained for head fixation for 20 sessions, grad-
ually increasing in duration. At the time of recordings, the mice weighed ≈ 28
g and were 21-23 weeks old. The 1-2 days before the first recording for each
mouse, a craniotomy (≈ 2 mm diameter) was performed over right motor cor-
tex (Anterior-Posterior = 0 mm, Medial-Lateral = 1 mm). Each recording day
began with a brief period of isoflurane anesthesia to expose the craniotomy
and head fix the mouse. The mice were free to run, sit, groom, and walk for
the entire duration (45 minutes) of each recording. During recordings, after
inserting the electrode array, the craniotomy was covered with gel-foam pieces
soaked in sterile phosphate buffer solution.

4.2 Electrophysiology

The extracellular voltage was recorded using Neuropixels probes (NP version
1.0, IMEC) consisting of an electrode shank (width: 70 µm, length: 10 mm,
thickness: 100 µm) of 960 total sites laid out in a checkerboard pattern with
contacts at ≈18-µm site-to-site distances (16 µm (column), 20 µm (row)),
enabling up to 384 recording channels. On the recording day, following head
fixation, the Neuropixels probe was inserted to a tip-depth of approximately
1.2 mm, ensuring that the active recording sites spanned all cortical layers.
A Ag/AgCl pellet was used as ground, placed in the saline-soaked gel foam
covering the craniotomy. The ground pellet wire was soldered to the Neuropixel
midway along the ribbon cable. Electrophysiological data were collected (30
kHz) using SpikeGLX software. Spike sorting was performed using Kilosort 3.0
(https://github.com/MouseLand/Kilosort) and then manually curated using
phy (https://github.com/cortex-lab/phy) [48].

4.3 Data analysis

4.3.1 PCA

To generate results presented in Figs. 1 and 2, we performed principal com-
ponent analysis (PCA) in Python using the function decomposition.PCA
from package sklearn. Let Z be a spike count matrix with T rows (number of
time bins) and N columns (number of neurons). Then, PCA generatesV which
contains the eigenvectors of the covariance matrix of Z. V has N rows and N
columns (one column for each eigenvector, i.e. one column for each principal
component). We calculated % variance explained by a set of PCs as the sum
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of their corresponding eigenvalues of V (reported in Fig. 1c and Fig. 2a). To
reconstruct data based on a subset of PCs (e.g. PCs 1-K), we first define the
PCA projection matrix by B = ZV, which results in a T ×K matrix. Then
to reconstruct N dimensional data Ẑ, we multiply Ẑ = BVT = ZVVT .

4.3.2 Avalanche analysis

The first step in avalanche analysis was to create a spike count matrix Z; Ztj

is the number of spikes fired by unit j during time bin t. Next, the population
sum spike count time series X was created by summing spike counts over all
neurons at each time bin, Xt =

∑
j Ztj . The threshold θ used for avalanche

detection was defined as some percentile (0 to 60th were considered) of X.
By definition, an avalanche begins when X exceeds the threshold and ends
when X returns below threshold. The size S of an avalanche is defined as
S =

∑tf
ti
(Xt − θ), where the start and end times of the avalanche are ti and

tf , respectively. Avalanche duration is defined as T = tf − ti.
In order to assess whether avalanche sizes and durations were distributed

according to a power-law and to obtain power-law exponents and ranges, we
built on previously developed maximum likelihood methods [8, 22, 49, 50].
In brief, the fitting algorithm identifies the best fit truncated power-law that
meets a pre-defined goodness-of-fit criterion. There are three fitting parame-
ters: the minimum avalanche size xm, the maximum avalanche size xM , and
the power-law exponent τ . The following steps summarize the algorithm. First,
outliers were excluded. Second, events with size/duration less than xm and
larger than xM were excluded. Third, the maximum likelihood power-law expo-
nent was calculated. Fourth, we assessed the goodness-of-fit. We repeated these
four steps for all the possible pairs of xm and xM values, in the end, identifying
the largest power-law range that passed our goodness-of-fit criterion. We define
power-law range as the number of decades of power-law scaling log10

xM

xm
. We

note that this algorithm is independent of any choice of bins used to create
the PDF plots in the paper.

