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There is increasing interest in artificially selecting or breeding1

microbial communities, but experiments have reported mod-2

est success and it remains unclear how to best design such a3

selection experiment. Here, we develop computational models4

to simulate two previously known selection methods and com-5

pare them to a new “disassembly” method that we have devel-6

oped. Our method relies on repeatedly competing different com-7

munities of known species combinations against one another,8

and sometimes changing the species combinations. Our ap-9

proach significantly outperformed previous methods that could10

not maintain enough between-community diversity for selection11

to act on. Instead, the disassembly method allowed many species12

combinations to be explored throughout a single selection ex-13

periment. Nevertheless, selection at the community level in our14

simulations did not counteract selection at the individual level.15

Species in our model can mutate, and we found that they evolved16

to invest less into community function and more into growth.17

Increased growth compensated for reduced investment, how-18

ever, and overall community performance was barely affected19

by within-species evolution. Our work provides important in-20

sights that will help design community selection experiments.21
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Introduction23

Humans have been breeding plants and animals for centuries24

by allowing individuals with the most desirable traits to se-25

lectively produce offspring. Also known as “artificial selec-26

tion” or “directed evolution”, breeding has altered traits such27

as the size of fruits or the enzymatic activity of proteins used28

in biotechnology (1). More recently, we have started to ap-29

preciate that microbes — often multi-species communities of30

microbes — play an important role for health and the envi-31

ronment. One way to improve or optimize the functions and32

services that these microbes provide is to select for their traits33

in the same way as traditional breeding.34

However, breeding microbial communities is less straightfor-35

ward than individual organisms (2, 3), mainly because the36

breeder selects whole groups of organisms rather than indi-37

vidual plants, animals or proteins. According to evolutionary38

theory, group-level selection suffers from reduced heritabil-39

ity, one of the main requirements for evolution by natural se-40

lection (4). The problem arises when a single community-41

level “generation”, which we will call a “round of selec-42

tion” to avoid confusion, can comprise several generations43

of cells, each belonging to different genotypes (i.e. species44

and strains), (Fig. 1A). Since the genotypes all reproduce at45

varying rates, their relative abundances can change during46

one round of community growth and over subsequent rounds.47

Because community traits depend on the traits of all of its ge-48

netically distinct constituent members and their proportions,49

an “offspring” community may not resemble its “parent” (4–50

6). Another issue with group-level selection is that within-51

and between-species selection continue to operate within a52

round. If there are trade-offs between growth and contribu-53

tion to the community trait, cheaters that contribute less can54

emerge and sweep to fixation (2, 7). A third challenge is to55

find a good constellation of different community members56

and their proportions that can best achieve the desired func-57

tion. Generating different constellations of member species58

at each round of selection is also important to have enough59

variability for selection to act on (4). The major challenges60

for community-level selection then, are (i) ensuring that com-61

munity functions are heritable, (ii) that within-community62

selection does not dominate over between-community selec-63

tion, and (iii) ensuring variability, that communities differ in64

phenotype.65

In the earliest community breeding experiments, Swenson et66

al. selected microbial communities to yield plants with high67

and low biomass and to control pH (8). In two out of three68

experiments, the communities selected for high vs. low func-69

tion differed significantly from each other, but were not sig-70

nificantly different from the starting communities. The re-71

sults were also noisy and inconsistent across experimental72

systems (8, 9). Many attempts have been made since, aim-73

ing to optimize several microbial community traits, includ-74
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ing increased microbial biomass production (10), the stim-75

