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Fig. 4 Binary neuron model has one-dimensional critical subspace, matching
coarse-grained experiment a, Spike raster from a subset of neurons in the model. b,
Population sum time series is nearly identical to the PC1 time series, while remaining PCs
have very weak 
uctuations. c,d, Avalanches based on the population sum (or just PC1)
have power-law distributed sizes and durations (magenta). Avalanches based on remaining
PCs are not power-law distributed (blue). Reverse temporal coarse-graining abolishes power-
law statistics, matching the experimental results with small � T (cyan).

3 Model of coarse-grained activity

How do these findings relate to computational models and theory of critical
dynamics? Here we offer an answer to this question that draws upon fun-
damental concepts of the renormalization group [26, 42]. According to the
renormalization group, simple models of critical phenomena are successful
at explaining macroscopic phenomena precisely because their simplifications
(compared to the real system or more complex models) exclude non-universal
details that differ from one system to another. Similarly, a simple binary
model of critical dynamics in neural systems has been successful at describ-
ing measurements of critical dynamics in macroscopic brain signals like LFP
[8, 9, 43, 44]. Here we show in Fig. 4, that a simple binary model is success-
ful at describing our spike recordings, but only after the experimental data
are temporally coarse-grained. The model included N=1000 binary, proba-
bilistic neurons with synaptic interactions tuned near criticality (Methods).
We performed PCA on the model dynamics and found that the model is low
dimensional; the first principal component alone is nearly identical to the
population sum (Fig 1b). This low dimensional fluctuation exhibits critical
dynamics, i.e. power-law distributed avalanche sizes and durations (Fig. 4c,d).
All PCs except PC1 are devoid of critical dynamics (Fig. 4b). Thus, the model
has a low-dimensional critical subspace like the experiments. However, the
model matches the experiments only if the experiments are temporally coarse
grained. For very small ∆T , the experimental data are high dimensional with
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no power-laws not matching the model. Thus, we interpret the simple model as
representing the temporally coarse-grained experiment. (Another clue which
supports this interpretation is that the spike rate of model neurons matches
that in the experiments only if we interpret one time step in the model as
approximately 10 to 100 ms, i.e. rather coarse-grained).

If the binary model should indeed be interpreted as a model of coarse
grained experimental data, then “reverse” coarse-graining the model data
should abolish the power-law avalanche statistics, and better match the
experiments with small ∆T . This turns out to be correct. We considered a
parsimonious reverse coarse-graining scheme for the model data, which adds
details at finer time scales without changing anything at coarse time scales.
Before reverse coarse-graining, the model spike times are discrete, with no
details at time resolutions finer than one time step. A spike that originally
occurred at time step t was randomly assigned a new timestamp from the
interval [t-1,t]. After such reverse coarse-graining, the model agrees well with
the experiment across time scales. It produces power-law avalanches at large
∆T , but not for small ∆T .

In conclusion, we have shown that critical dynamics reside in a prominent,
low-dimensional subspace of spike activity recorded from motor cortex in awake
mice. This critical subspace is revealed only after sufficient coarse-graining,
which may explain why some previous studies did not report critical dynam-
ics from awake spike data. Our empirical observations match well with simple
models, but only if we acknowledge that these models, by construction, repre-
sent the coarse grained experimental data, with non-universal details already
excluded. Additional interesting implications of our work arise when consid-
ering the other subspaces (those orthogonal to the critical subspace). These
subspaces seem to contain relatively asynchronous neural activity, compared
to the large amplitude correlated fluctuations in the critical subspace. Previous
work suggests that some aspects of cortical information processing are optimal
near criticality, while other aspects are better suited to a more asynchronous
regime [45–47]. Taken together with our results here, it may be that the com-
putations that benefit from criticality are performed in the critical subspace,
while other computations - those that benefit from an asynchronous regime -
are performed outside the critical subspace. In line with this possibility, one
recent study showed that subsets of neurons with critical dynamics are more
strongly correlated to behavior (e.g. run speed and whisking) compared to sub-
sets without critical dynamics [22]. Further studies are needed to explore these
potential functional implications of the critical subspace and other subspaces.
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4 Methods

