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Abstract

The contrast sensitivity function (CSF) is a fundamental signature of the
visual system that has been measured extensively in several species. It is
defined by the visibility threshold for sinusoidal gratings at all spatial fre-
quencies. Here, we investigated the CSF in deep neural networks using the
same 2AFC contrast detection paradigm as in human psychophysics. We
examined 240 networks pretrained on several tasks. To obtain their corre-
sponding CSFs, we trained a linear classifier on top of the extracted features
from frozen pretrained networks. The linear classifier is exclusively trained
on a contrast discrimination task with natural images. It has to find which
of the two input images has higher contrast. The network’s CSF is mea-
sured by detecting which one of two images contains a sinusoidal grating
of varying orientation and spatial frequency. Our results demonstrate char-
acteristics of the human CSF are manifested in deep networks both in the
luminance channel (a band-limited inverted U-shaped function) and in the
chromatic channels (two low-pass functions of similar properties). The ex-
act shape of the networks’ CSF appears to be task-dependent. The human
CSF is better captured by networks trained on low-level visual tasks such as
image-denoising or autoencoding. However, human-like CSF also emerges in
mid- and high-level tasks such as edge detection and object recognition. Our
analysis shows that human-like CSF appears in all architectures but at dif-
ferent depths of processing, some at early layers, while others in intermediate
and final layers. Overall, these results suggest that (i) deep networks model
the human CSF faithfully, making them suitable candidates for applications
of image quality and compression, (ii) efficient/purposeful processing of the
natural world drives the CSF shape, and (iii) visual representation from all
levels of visual hierarchy contribute to the tuning curve of the CSF, in turn
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implying a function which we intuitively think of as modulated by low-level
visual features may arise as a consequence of pooling from a larger set of
neurons at all levels of the visual system.

Keywords: CSF, artificial neural networks, deep learning, contrast, visual
perception, visual features

1. Introduction

Normalising the input signals relative to the context plays a major
role during the transformation from sensation to perception (Carandini and
Heeger, 2012). In human visual perception, for example, our ability to per-
ceive a visual scene is determined by the relative contrast between the con-
stituent details. Contrast is broadly defined as the relative difference between
the foreground and background (Peli, 1990; Pelli and Bex, 2013). Our ability
to detect contrast is a primary step in biological image processing that even-
tually leads to functional behaviours, like object detection, scene recognition,
and semantic segmentation.

At a behavioural or systems level, one of the most fundamental signatures
of biological visual processing is the luminance contrast sensitivity function
(CSF) (Schade, 1956; Campbell and Robson, 1968). The CSF is based on
human contrast thresholds over a wide range of spatial frequencies. Their
results show that the luminance-CSF is a band-limited inverted U-shaped
function with lower sensitivity at high and low frequencies. Since then, nu-
merous other studies have consistently reproduced the human CSF, e.g., (Peli
et al., 1996; Hashemi et al., 2012; Kim and Kim, 2010), for review see (Gra-
ham, 1989). Another large body of work has examined the CSF across many
different species of animals obtaining the typical inverted U-shape function
with some shifts in the peak of spatial frequency according to the species’
visual system, e.g., (Harmening et al., 2009; Bisti and Maffei, 1974; De Val-
ois et al., 1974; Northmore and Dvorak, 1979; Hirsch, 1982; Reymond and
Wolfe, 1981; Hodos et al., 2002).

The CSF has been applied and extended in many ways. In clinical set-
tings, the CSF is used to test visual acuity, assess visual dysfunction, and
monitor ophthalmological treatments (Owsley, 2003). In computer vision,
the CSF has also been proposed as a tool to assess image quality (Wang
et al., 2004; Kim and Lee, 2017). Regarding chromatic contrast sensitivity,
chromatic-CSFs for both red-green and yellow-blue channels are low-pass
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functions with no attenuation even in the lowest producible spatial frequency
(Kelly, 1983; Mullen, 1985).

Campbell and Robson (1968) suggested that CSF arises because of the
presence of multiple channels in the visual system, each selective to a dif-
ferent band of spatial frequencies. Others have explained the low-frequency
fall-off solely by neural factors, such as the extent of lateral inhibition (Wan-
dell, 1995; Cornsweet, 1970), or specific properties of low-frequency chan-
nels (Graham, 1972), e.g., their relative insensitivity to low spatial frequency
channels. Barten (1999) proposed that a low-frequency fall-off is an approach
the visual system learns to efficiently use the signals’ dynamic range, given
the system’s physical capacity. The high-frequency drop is explained based
on a combination of physical constraints leading to optical degradation (e.g.,
ocular aberrations) and receptor cell spacing in the retina (Campbell and
Green, 1965; Cornsweet, 1970).

These explanations of CSF suggest early visual processes are the basis
of distinct visibility thresholds at different spatial frequencies; indeed, our
ability to process contrast begins with single neurons in the retina and lateral
geniculate nucleus excited most by light in the centre coinciding with dark in
the surroundings or vice versa (Kuffler, 1953; Hubel and Wiesel, 1961). In the
early visual cortex, neurons become sensitive to patterns of light that specify
changes in orientation, spatial frequency, motion, and colour (Hubel and
Wiesel, 2004) with highly localised responses strongly modulated by contrast;
such single neurons are thought to underlie the human CSF and to efficiently
code our environments (Atick et al., 1992; Atick and Redlich, 1992; Atick,
1992; Li et al., 2022; Gomez-Villa et al., 2020). Although there is no doubt
about the advantages of efficient visual processing (Geisler, 2008; Olshausen
and Field, 1996), it is unclear how other important evolutionary behaviours
(such as high-level visual tasks like object recognition) have affected the
emergence of CSF in biological systems.

Deep neural networks (DNNs) trained on the ImageNet dataset (Deng
et al., 2009) to classify images into one thousand categories exhibit several
characteristics of object processing in the ventral stream, e.g., (Bashivan
et al., 2019; Cadieu et al., 2014; Cichy et al., 2016; Eickenberg et al., 2017;
Akbarinia and Gil-Rodŕıguez, 2021; Flachot et al., 2022; Storrs et al., 2021;
de Vries et al., 2022). Similar to biological neurons, the artificial kernels at
the early level of these networks have Gabor-like receptive fields tuned to ori-
entation and spatial frequency; the kernels’ receptive field becomes larger in
deeper layers, representing progressively more complex visual patterns (e.g.,
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shapes, and objects), and predicts human brain responses from fMRI in area
IT, e.g., (Yamins et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014), for
review see (Lindsay, 2020). We take advantage of this striking resemblance
between the properties of artificial neurons in these networks and biology to
examine how filtering responses at different layers can serve as a proxy of
systems-level responses in humans towards contrast (See Section 3 Object
Recognition).