The primary improvement we made compared to our most recently pub-
lished methods [22] was to make our goodness-of-fit criterion less sensitive to
sample size (number of avalanches) and more computationally efficient. For a
given xm, xM , and τ , goodness-of-fit was quantified as follows. First, we created
a cumulative distribution function (CDF) of the real data (excluding samples
below xm or above xM ). Second, we define a theoretical CDF for a trun-
cated power-law with the same range and exponent: for both discrete variables

P (x ≤ s) =
∑s

x=xm
x−τ∑xM

x=xm x−τ and continuous variables P (x ≤ s) =
x−τ+1−x−τ+1

m

x−τ+1
M −x−τ+1

m
.

Third, we define a region delimited by upper and lower bounds defined as the
theoretical CDF +0.03 and -0.03, respectively. Fourth, we resample the real
CDF at 10 logarithmically spaced values per decade. Fifth, we calculated the
fraction F of resampled points in the CDF of the real data that fell within
±0.03 bounds of the theoretical CDF. F is our goodness-of-fit measure. F=1
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means that the entire range of the real data varies less than 3% from a per-
fect power-law. We sought the fit with largest power-law range that meets the
goodness-of-fit criterion F ≥ 0.85.

4.4 Computational model

The model consists of 1000 excitatory units. As discussed above, we interpret
each unit as a temporally coarse-grained neuron. The units are interconnected
randomly and sparsely (Erdos-Renyi, 90% of connections set to zero). A neuron
spikes at time step t with probability

Pi(t) = η +
∑
j

WijSj(t− 1)

where η = 0.003 is a baseline spiking probability, W is the connectivity matrix,
and

Sj(t) =

{
1 if the jth neuron spikes at time step t

0 otherwise

All non-zero entries of W are equal to the same constant. We tuned the model
close to criticality by multiplying W by a constant resulting in the magnitude
of the largest eigenvalue of W set to 0.99. For the avalanche analysis in Fig. 4,
we considered a random subsample of 150 units to match the typical number
of neurons in our experimental recordings. To implement “reverse” coarse-
graining, we assigned each spike a time chosen at random from the interval
[(t−1), t], where t is the time step at which the spike occurred. The result is a
two-column matrix; one column for spike times and the other for unit identities.
This data was analyzed in the same way as the spike-sorted experimental data.
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Supplementary information

Table S1. Discrepancies among previous reports of spike avalanches
in awake animals may be explained by insufficient temporal coarse-
graining. Tabulated details from previous experiments, limited to cases in
awake animals with single neuron resolution. White background color indi-
cates studies that reported support for criticality based on spike avalanches
distributed according to power-laws. Yellow background color indicates stud-
ies that reported evidence against criticaltiy, i.e. poor avalanche power laws.
Rows are ordered top to bottom according to the time bin duration ∆T of
avalanche analysis. The fact that the top rows (with one exception) reported
power-laws implicates the importance of temporal coarse-graining for reveal-
ing critical dynamics. Fontenele et al (2019) was marked orange because they
analyzed how avalanches change over time during long recordings and found
that the vast majority of time in the awake state was not in agreement with
scaling laws found at criticality. This summary also agrees with our finding
that avalanche threshold needs to be larger for larger ∆T to find criticality.
We note that the studies marked 0* in the threshold column are a special case.
They employed a type of deconvolution of Ca fluorescence signals to recover
spike probability. They chose a threshold in the deconvolution process that
resulted in maximum number of avalanches. This is difficult to compare with
the percentile threshold we studied here, but is similar to choosing a non-zero,
intermediate percentile. Finally, we note that in addition to the time scale ∆T ,
the spatial density of the recorded neurons also seems to be correlated with
whether avalanches were reported as power-laws or not (column labeled “high
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density”). This could also be an important factor. For example, the one case
that is not well explained by time bin duration (Hahn et al, 2017) was based
on low density measurements - typical distance between any pair of neurons
is more than 400 microns for Utah array recordings.
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