4.1 Animals

All procedures followed the Guide for the Care and Use of Laboratory Ani-
mals of the National Institutes of Health and were approved by University
of Arkansas Institutional Animal Care and Use Committee (protocol 21022).
We studied adult male C57BL6/6J mice (Jackson Labs). After acclimatization
to handling, a small aluminum plate (0.5 g), was attached to the skull with
dental cement. Then, mice were trained for head fixation for 20 sessions, grad-
ually increasing in duration. At the time of recordings, the mice weighed ≈ 28
g and were 21-23 weeks old. The 1-2 days before the first recording for each
mouse, a craniotomy (≈ 2 mm diameter) was performed over right motor cor-
tex (Anterior-Posterior = 0 mm, Medial-Lateral = 1 mm). Each recording day
began with a brief period of isoflurane anesthesia to expose the craniotomy
and head fix the mouse. The mice were free to run, sit, groom, and walk for
the entire duration (45 minutes) of each recording. During recordings, after
inserting the electrode array, the craniotomy was covered with gel-foam pieces
soaked in sterile phosphate buffer solution.

4.2 Electrophysiology

The extracellular voltage was recorded using Neuropixels probes (NP version
1.0, IMEC) consisting of an electrode shank (width: 70 µm, length: 10 mm,
thickness: 100 µm) of 960 total sites laid out in a checkerboard pattern with
contacts at ≈18-µm site-to-site distances (16 µm (column), 20 µm (row)),
enabling up to 384 recording channels. On the recording day, following head
fixation, the Neuropixels probe was inserted to a tip-depth of approximately
1.2 mm, ensuring that the active recording sites spanned all cortical layers.
A Ag/AgCl pellet was used as ground, placed in the saline-soaked gel foam
covering the craniotomy. The ground pellet wire was soldered to the Neuropixel
midway along the ribbon cable. Electrophysiological data were collected (30
kHz) using SpikeGLX software. Spike sorting was performed using Kilosort 3.0
(https://github.com/MouseLand/Kilosort) and then manually curated using
phy (https://github.com/cortex-lab/phy) [48].

4.3 Data analysis

4.3.1 PCA

To generate results presented in Figs. 1 and 2, we performed principal com-
ponent analysis (PCA) in Python using the function decomposition.PCA
from package sklearn. Let Z be a spike count matrix with T rows (number of
time bins) and N columns (number of neurons). Then, PCA generatesV which
contains the eigenvectors of the covariance matrix of Z. V has N rows and N
columns (one column for each eigenvector, i.e. one column for each principal
component). We calculated % variance explained by a set of PCs as the sum
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of their corresponding eigenvalues of V (reported in Fig. 1c and Fig. 2a). To
reconstruct data based on a subset of PCs (e.g. PCs 1-K), we first define the
PCA projection matrix by B = ZV, which results in a T ×K matrix. Then
to reconstruct N dimensional data Ẑ, we multiply Ẑ = BVT = ZVVT .

4.3.2 Avalanche analysis

The first step in avalanche analysis was to create a spike count matrix Z; Ztj

is the number of spikes fired by unit j during time bin t. Next, the population
sum spike count time series X was created by summing spike counts over all
neurons at each time bin, Xt =

∑
j Ztj . The threshold θ used for avalanche

detection was defined as some percentile (0 to 60th were considered) of X.
By definition, an avalanche begins when X exceeds the threshold and ends
when X returns below threshold. The size S of an avalanche is defined as
S =

∑tf
ti
(Xt − θ), where the start and end times of the avalanche are ti and

tf , respectively. Avalanche duration is defined as T = tf − ti.
In order to assess whether avalanche sizes and durations were distributed

according to a power-law and to obtain power-law exponents and ranges, we
built on previously developed maximum likelihood methods [8, 22, 49, 50].
In brief, the fitting algorithm identifies the best fit truncated power-law that
meets a pre-defined goodness-of-fit criterion. There are three fitting parame-
ters: the minimum avalanche size xm, the maximum avalanche size xM , and
the power-law exponent τ . The following steps summarize the algorithm. First,
outliers were excluded. Second, events with size/duration less than xm and
larger than xM were excluded. Third, the maximum likelihood power-law expo-
nent was calculated. Fourth, we assessed the goodness-of-fit. We repeated these
four steps for all the possible pairs of xm and xM values, in the end, identifying
the largest power-law range that passed our goodness-of-fit criterion. We define
power-law range as the number of decades of power-law scaling log10

xM

xm
. We

note that this algorithm is independent of any choice of bins used to create
the PDF plots in the paper.