Object recognition is only one of many critical behavioural tasks for the
survival of biological organisms; thus, we also investigate the CSF of deep net-
works trained for other behavioural tasks (e.g., noise removal, edge detection,
scene segmentation, etc.) by studying the Taskonomy networks (an identical
architecture trained on the same set of images for different visual tasks). The
comparison across this set of networks, whose difference originates from the
optimisation of distinct loss functions according to task demand, allows us to
assess how task-dependent features shape the CSF of a visual system. Com-
plementary to the current explanations of human CSF that emerge due to
low-level features for efficient coding (Barlow et al., 1961), our results suggest
that human-like CSF appears at all hierarchical levels of visual representa-
tion. In addition, we show that networks trained on ecologically valid tasks
produce more human-like CSF than more artificial tasks.

2. Method

The CSF is typically measured with a 2AFC (two-alternative forced
choice) or 2IFC (two-interval forced choice) psychophysical paradigm which
presents humans with two stimuli. One stimulus contains a sinusoidal grat-
ing while the other is a uniform patch of zero contrast. Participants report
the image with the visible grating (left or right in Figure 1-a). The grating
contrast is adjusted by a staircase procedure and observer responses are then
used to estimate a participant’s performance at 75% correct. Sensitivity is
defined as the inverse of contrast.

For a neural network trained on a task like object recognition measuring
the CSF for this 2AFC task is impossible, as the neural network was specifi-
cally trained for another task. We can, however, use a linear classifier (Alain
and Bengio, 2017) to evaluate how well a neural network’s already evolved
features can learn to do the 2AFC contrast detection task. That is to say, the
framework to evaluate the CSF in deep networks consists of two steps. First,
a network is trained on an arbitrary visual task (e.g., object recognition).
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Figure 1: Example stimuli used in this study. a: sinusoidal gratings to measure CSF;
network report which image contains grating. b: natural objects to train contrast dis-
criminator linear classifier; network report which image has higher contrast. c: other
explored options to train the linear classifier.

We refer to such a network as a pretrained network. Second, features ex-
tracted from the pretrained network are input to a linear classifier trained for
the contrast discrimination 2AFC task. We refer to the trained linear classi-
fier as a contrast-discriminator. Thus, the aim is to compute the CSF for
the features learned by an artificial neural network performing a visual task,
i.e., the pretrained network. The contrast-discriminator is a way to assess
the CSF as we cannot directly ask the pretrained network which image has
higher contrast. Figure 2-a illustrates the schematic of this procedure; fea-
tures are extracted from a frozen pretrained network, and only the weights
of the linear classifier are optimised during the contrast-discrimination task.

2.1. Pretrained networks

We studied 70 different architectures. The majority of those are convo-
lutional neural networks (CNNs) (Krizhevsky et al., 2012). A few are vision
transformers (ViTs) (Vaswani et al., 2017). CNNs process the input image
by convolution kernels that slide along input features followed by non-linear
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Figure 2: a: The schematic flowchart of our framework. Features can be extracted from
any arbitrary pretrained network at any intermediate layer. As an example, using the
ResNet architecture in b, the frozen pretrained network can take on any of the area0–4
building blocks. In this study, we explored more than one hundred networks performing
several different tasks. b: The ResNet architecture. The building block of area1-4 is the
same only the number of times they repeat (Ni) can differ. In ResNet50, N1 = 3, N2 = 4,
N3 = 6, and N4 = 3.

rectification and downsampling operations. ViTs, on the other hand, divide
the input into a sequence of small patches (e.g., 16× 16) and computes rela-
tionships among these image regions. All architectures except AlexNet and
VGG incorporate skip connections similar to the biological brain in which
intermediary layers are skipped across or within areas (Thomson, 2010).

To investigate the CSF of networks’ internal representation, we extracted
features by a forward pass of an image (i.e., the pretrained weights are frozen
without updating them by a backward error propagation). To examine how
the CSF develops at different layers, we extracted features at different levels
of visual hierarchy. Figure 2-a depicts the feature extraction process from
the last layer of a network, which can also be applied to intermediate layers.

We examined the ResNet architecture (He et al., 2016) in greater detail
for two reasons: (i) the model’s depth is parametrically adjustable according
to the number of residual blocks, and (ii) the same architecture has been
employed as the backbone for several other tasks, e.g., semantic segmen-
tation (Chen et al., 2018), edge detection, denoising (Zamir et al., 2018),
or vision-language models (Radford et al., 2021). Given the availability of
many pretrained ResNet models (i.e., identical architecture with different
weights optimised for specific tasks), we can examine how the network’s task
modulates its CSF.
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The ResNet architecture consists of five areas (see Figure 2-b). The initial
input area (area0 ) is fixed by a convolutional layer of kernel size 7 × 7 and
a max pooling layer over a region of 3 × 3. The other four areas encompass
several residual blocks whose skip connections are modelled by summing the
input to the output. Within each area, the spatial resolution remains intact.
Across areas, the spatial resolution of the signal is reduced by a factor of two
as a result of step size in the convolution operation.

2.2. Contrast-discriminator linear classifier

We trained the contrast discriminator linear classifier exclusively with
images of real-world objects randomly placed/coloured on a uniform back-
ground of random luminance (see Figure 1-b). During the training, the
images are presented in the uint8 precision making with the maximum pos-
sible contrast 0.392% ( 1

255
). Images are multiplied by a Gaussian aperture to

smooth the transition from foreground to background. The training stimuli
consist of two images of random contrast in the range of [0, 1]. In half of
the samples, the image contrast was modulated equally in all three RGB
channels; in the other half, we modulated only the contrast of one channel
(R, G, B). The rationale is to mimic real-world scenarios where sometimes
the contrast of all photoreceptors is simultaneously affected, and sometimes
only one photoreceptor. Nevertheless, we also explored two other versions in
which (i) always all RGB channels were equally modified or (ii) always only
one channel was modified. The pattern of results remains very similar.

In another set of experiments, we trained the linear classifier with nat-
ural images from the ImageNet dataset (Deng et al., 2009), a large visual
database spanning over 1000 object categories. We also explored the option
of removing the Gaussian aperture (Figure 1-c). The patterns of results re-
mained almost identical in both cases. Overall, the linear classifier, as we
will discuss more in-depth later, does not impact the obtained results. It is
merely a tool to interpret the features of a pretrained network.

Figure 2-a depicts the schematic of our framework. We input the pre-
trained network with one image and extract its features from a specific layer
(this procedure is also known as readouts). The extracted features are vec-
torised irrespective of the spatial resolution of the feature map. We repeat
the same procedure for the second image. We concatenate in random order
the extracted features for the low- and high-contrast images into a single
vector, which serves as input to a linear classifier. The network performs a
2AFC task to identify which image has higher contrast. We trained the linear
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classifiers in PyTorch with identical settings (e.g., the same weight initial-
isation and an identical random seed) across all training instances1. Input
images are colour (RGB) images of size 224 × 224 augmented with random
horizontal flips and cropping. The linear classifier is trained on a single GPU
with a batch size of 32 for ten epochs of 15K samples (i.e., 150K iterations).
We used the stochastic gradient descent (SGD) optimiser and updated the
weights of the linear classifier by computing the binary cross-entropy loss.
Within this process, the weights of the pretrained network are frozen(i.e.,
not updated).