ulation of various plant properties (10–15), chitin degrada-76

tion (16), the stimulation of fruit fly development (17), to re-77

duce wastewater CO2 emissions (18), and to hydrolyze starch78

(19). Some of these studies have managed to significantly im-79

prove the average community function over several rounds80

of selection, but sometimes only as an effect of time with-81

out any significant differences between selection treatments82

(8, 16, 17). Overall, community breeding experiments have83

shown mixed success (3, 20), but computer simulations have84

provided some clues on how to improve them (5, 6, 21–23).85

All previous experiments have followed one of two methods86

to propagate the communities with the highest scores to the87

next round: in the “propagule” selection method (PS), a frac-88

tion of the cells in the highest-scoring communities are se-89

lected and transferred by dilution (Fig. 1B), while in “mi-90

grant pool” selection (MS), all populations of the selected91

communities are mixed in a pool before they are diluted in92

equal proportions to the new tubes (Fig. 1C). While both93

selection methods have achieved some success, they suffer94

from a rapid decrease in between-community variability (24),95

such that selection has little to act on. Intuitively, the loss of96

variability arises firstly because only a fraction of commu-97

nity members are selected and replicated for the next round.98

Second, species composition can only change through loss99

of members when the communities are diluted, meaning that100

the communities evaluated throughout the whole experiment101

can only be sub-communities of the initial ones. Given that102

finding the right species composition is one of the goals of103

community-level selection, this suggests that we need novel104

selection methods that can better explore the search space of105

species combinations (23).106

In this manuscript, we propose a new selection method that107

we call “disassembly selection” (DS), that is designed to108

maintain heritability as well as between-community variabil-109

ity. After each round, we disassemble the selected commu-110

nities by isolating the constituent species before recombin-111

ing them into new communities for the next round of growth112

(Fig. 1D). We construct two computational models of mi-113

crobes in a well-mixed liquid culture, one individual-based114

and one based on differential equations, to systematically115

compare our new approach to the classical propagule selec-116

tion (PS) and migrant pool selection (MS) methods.117

Inspired by a four-species community that degrades an in-118

dustrial pollutant (25), we aim to select for microbial com-119

munities with improved degradation capabilities. Based on120

this experimental system, the microbes in our models face a121

dilemma: whether to invest consumed nutrients into growth122

or into degradation of toxic compounds that would otherwise123

cause cell death. The populations evolve by random muta-124

tions to this relative investment. We evaluate the selection125

methods by comparing how the degradation scores change126

over several rounds of growth and selection starting from the127

same initial communities. We simulate community selection128

in both models separately, to test whether our results depend129

on the choice of model framework.130

Our results confirm our intuition that propagule and migrant131

pool selection do not maintain enough variability to explore132

many different species combinations, which means that the133

communities can only improve by mutation. In contrast,134

our new disassembly approach maintains variability between135

communities, allowing it to find some of the best possible136

species combinations. Nevertheless, disassembly selection137

still suffers from an important problem in group selection:138

competition within species leads to the dominance of strains139

that invest less into the function and more into growth. Our140

work thereby suggests a new method to find species com-141

binations whose community function is high, but in which142

between-individual competition may be inevitable.143

Results144

Simulating community-level selection. In either model145

(see Methods for details), each species is described by its146

growth and uptake rates for each of 4 available nutrients, and147

its death and degradation rates for each of 10 toxic com-148

pounds. We assume that interactions between cells occur149

only via nutrients and toxic compounds, as cells of type i150

invest a fraction fik into degradation of the toxic compounds151

and the rest into growth. Cells of the same species differen-152

tiate by accumulating “mutations” as they grow and divide,153

that alter the total investment fi· =
∑
k fik. All other species154

properties remain unchanged throughout the simulations.155

The simulations start with 21 communities of 4 species each,156

chosen at random with replacement from a set of 15 initial157

species, that are described by randomly drawn model param-158

eters. The 21 communities are grown in simulated batch159

cultures containing defined initial concentrations of nutri-160

ents and toxic compounds for a fixed number of time-steps161

(Fig. 1F). At the end of each round, the 21 communities are162

scored based on degradation of the ten toxic compounds. The163

best 7 communities are then selected and propagated to the164

next round, depending on the selection method: communities165

are diluted in propagule and migrant pool, whereas they are166

re-inoculated to a defined population size with equal propor-167

tions in the disassembly method (Fig. 1B-D). In disassem-168

bly, communities are penalized by species extinctions, and169
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Fig. 1. (A) Overall method for artificial selection of microbial communities. Communities are illustrated as test tubes with bacterial “species” in different colors (white represents

empty “space”). The concentration of toxic compounds is shown in shades of gray in the upper part of each tube (darker is more toxic). The inoculated communities (1) grow

until the measurement (2) of toxic compound concentration, from which we (3) calculate a score for each community. (4) The highest-scoring communities are selected for

propagation into offspring communities and the process is repeated. (B) Propagule: each selected community from the previous round is diluted to form the same number of

communities for the next round. (C) Migrant pool: selected communities are merged before dilution. (D) Disassembly: Microbes are (1) isolated from the chosen communities

and (2) saved in a repository (dotted rectangle). Each selected community contributes offspring communities in proportion to their degradation score (3). A fraction of the new

communities receive new species (red arrows) or lose members from the previous round (asterisk in color of removed species). (E) No-selection control: each community is

diluted into a new tube. Propagule, migrant pool and disassembly have selection treatments (PS, MS and DS) and random treatments (PR, MR and DR), where community

scores are ignored (see Methods). (F) A “species set” consists of 15 randomly generated species. From this set, we draw 21 initial communities of 4 randomly chosen species

each and for each of five species sets, simulate 10 repeats from different initial communities over 50 rounds of selection under each of the propagation methods (B-E).