The primary improvement we made compared to our most recently pub-
lished methods [22] was to make our goodness-of-fit criterion less sensitive to
sample size (number of avalanches) and more computationally efficient. For a
given xm, xM , and τ , goodness-of-fit was quantified as follows. First, we created
a cumulative distribution function (CDF) of the real data (excluding samples
below xm or above xM ). Second, we define a theoretical CDF for a trun-
cated power-law with the same range and exponent: for both discrete variables

P (x ≤ s) =
∑s

x=xm
x−τ∑xM

x=xm x−τ and continuous variables P (x ≤ s) =
x−τ+1−x−τ+1

m

x−τ+1
M −x−τ+1

m
.

Third, we define a region delimited by upper and lower bounds defined as the
theoretical CDF +0.03 and -0.03, respectively. Fourth, we resample the real
CDF at 10 logarithmically spaced values per decade. Fifth, we calculated the
fraction F of resampled points in the CDF of the real data that fell within
±0.03 bounds of the theoretical CDF. F is our goodness-of-fit measure. F=1
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means that the entire range of the real data varies less than 3% from a per-
fect power-law. We sought the fit with largest power-law range that meets the
goodness-of-fit criterion F ≥ 0.85.

4.4 Computational model

The model consists of 1000 excitatory units. As discussed above, we interpret
each unit as a temporally coarse-grained neuron. The units are interconnected
randomly and sparsely (Erdos-Renyi, 90% of connections set to zero). A neuron
spikes at time step t with probability

Pi(t) = η +
∑
j

WijSj(t− 1)

where η = 0.003 is a baseline spiking probability, W is the connectivity matrix,
and

Sj(t) =

{
1 if the jth neuron spikes at time step t

0 otherwise

All non-zero entries of W are equal to the same constant. We tuned the model
close to criticality by multiplying W by a constant resulting in the magnitude
of the largest eigenvalue of W set to 0.99. For the avalanche analysis in Fig. 4,
we considered a random subsample of 150 units to match the typical number
of neurons in our experimental recordings. To implement “reverse” coarse-
graining, we assigned each spike a time chosen at random from the interval
[(t−1), t], where t is the time step at which the spike occurred. The result is a
two-column matrix; one column for spike times and the other for unit identities.
This data was analyzed in the same way as the spike-sorted experimental data.
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Supplementary information

Table S1. Discrepancies among previous reports of spike avalanches
in awake animals may be explained by insufficient temporal coarse-
graining. Tabulated details from previous experiments, limited to cases in
awake animals with single neuron resolution. White background color indi-
cates studies that reported support for criticality based on spike avalanches
distributed according to power-laws. Yellow background color indicates stud-
ies that reported evidence against criticaltiy, i.e. poor avalanche power laws.
Rows are ordered top to bottom according to the time bin duration ∆T of
avalanche analysis. The fact that the top rows (with one exception) reported
power-laws implicates the importance of temporal coarse-graining for reveal-
ing critical dynamics. Fontenele et al (2019) was marked orange because they
analyzed how avalanches change over time during long recordings and found
that the vast majority of time in the awake state was not in agreement with
scaling laws found at criticality. This summary also agrees with our finding
that avalanche threshold needs to be larger for larger ∆T to find criticality.
We note that the studies marked 0* in the threshold column are a special case.
They employed a type of deconvolution of Ca fluorescence signals to recover
spike probability. They chose a threshold in the deconvolution process that
resulted in maximum number of avalanches. This is difficult to compare with
the percentile threshold we studied here, but is similar to choosing a non-zero,
intermediate percentile. Finally, we note that in addition to the time scale ∆T ,
the spatial density of the recorded neurons also seems to be correlated with
whether avalanches were reported as power-laws or not (column labeled “high
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density”). This could also be an important factor. For example, the one case
that is not well explained by time bin duration (Hahn et al, 2017) was based
on low density measurements - typical distance between any pair of neurons
is more than 400 microns for Utah array recordings.
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