2.3. Measuring the CSF

We opted for the contrast detection task similar to the ModelFest dataset
(Carney et al., 1999), aiming to measure the networks’ contrast sensitivity
function (CSF) as closely as possible to human psychophysics. Figure 1-
a presents example stimuli from three trials. Each trial consisted of two
intervals, where one interval showed an image with a non-zero contrast mod-
ulated sinusoidal gratings, and the other showed an image of the uniform grey
background of 0% contrast. During the testing, the images are presented in
floating precision to assess the full sensitivity of a network. The image sizes
were 224× 224 pixels. The network’s task was to select the interval with the
grating. The sinusoidal grating contrast was adjusted with a staircase pro-
cedure until the network reached 75% correct - the same threshold typically
assumed in human experiments.

We compute the network’s accuracy across sixteen conditions: four ori-
entations (0, 45, 90 and 135◦), two phases (0 and 180) and two image orders
(first or second corresponding to left or right images in Figure 1-a). An image
of size 224 × 224 allows for exact spatial frequencies of [1, 2, 4, 7, 8, 14, 16,
28, 32, 56, 112] cycles per image (cpi). We chose these exact settings to avoid
any artefacts in test images. For instance, other spatial frequencies cannot be
exactly produced (if they are not divisible to 224). Similarly, other orienta-
tions need interpolation across different pixels and are therefore avoided. We
generated the luminance-gratings by modulating all RGB channels with
the same contrast level, which is numerically identical to modulating only
the luminance channel of a colour-opponent space such as DKL.

1All the experimental materials including the source code and weights of the exam-
ined networks are available on our project page https://arashakbarinia.github.io/

projects/deepcsf/
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Chromatic-gratings: The networks’ input is in the RGB colour space
(given that the pretrained networks were trained with RGB images). To
avoid artefacts caused by converting to RGB, we relied on the YPbPr colour
space instead of a biologically plausible colour space like DKL, where contrast
reduction in one channel of DKL causes different levels of contrast modulation
in the RGB channels (See, for example, Figure A.1 in appendices). The
contrast modulation we performed in the YPbPr results in sinusoidal gratings
of identical waves with different phases for the R- and G- and B-channels
(Mullen, 1985).

2.4. Comparison to human CSF

Assumption: In an image of size 224 × 224, the maximum spatial fre-
quency we can generate is 112 cpi and the minimum 1. The human fovea
spans over two visual degrees with a 60 cycles/deg resolution. To compare
the results of networks to human data, we assumed the networks’ field of view
is equivalent to the entire fovea of the human visual system (2◦). Therefore,
we assumed one cycle/image is equivalent to half a cycle/deg.

We quantitatively compare the networks’ luminance-CSF to the human
data from (Campbell and Robson, 1968) and the chromatic-CSF to the data
from (Mullen, 1985) using the Pearson correlation coefficient. We used a
model of a double exponential function to obtain the human luminance-CSF
(Uhlrich et al., 1981) that has also been reported a good fit to the CSF
of other animals (Harmening et al., 2009). Correlation measures naturally
ignore the amplitude of the CSF and evaluate only the shape of the function.

We also actively analyse networks CSF graphically to prevent the effect of
outliers and influential data points on the correlation coefficient (Anscombe,
1973). To do this, the network’s CSF is normalised (divided) by the maxi-
mum sensitivity of the network across three channels (luminance, red-green,
yellow-blue), which only brings the maximum amplitude to one while keeping
the ratio across channels intact.

3. Object recognition

ImageNet pretrained networks have been extensively compared to human
vision (Bashivan et al., 2019; Cadieu et al., 2014; Cichy et al., 2016; Eick-
enberg et al., 2017; Khaligh-Razavi and Kriegeskorte, 2014; Storrs et al.,
2021; Yamins et al., 2014; Zeman et al., 2020). Thus, we first explored the
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CSF of several networks (available from the PyTorch framework2) that have
been trained on the ImageNet (Deng et al., 2009) dataset to perform object
classification across 1000 categories.

3.1. Classification layer

The last layer of an ImageNet pretrained network (also known as the clas-
sification layer) is of identical size for all architectures (i.e., a vector of length
1000), which facilitates a straightforward comparison across networks’ clas-
sification feature space. We extracted features from the classification layer
of 126 networks (from 63 architectures) and trained a contrast-discriminator
linear classifier on top of each (see Figure 2). Some networks’ CSF is highly
non-systematic (e.g., ConvNeXt; Figure 3-a). Some networks capture the
human chromatic-CSF very well, but their luminance-CSF does not resem-
ble the human CSF (e.g., ViT-L32, rrg = 0.96 and ryb = 0.98). Another
group only obtains a human-like luminance-CSF (e.g., RegNet, r = 0.92 in
luminance channel). A few other networks resemble both chromatic- and
luminance-CSF of humans (e.g., ResNet50, rµ = 0.84 across three channels).
The average CSF (i.e., the CSF obtained by averaging the sensitivity of all
individual instances) resembles the human CSF both qualitatively (inverted-
U shape function in the luminance channel, and two low-pass filters of similar
properties in chromatic channels) and quantitatively (rµ = 0.69 across three
channels). The entire distribution of correlations to the human CSF for indi-
vidual networks and one instance of each of the 63 ImageNet architectures are
reported in Figure 3-c–d, respectively. Overall, there is a large discrepancy
between the CSF across networks with varied architectures.

We examined whether there is a relationship between the degree of sim-
ilarity to the human CSF and the networks’ accuracy in the pretrained
tasks (i.e., object recognition), or the networks’ performance when image
contrast is reduced (Geirhos et al., 2018; Akbarinia and Gil-Rodriguez,
2020), but we found no correlation (luminance: r = 0, p = 0.97; red-green:
r = 0.18, p = 0.3; yellow-blue: r = 0.04, p = 0.8). Neither the depth of
the network nor its number of units explains the degree of similarity to
the human CSF. Furthermore, within the same family of architecture, some
networks might obtain human-like CSF while others do not. For instance,
VGG11/16/19 exhibit human-like luminance-CSF but not VGG13, similarly

2https://pytorch.org/vision/stable/models.html
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Figure 3: a: The CSF of four ImageNet pretrained networks by reading out features from
the final layer (i.e, fc, object classification layer). b: The correlation to the human CSF. c:
The distribution of correlation to the human CSF for 126 networks (from 63 architectures).
The box extends from the first to third quartile values of the data, with an orange line
at the median. d: The correlation of 63 ImageNet pretrained networks to human CSF
sorted by the correlation to the luminance CSF. Grey bars indicate the luminance-CSF,
and green and blue bars are the chromatic-CSF (red-green and yellow-blue, respectively).
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the CSF of ResNet18/50/101 in all three channels corresponds very well to
the human CSF, but this is not the case for ResNet34. Two hypotheses can
be behind these discrepancies. First, human-like CSF in object recognition
networks only emerges as a result of some particular evolution of features
during the training procedure. Second, human-like CSF might appear in dif-
ferent layers, not necessarily in the final layer. While these two hypotheses
are not mutually exclusive, we will show evidence for the latter hypothesis
in the next section.

