Abstract
We report on an Adaptive Optics (AO) Light-Sheet Fluorescence Microscope compatible with neuroimaging, based on direct wavefront sensing without the requirement of a guide star. We demonstrate fast AO correction, typically within 500ms, of in-depth aberrations of the live adult Drosophila brain, enabling to double the contrast when imaging with structural or calcium sensors. We quantify the gain in terms of image quality on multiply neuronal structures part of the sleep network in the Drosophila brain, at various depths, and discuss the optimization of key parameters driving AO such as the number of corrected modes and the photon budget. We present a first design of a compact AO add-on that is compatible with integration into most of reported Light-Sheet setups and neuroimaging.
Competing Interest Statement
F. Harms is employed by the company Imagine Optic and A. Hubert's doctoral research is funded by Imagine Optic. The other authors declare no competing interest.