It is important to emphasise that we did not introduce any constraints
on these networks to obtain human-like CSF. It emerges as a consequence of
training the contrast-discriminator with features that are required for suc-
cessful object recognition in natural images. The average results across all
instances suggest similarities to human CSF: (i) the networks’ luminance-
CSF is band-pass with a peak of its sensitivity matching the peak of hu-
man CSF, (ii) the networks’ chromatic-CSF is low-pass whose sensitivity
steadily attenuates as a function of spatial frequency, and (iii) the amplitude
of the networks’ luminance-CSF is larger than its chromatic-CSF. Neverthe-
less, there are also differences between human and networks’ CSF: (i) the
human luminance-CSF drops sharply to zero in high-SFs, while the average
CSF of networks never drops to zero in the highest spatial frequency, (ii) the
human chromatic-CSF drops sharply to zero in high-SFs, while the average
CSF of networks never drops to zero in the highest spatial frequency, (ii)
the human chromatic-CSF drops sharply to zero in mid-SFs, and (iii) the
amplitude ratio between luminance- and chromatic-CSF is larger in humans.

Furthermore, the absolute sensitivity (1/threshold) in networks is consid-
erably larger than in humans, which is in the range of 100 − 200 depending
on the luminance or chromatic gratings. The maximum amplitude for net-
works is 20K (luminance), 5.2K (red-green) and 8.8K (yellow-blue), and the
median sensitivity is 582 (luminance), 275 (red-green) and 261 (yellow-blue).
The lowest value of the random contrast in our training is 0.4%. If this factor
limited the network’s feature space, the maximum sensitivity would be about
255. However, it seems networks become hyper-sensitive at test time (with
images of floating points) perhaps by pooling across pixels.

3.2. Internal representation

Next, we took a subset of these networks that obtained the lowest and
highest correlations to the human CSF, covering both CNN and ViT architec-
ture (i.e., ResNet50, VGG16, ViT-B32, RegNet, ConvNeXt, and ViT-L32)
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and analysed their internal representation to reveal which layers have features
that produce the shape of CSF. Figure 4 (and B.1 in appendices) report the
CSF of these networks at five intermediate depths and the last classification
layer (fc). We matched the intermediate layers across networks by select-
ing these layers at similar depths (however, as the networks have different
architectures, there is no exact match). A human-like CSF emerges in all
networks, with ResNet50 best capturing the CSF across its areas. In addi-
tion to a high correlation to the human CSF (r ≥ 0.89 in all three channels),
qualitatively, the ResNet50’s CSF shows a clear preference for some subbands
(the CSF shape is less noisy) even in areas where the CSF is unlike humans
(e.g., area0 ). The peak of its luminance-CSF (in area3–4 ) lies precisely on
the peak of human luminance-CSF and its sensitivity attenuates almost com-
pletely to zero in high spatial frequencies. The peak of its chromatic-CSF
(in fc) is at the lowest spatial frequencies and its sensitivity drops to zero at
the same pace as the human chromatic-CSF.

Interestingly, we also observe a striking difference across architectures in
the depth of feature space (shallow, intermediate or deep layers) that explains
the human CSF best:

1. While human-like luminance-CSF appears in intermediate layers of
ResNet50 (i.e., area2–4, r = 0.90), the chromatic-CSF is more a late
representation (e.g., the fc layer, rrg = 0.97 and ryb = 0.89), especially
the yellow-blue channel. All channels jointly considered the fc layer
best captured the human CSF.

2. While human-like luminance-CSF (r = 0.81) is a late representation
in VGG16 (i.e., feature30 and fc), the chromatic-CSF appears in in-
termediate layers, red-green in feature23 (r = 0.83) and yellow-blue in
feature16 (r = 0.69).

3. In ViT-B32, human-like CSF is better captured in chromatic channels,
particularly as an early representation (i.e., block1, rrg = 0.97 and
ryb = 0.88). The luminance-CSF is relatively stable across all early
to intermediate layers (r = 0.72) and it drops notably in the fc layer
(r = 0.31).

Thus, the human-like CSF appears in shallow, intermediate, or deep layers
across varying neural network architectures. Given the dimensionality of the
feature space differs across layers and architectures (both in terms of the
spatial resolution and the number of kernels/units), the spatial resolution of
the internal representation cannot explain the results, in line with previous
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Figure 4: a: The CSF of three ImageNet pretrained networks and Random-ResNet50
trained only on the contrast discrimination task. b: The correlation to the human CSF.
Cells are colour-coded, blue indicates a higher correlation and red is lower. c: The average
correlation coefficients across CSF of ten instances.
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works on CSF of deep networks (Li et al., 2022). The activation maps for
ResNet50 and VGG16 contain about the same number of pixels, and the
feature space of Vit-B32 is always a two-dimensional vector of the same
number of elements. This finding suggests the CSF is not necessarily a
result of low-level feature tuning, and mid- and high-level features might
well contribute to its shape.

3.3. Control experiments

To evaluate the importance of task-dependent features (from the pre-
trained network) versus the contrast-discriminator linear classifier in pro-
ducing the CSF, we conducted a control experiment whereby we addition-
ally trained a linear classifier on top of a ResNet50 with random weights
(Random-ResNet50 ). If the linear classifier was the underlying cause of the
networks’ CSF, we should also expect to obtain human-like CSF in this sce-
nario. However, the CSF of the Random-ResNet50 does not match the global
shape or peak sensitivity of the human CSF (see Figure 4). Qualitatively,
the luminance-CSF of Random-ResNet50 tends more towards a high-pass
filter and its chromatic-CSFs do not show a large difference between the
maximum and minimum sensitivities (i.e., resembling a flat sensitivity at all
spatial frequencies). This dissimilarity is not due to the Random-ResNet50 ’s
poor performance, as its classification accuracy in the training stage is on
par with pretrained networks. These results suggest that the emerging CSF
in pretrained networks are driven by a set of features that have been learnt
during the pretrained task (i.e., object classification).

To examine the reliability of the pretrained features, we trained ten
instances of the contrast-discriminator linear classifier on top of the same
pretrained network. We computed the correlation between the CSF of ten
instances using the leave-one-out cross-validation methodology. Figure 4-c
reports the average correlation coefficients for four networks at six different
layers. The obtained CSFs for ImageNet pretrained networks correlate highly
among ten instances of linear classifiers suggesting a similar global shape of
the CSF irrespective of the contrast-discriminator. The main difference is the
amplitude of sensitivity that probably originates from the random contrast
modulation of training images given all other factors are identical across in-
stances, e.g., the frozen pretrained features and the weight initialisation of
the linear classifier. Hence, it seems that instances with higher amplitude
must have seen lower contrast images more frequently during their training
leading to a more sensitive linear classifier.
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In addition, we can observe that the correlation of CSFs is very low across
ten instances of Random-ResNet50 except in area0. The main difference
among CSFs of Random-ResNet50 is not the amplitude of sensitivity but
rather the shape of the function, suggesting that unstable pretrained features
allow the linear classifier to learn to do the task using different features.

We also investigated the impact of the linear classifier type. We trained
six instances of a linear support vector machine (SVM) instead of a linear
neural network (NN) on the output of ImageNet pretrained ResNet50. The
SVM expects all inputs together instead of in small batches. Consequently,
the memory of our hardware allowed us to input the SVM only with 1K
samples (as opposed to 150K of NN). Nevertheless, the patterns of resulting
CSFs across all areas remained very similar. The correlation coefficient be-
tween ten instances of NN and six instances of SVM is 0.76 (averaged across
all layers and channels). The correlation is noticeably higher (r = 0.85) if we
exclude the fc layer that requires more training samples due to its small fea-
ture size (a vector of 1000 elements, i.e., more than two orders of magnitudes
smaller than all other areas).

Based on the above-conducted experiments, we can conclude the features
of the pretrained networks establish the CSF of the pretrained network, not
the linear classifier.

4. Visual tasks

In the previous section, we demonstrated that the human-like CSF ap-
pears in ImageNet pretrained networks that perform object recognition. In
this section, we examine how the network’s task shapes its CSF using the
Taskonomy dataset (Zamir et al., 2018), which contains about four million
images (mainly indoor scenes from 2265 different buildings) and their corre-
sponding labels for 25 computer vision tasks. The dataset also provides pre-
trained networks with an encoder-decoder architecture for all visual tasks3.
The encoder is the same across all pretrained networks (i.e., ResNet50), which
maps the input image (224 × 224) into a latent representation of size 1568
(14 × 14 × 8). The decoder design varies according to the dimensionality of
the task output. The encoder offers a unique opportunity to study the role of
visual tasks on the representation a network learns, given its architecture is

3https://github.com/alexsax/midlevel-reps/
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identical across tasks and has been trained on the same set of images. Similar
to ImageNet pretrained networks, we trained a linear classifier on top of the
encoder’s extracted features from each Taskonomy pretrained network.

Figure 5-a shows the correlation coefficient between the human CSF and
the Taskonomy pretrained networks across several layers. In area0 many
tasks tend to be negatively or weakly correlated to the human-like CSF.
All tasks show very similar CSFs in area0 (r = 0.95 across tasks, note the
small standard error in Figure 5-b), whereas the CSF of other areas across
tasks are weakly correlated (on average about 0.37, note the large standard
errors in Figure 5-b). For several tasks, the networks’ CSF does not relate
in the slightest to the human CSF (e.g., the pretrained networks on the
vanishing point and egomotion tasks). This is not because these tasks are
meaningless. In fact, both tasks are of great importance in importance in
computer vision algorithms; vanishing point provides insights into the scene
geometry by predicting the point on the perspective image plane where par-
allel lines converge, and egomotion defines the camera’s motion relative to
the rigid scene. The dissimilarity of their CSF to the human CSF is rather
because the features tuned to these tasks do not exhibit a strong preference
for a specific spatial frequency or they are sensitive to spatial frequencies
that humans are not.

Generally, the networks’ luminance-CSF correlates higher with human
data (see Figure 5-b). Averaged across all tasks and areas, the correlation
between networks and human CSF is 0.38 for the luminance channel and 0.15
for both chromatic channels. The single-task nature of these networks might
explain this difference. An alternative explanation might be the convolution
of the RGB channels in the networks’ first layer that collapses the three
channels into a single stream of processing, which is unlike the human visual
system that processes the chromatic channels in parallel up until the primary
visual cortex. While there is a variation across tasks, generally, we observe
that early to intermediate features better match the luminance-CSF (peaking
at area1 ), and deeper features best explain the chromatic-CSFs (peaking at
encoder).

4.1. Low-level tasks

Figure 6 illustrates the CSF of two Taskonomy pretrained networks
trained on denoising and autoencoding. We consider these low-level because
their goal has little direct relevance to real-world behaviours (i.e., they can
be considered as a common preprocessing task for all visual tasks). The
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Figure 5: The results of Taskonomoy pretrained networks. a: The correlation of all
Taskonomy pretrained networks to human CSF sorted by the correlation to the luminance
CSF. Grey bars indicate the luminance-CSF, and green and blue bars are the chromatic-
CSF (red-green and yellow-blue, respectively). b: The distribution of the correlation to
human CSF for Taskonomoy networks. The box extends from the first to third quartile
values of the data, with an orange line at the median. The vertical lines represent the
most extreme, non-outlier data points.
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autoencoding network is optimised to find a low-dimensional latent represen-
tation of the input space, and the denoising network is optimised to obtain
similar representations for similar inputs irrespective of the perturbation in
the input. The denoising and autoencoding pretrained networks faithfully
capture the human CSF in both luminance and chromatic channels (i.e.,
above 0.90 average correlation in area2 ). These findings match well previous
reports explaining the relevance of low-level vision tasks in the emergence of
human-like CSF (Li et al., 2022).

Features of other areas in denoising and autoencoding networks also
match the shape of human CSF, for instance, the area3 of both networks
or area1 in the denoising network. This is at odds with Li et al. (2022)
that reported human-like CSF only emerges in shallow CNNs optimised on
similar tasks, and deeper CNNs fail to obtain human-like CSF although they
reach the quantitative goal better than shallower networks. Our results sug-
gest deeper networks of denoising and autoencoding also capture the human
CSF. Nevertheless, there is a small discrepancy in comparison to the human
CSF. We often observe that the amplitude of chromatic-CSF is larger than
the luminance-CSF in these two networks.

4.2. Mid-level tasks

While low-level tasks such as denoising and autoencoding best match the
human CSF for both luminance and chromatic channels, several networks
pretrained on mid-level visual tasks explain the luminance-CSF, see Figure 5-
a; e.g., edge texture (extracting 2D edges of objects), curvature (measuring
the surface bends in three directions), keypoints2d (detecting complex pat-
terns that are invariant across multiple images such as corners and junctions),
normal (estimating the surface normal in 3D), point matching (classifying if
centres of two images match or not), etc. These mid-level tasks are also
thought to underlie biological vision, e.g., edge detection (Marr, 1982), cur-
vature processing (Yue et al., 2014), and corner detection (Tang et al., 2018).
This co-occurrence suggests that mid-level features play an important role
in shaping our CSF. Interestingly, the chromatic-CSF of all these mid-level
tasks disagrees strongly with the human CSF. These results suggest that
mid-level features significantly shape the luminance-CSF while playing little
role in the chromatic-CSF.

In addition to the final goal of a task, the approach a system takes to
solve that task impacts its corresponding features, and thus the resulting
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Figure 6: a: The CSF of two Taskonomoy pretrained networks. b: The correlation to the
human CSF.

CSF. Formulating it in Marr’s levels of information-processing, the com-
putational level influences the representation a system learns (Marr, 1982).
This is noticeable in the depth estimation task for which two pretrained
networks are available (depth euclidean and depth zbuffer). The Euclidean
depth measures the distance from each pixel to the camera’s optical cen-
tre, whereas the Z-buffer depth measures the distance to the camera plane.
Humans typically estimate depth using the Euclidean distance, whereas com-
puter vision and computer graphics applications compute the Z-buffer depth
(Zamir et al., 2018). Interestingly, human-like luminance-CSF only emerges
in the pretrained network of depth euclidean and not the depth zbuffer, sug-
gesting that deep networks trained on biologically plausible tasks are more
representative of human visual behaviour (Neri, 2022).

4.3. High-level tasks

Human-like CSF also appears in Taskonomy pretrained networks per-
forming high-level visual tasks (see Figure 5-a) such as scene segmenta-
tion and object classification, e.g., segment semantic (pixel-wise semantic
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labelling by distillation knowledge from COCO networks), segment unsub25d
(unsupervised segmentation based on RGB-D-Normals-Curvature features),
and class object (object recognition by distillation knowledge from ImageNet
networks). The ImageNet experiment suggested that human-like CSF can
emerge in different depths of visual processing depending on the network’s
architecture (Figure 4). The Taskonomy experiments imply a similar phe-
nomenon for different high-level tasks. For instance, the highest correla-
tion to human CSF is obtained in area4 of segment semantic, area2 of seg-
ment unsub25d, and encoder of class object network.

We compared the segmentation versus classification task more thoroughly
by training ten instances on the contrast-discriminator linear classifier on top
of the Taskonomy pretrained networks. The results suggest that human-like
CSF appears more regularly in the segmentation networks, and typically they
better match the human CSF (i.e., averaged across all layers and channels
rsegmentation − rclassification > 0.30).

Given, however, that the high-level Taskonomy tasks are trained to match
ground truth labels derived automatically from state-of-the-art deep net-
works rather than human observers, the networks for the high-level Taskon-
omy tasks may show atypical features for segmentation and classification.
Therefore, we decided to compare the semantic segmentation networks from
the COCO dataset (Lin et al., 2014) to the ImageNet object recognition (i.e.,
humans have labelled the ground truth for both datasets).

We evaluated four pretrained semantic segmentation networks
(DeepLab50, DeepLab101, FCN50, FCN101) that label each pixel of
an image into twenty categories. DeepLab (Chen et al., 2018) and FCN
(Shelhamer et al., 2017) encode the input images with a ResNet archi-
tecture (50 or 101, respectively), followed by a decoder that generates
the segmentation maps. To facilitate a direct comparison to ImageNet
networks, we trained the contrast-discriminator linear classifier on top of the
encoder features. Figure 7 reports the CSF of COCO pretrained networks
averaged over four instances. These results match those of Taskonomy
networks suggesting segmentation tasks better capture the human CSF
in comparison to classification tasks (i.e., averaged across all layers and
channels rsegmentation− rclassification > 0.10). The underlying representational
difference between these two seemingly similar tasks might be originated
from the spatial resolution of networks’ output space, in which the seg-
mentation is pixel-wise while classification is a single label for the entire
image.
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Figure 7: a: The CSF of semantic segmentation networks pretrained on the COCO dataset
(averaged over DeepLab50, DeepLab101, FCN50, and FCN101). b: The correlation to the
human CSF.

4.4. Structure of tasks

We calculated the correlations of the CSFs among all the pairs of vi-
sual tasks and used that as a similarity matrix to analyse the structure of
the tasks. Figure 8 shows the correlation between a pair of network CSF
averaged over five intermediate layers (area0 is excluded given its high de-
gree of correlation across all visual tasks). We clustered them using the
UPGMA, unweighted pair group method with arithmetic mean, hierarchi-
cal clustering method (Müllner, 2013). In the luminance channel, we can
observe three clusters. (1) The human CSF is clustered with a number of
pretrained Taskonomy networks from different levels of visual tasks, low (e.g.,
denoising and autoencoding), mid (e.g., jigsaw and edge texture) and high
(e.g., segment unsup2d). (2) A small group of tasks (e.g., nonfixated pose,
egomotion and class scene) have the peak of their CSF in high spatial fre-
quencies. (3) Many tasks (e.g., room layout, curvature, depth euclidean, etc.)
have the peak of their CSFs in middle spatial frequencies, therefore partially
correlating to both other groups.

This analysis reiterates that a system’s approach to solving a task im-
pacts its corresponding features. For instance, class scene and class object
are conceptually very similar tasks. They both predict the category of the
input image among a predefined set of classes. Interestingly, the CSF of
class scene peaks at higher spatial frequencies, while the peak of the sensi-
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Figure 8: Hierarchical clustering of networks according to their degree of similarity in
luminance- (top) and chromatic-CSFs (bottom). The coefficients are averaged over all
areas excluding area0 where all networks are highly correlated.
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tivity for class object is at a lower spatial frequency, therefore better matching
the human CSF. Intuitively, to solve the task of scene classification a given
visual system has to rely on a collection of a finer set of features to distinguish
between, for example, a picture of a living room and an office. Contrary to
that, to solve the task of object classification a given visual system has to rely
on a coarser set of features (e.g., the global shape of an object) to distinguish
between, for example, a picture of a television and a sofa.

In the chromatic channels, we can also discuss the obtained clusters within
three major groups. (1) The human CSF is grouped with four tasks, namely,
denoising, autoencoding, inpainting and segment semantic. (2) A large set of
tasks are clustered together mainly because their chromatic-CSF is relatively
flat (e.g., normal, depth zbuffer, curvature, point matching, etc.), essentially
their chromatic tuning is not strongly influenced by the spatial frequency. (3)
The third group (segment unsup2d, edge texture, egomotion and keypoints2d)
shows more a broad-band chromatic-CSF with a peak at middle spatial fre-
quencies.

5. Vision-language networks

Recently vision-language models like CLIP (Contrastive Language-Image
Pretraining) have achieved tremendous success in zero-shot learning and as
the backbone for image-generating networks. Therefore, we extended our
investigation of CSF in deep networks to two versions of the vision-language
models, CLIP ViT-B32 and CLIP ResNet50 (Radford et al., 2021). Both
models have a transformer text encoder and an image encoder (i.e., modi-
fied versions of ViT-B32 and ResNet50, respectively) that are jointly opti-
mised to predict the correct pairings of a batch of image text. We trained
a contrast-discriminator linear classifier on top of features extracted from
their image encoder that are the same architectures for ImageNet pretrained
networks. Figure 9 illustrates the corresponding CSFs averaged over ten in-
stances (the average instance inter-correlation is 0.85 for CLIP ViT-B32 and
0.75 for CLIP ResNet50. The results suggest that human-like CSF appears
in several layers of CLIP ViT-B32. While the luminance-CSF is best cap-
tured in intermediate to deep layers (r = 0.92), human-like chromatic-CSF
emerges more in early to intermediate layers (r = 0.94). Contrary to this,
in CLIP ResNet50 human-like CSF only appears in the luminance channel
of two intermediate layers (with a lower correlation r = 0.71). It was previ-
ously reported that CLIP ViT-B32 scores closely to humans across several
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Figure 9: a: The CSF of CLIP vision-language models with two different image encoders.
b: The correlation to the human CSF.

psychophysical experiments, specifically in error consistency (Geirhos et al.,
2021), which is in agreement with our findings of CSF in this network. While
they do not report the results of CLIP ResNet50, it can be argued that error
consistency of CLIP ViT-B32 to human data cannot be explained merely
by the task/loss/dataset, otherwise, CLIP ResNet50 should have obtained
more human-like CSFs.

6. Discussion

The contrast sensitivity function (CSF) measures the visibility thresh-
old of sinusoidal gratings as a function of spatial frequency. We measured
the CSF of deep neural networks using the same paradigm as human psy-
chophysics. The CSF of many pretrained networks exhibited the character-
istics of the human CSF, a band-pass inverted-U shape function in the lu-
minance channel, and two low-pass filters of similar properties in chromatic
channels. This finding suggests the relative significance of spatial frequencies
in static images is alike in the human visual system and DNNs that perform
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meaningful visual tasks. Contrary to previous works that have attributed
the shape of human CSF mainly to low-level explanations (Graham, 1972;
Wandell, 1995; Atick, 1992; Li et al., 2022; Gomez-Villa et al., 2020) like
the centre-surround mechanism of ganglion cells, our results hint toward the
contribution of features from all levels of visual hierarchy to the tuning shape
of DNNs’ CSF.

ImageNet experiments show that human-like CSF can appear at distinct
depths of visual processing depending on the network’s architecture (i.e.,
early, intermediate and deep layers in different architectures capture the hu-
man luminance- and chromatic-CSFs). While the exact internal represen-
tation of these object recognition networks is not fully known, they share
common properties in their hierarchy of visual processing, such as kernels
in earlier layers responding to oriented bars, intermediate layers to textu-
ral patterns, and deeper layers to object parts (Lindsay, 2020). Therefore,
the emergence of human-like CSF at several depths of different architectures
suggests the underlying representation driving the shape of human CSF is
not merely limited to low-level visual features. The Taskonomy experiments
strengthen this observation by demonstrating that human-like CSF can ap-
pear in pretrained networks of an identical architecture optimised for several
tasks with different levels of visual abstraction. Furthermore, the exact area
best capturing the human CSF in Taskonomoy pretrained networks does not
indicate a bias towards low-level features. For instance, the human CSF is
captured best by area2 of denoising (i.e., an intermediate layer of a low-
level task network) and the area4 of segment semantic (i.e., a deep layer of
a high-level task network). If low-level visual features modulated the CSF,
we would expect an inverse pattern of results for the segmentation network,
i.e., human-like CSF would appear more in earlier layers of a segmentation
network that presumably represent low-level visual features.

While the examined networks matched well the shape of human CSF,
they differ in their absolute sensitivity in two aspects, (i) the magnitude of
the contrast sensitivity is substantially larger in deep networks, and (ii) the
relative difference of magnitude between the luminance and chromatic chan-
nels is moderately larger in humans. Several factors influence the absolute
sensitivity of a system. The sensitivity of the sensory system (photorecep-
tors) is the starting point. A system input with a single pixel in the RGB
space maximally obtains a 255 sensitivity magnitude (uint8 precision). The
examined networks are input with RGB images, but their architecture space
is floating precision. Thus, although the kernels operating on the input pixels
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are exposed maximally to 0.392% ( 1
255

) contrast, the upstream kernels have
access to a higher contrast precision in the internal feature space. A theo-
retical kernel with a discrimination power on the entire spatial resolution of
input across all three channels has access to a 38M (224 × 224 × 3 × 255)
granularity contrast. This line of thinking can potentially explain the hyper-
sensitivity of the studied networks. Nevertheless, the maximum sensitivity
we observed in the Taskonomy pretrained networks was a more moderate fig-
ure (52K) occurring in the first layer of ResNet50 (area0 ), and the maximum
sensitivity in other areas is about 20K with an average value (500) that is
not far away from the human sensitivity.

The absolute sensitivity of a system essentially refers to its accuracy (i.e.,
it is defined as the inverse of the contrast in the psychometric function where
the accuracy is 75%). Therefore, networks with higher sensitivities are more
accurate at test time (i.e., input with sinusoidal gratings). We investigated
whether these networks also obtain higher accuracy in natural images (i.e.,
the contrast discrimination training). Nevertheless, we did not find any re-
lationship between the training time accuracy and the network’s sensitivity,
suggesting that the hypersensitivity of some networks originates from their
internal representation irrespective of their CSF shape.

The human contrast sensitivity is lower in both chromatic channels in
comparison to the luminance one when expressed in RGB space. We see a
similar phenomenon in deep networks whose luminance sensitivity is higher
but with a smaller absolute difference in the chromatic channels. The low sen-
sitivity of the yellow-blue channel in the human visual system is explained
by the lack of short photoreceptors in the fovea (Stromeyer et al., 1978;
Williams and Collier, 1983). Nevertheless, the same reasoning falls short
in explaining the red-green sensitivity threshold. Therefore, photoreceptors
alone cannot explain the difference in amplitude of chromatic- and luminance-
CSFs. Furthermore, the mosaic distribution of RGB photoreceptors in dig-
ital cameras is vastly different from the distribution of cone photoreceptors
in the human retina (Ramanath and Snyder, 2003), therefore, the similar-
ity in their chromatic-CSFs, i.e., no attenuation in low spatial frequencies
(Mullen, 1985), must originate from some other visual features common to
both systems.

Among several interesting questions that one can wonder about is the
phenomenon of noise. The efficiency of signal discrimination in the human
visual system is often defined as a function of stimuli noise (Burgess et al.,
1981). Consequently, many studies comparing the discrimination threshold
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of DNNs to humans introduce noise to the network’s input signal (Srivas-
tava et al., 2022) arguing that in noise-free settings even a naive system can
perfectly discriminate between stimuli’ presence (e.g., our positive contrast si-
nusoidal gratings) and absence (e.g., our zero contrast uniform background).
Indeed, in our experiments, the activation map of networks is always zero
when the stimuli contrast is zero. Effectively, a rudimentary system compar-
ing the average of absolute intensities can perfectly discriminate between the
two stimuli up to the precision of floating points irrespective of the spatial
frequency. In other words, the CSF of such a system would be a perfectly
flat horizontal line. Nevertheless, the linear classifiers trained with natural
images to identify the image with higher contrast cannot pick on this clue, as
a result, the networks’ CSFs are never flat, demonstrating the inherent bias
of pretrained networks for different spatial frequencies. It is worth noting
that the human CSF is also measured with noise-free stimuli.

6.1. Extended CSF

Here, we extensively analysed the role of the network’s architecture and
task on its contrast sensitivity function in static images. Yet another fun-
damental factor is the environment in which a visual system inhabits. The
networks we examined were trained on datasets of natural images captured
with commercial cameras (i.e., ImageNet, COCO, Taskonomy, CLIP). A sys-
tematic change of the training dataset for the pretrained task can answer how
the environment shapes the system’s CSF. For instance, would training the
same architecture and task (e.g., ResNet50 on object recognition) on aerial
images results in a CSF whose peak lies on high spatial frequencies in line
with the CSF of many large birds of prey like Falcon and Eagle (Hirsch,
1982)? Our preliminary results on filtered images of ImageNet support this
hypothesis (Akbarinia et al., 2021).

The CSF of biological systems also depends on other factors, like the
temporal frequency (Kelly, 1979), luminance level (Wuerger et al., 2020),
and the interaction between them (Dı́ez-Ajenjo and Capilla, 2010). Inter-
esting questions remain on how such spatiotemporal-chromatic settings un-
derlie more human-like CSFs in deep networks, where previous work hints
that spatiotemporal aspects emerge in convolutional autoencoders perform-
ing low-level visual tasks of retinal noise and optical blur removal (Li et al.,
2022).

Last but not least, one of the biggest challenges in neuroscience is un-
derstanding how single-neuron responses pool with other neurons yielding
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systems-level behavioural responses. Hence, it would be interesting to inves-
tigate how the response of individual kernels to stimulus contrast mediates
the network’s CSF. Two ways of achieving this may be by (1) lesioning one
kernel at a time and measuring the network’s CSF, and (2) computing the
CSF of individual kernels by recording their activation to stimuli that vary
in their contrast. These experiments would explain how the features at each
kernel/layer/block influence the shape of CSF and its underlying mechanism.

7. Conclusion

Our work demonstrates that one can systematically conduct psychophys-
ical experiments with artificial neural networks. We used a linear classifier
to probe the internal representation of several pretrained networks spanning
tasks and architectures. We validated the reliability of this approach in three
control experiments and by showing a high degree of similarity across many
instances. The instrumental linear classifier we used is not limited to measur-
ing the contrast sensitivity function of a network, and it can be used for other
psychophysics aiming to achieve a more direct comparison between artificial
and biological systems (Bowers et al., 2022).

The pretrained networks exhibiting a human-like CSF are physically very
distinct from the biological visual systems. In Marr’s terminology, the im-
plementation level in artificial kernels and biological neurons differs substan-
tially. Therefore, the similarity in the CSF of these two systems originates
from the problem they try to solve (e.g., making sense of visual information).
We observed in the Taskonomy experiments that task demand is crucial in
the emergence of human-like CSF. While all Taskonomy pretrained networks
are optimised to a meaningful visual task (with the same set of images), only
a subset of those (mainly ecologically plausible tasks) turn out to closely
match the human CSF. Similarly, biological vision selects and processes cer-
tain visual stimuli while ignoring others by allocating its limited resources to
appropriately meet the demands of a particular task (Barlow et al., 1961).
Thus, given that the spatial frequency information most important for several
of these single-task networks coincides with those most sensitive to human
observers, we suggest that the exact shape of our CSF is tuned to accommo-
date the needs of multiple tasks it must perform in the physical world.
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Appendix A Chromatic-gratings

Figure A.1 visualises this issue with an example of a 50% red-green con-
trast, which yields about 100% contrast in the R-channel, about 10% in the
G-channel and 1% in the B-channel. Contrary to this, contrast modulation
in the YPbPr colour space results in sinusoidal gratings of identical waves
with different phases for the R- and G-channels (Mullen, 1985). Addition-
ally, in the case of high-contrast gratings, the transformation from DKL to
RGB might go beyond the RGB gamut. While this is practically not an
issue for our purpose (we are dealing with very low-contrast stimuli), this
problem does not exist for YPbPr as the coefficients of RGB channels are
±1. Altogether, we report the YPbPr results in this manuscript to avoid any
undesired artefacts. Nonetheless, we have also evaluated all our networks in
the DKL, reaching an almost identical pattern of results (materials available
on our GitHub https://github.com/ArashAkbarinia/DeepCSF).

Appendix B ImageNet pretrained networks

Figure B.1 reports the CSF of three architectures at six different lay-
ers. We chose these three architectures because they are the extrema of
the ImageNet pretrained networks (i.e., RegNet obtained the most human-
like luminance-CSF among ImageNet pretrained networks, ConvNeXt the
worst and ViT-L32 the best chromatic-CSF), refer to Section 3.2 of the main
text for more information about the networks’ internal representation. Here,
also we observe considerable differences among architectures. While RegNet
luminance-CSF greatly resembles the human CSF in the deepest layer (i.e.,
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Figure A.1: The RGB Profile of a sinusoidal grating of 50% red-green contrast.

fc, r = 0.94, the object classification feature space), its chromatic-CSF is less
similar to the human’s, and more importantly, it only appears in the shal-
lowest layer (stem, rrg = 0.79 and rrg = 0.59). Although ConvNeXt-Tiny
captures the human CSF for the luminance channel in the layer feature7
(r = 0.67) and the yellow-blue channel in feature2 (r = 0.83), its CSF in
the reg-green chromatic channel correlates only slightly to the human CSF
(r = 0.30). Nevertheless, there is a high chance that other internal lay-
ers, whose CSF we did not compute, obtain higher correlations. ViT-L32
(a vision transformer architecture) obtains human-like chromatic-CSF in its
earliest and deepest layers (block1 and fc, r ≥ 0.93) and luminance-CSF to
a lower degree in its intermediate layers (block13, r = 0.58).
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Figure B.1: a: The CSF of three ImageNet pretrained networks averaged across ten
instances. b: The correlation to the human CSF. Cells are colour-coded, blue indicates a
higher correlation and red is lower. c: The average correlation coefficients across CSF of
ten instances.
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