communities are randomly chosen to receive or lose species170

(Fig. 1D). We compare each method to a corresponding ran-171

dom control line (e.g. random propagule: PR) where 7 com-172

munities are chosen at random instead of according to their173

score, and to a no-selection control (NS) where every com-174

munity is diluted without selection (Fig. 1E). This last control175

forms a baseline for how communities change due to species176

interactions (23, 26). To achieve statistical power, 5 species177

sets were generated, each with a new set of 15 species. From178

each species set, we then sampled the 21 communities 10179

times to run 10 replicate simulations, which were all sub-180

jected to 50 rounds of selection. The same initial conditions181

were used for the different selection methods to allow for a182

fair comparison (Fig. 1F).183

Disassembly finds communities whose degradation184

ranks in the top percentile of all possible communi-185

ties. All simulated selection methods succeeded in improv-186

ing the median degradation score across the 21 communities187

between round 0 and 50 (Fig. S1), which is consistent with188

previous work (3, 23). However, DS was the only propa-189

gation method to significantly and consistently improve the190

maximum degradation score, meaning that on average, the191

best community in round 50 degraded significantly better192

than the best community in round 0 (one-sided Wilcoxon193

signed rank-test n = 50, 10 repeated runs of 5 species sets,194

p < 10−9 for both IBM and ODE, Fig. 2A, C). The increase195

in maximum score in DS (0.22±0.06, 0.14±0.08 for IBM,196

ODE), was also significantly different from the classical se-197

lection methods (−0.03±0.06 and −0.12±0.09 for PS and198

MS in the IBM, and −0.1± 0.08 for PS in the ODE), from199

its own random control (DR), and from NS (all two-sided200

Wilcoxon tests of diff. in max. degradation between DS201

and other methods, n = 50, p < 10−9, for IBM and ODE).202

For comparison, we computed the degradation scores of all203

215−1 = 32767 possible communities consisting of 1 up to204

15 species for each species set and sorted them from best to205

worst. The communities found by DS ranked among the best206

few hundred in both our models, finding the very best com-207

munity out of 32767 (Fig. 2D, F) in 17 out of 50 runs in the208

IBM and 23 out of 50 in the ODE. We next investigate what209

distinguishes these high-ranking communities.210

Communities selected by disassembly invest more211

into degradation and are composed of diverse species212

with complementary phenotypes. In our model, com-213

munity performance depends on (a) the overall investment214

into degradation of toxic compounds relative to growth, and215

(b) how well community members complement each other.216

Community members will compete less if they take up dif-217
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Fig. 2. Degradation scores and ranking of selected communities. Panels A, B, E, F with lighter background show results from the IBM, while panels C, D, G, H with darker

background show results from the ODE model. Asterisks show the significance of a Wilcoxon signed-rank test for difference in degradation between methods (*: p < 10−3,

**: p < 10−6, ***: p < 10−9). (A-D) The difference in maximum degradation score between round 50 and round 0 over the 21 communities is shown as one dot for each of

10 repeated runs, colored by species set, with 50 dots in total. As each run starts from identical communities for all methods, we have compared pairs of runs between the

selection methods. (E-H) The rank of the predominant community (the most common combination of species among the 21 communities in the last round of selection, not

counting sub-communities) in terms of its degradation score compared to all of the 32767 possible combinations of 1, 2, . . . , 15 ancestral species. As above, each of the 50

dots marks 1 out of 10 repeated runs of 1 out of 5 sets of species.

ferent nutrients while the degradation score of a community218

can increase if its members specialize on degrading different219

toxic compounds (Eq. 1).220

To understand how these two properties changed over time,221

we first quantified the “total investment”, i.e. the fraction222 ∑10
k=1 fik < 1 of resources invested into degradation of all223

toxic compounds k, averaged over the species in each com-224

munity. Starting from an average investment of 0.5, DS225

finds communities that invest significantly more resources226

into degradation at round 50 than in the first round (one-sided227

Wilcoxon test of average total investment, all p < 10−9, n=228

50 for both IBM and ODE, Fig. 3A, C). This is not due to any229

single species with unusually high degradation capabilities,230

but rather because DS finds a combination of species with231

high investment. The average within-community species di-232

versity increases over the 50 rounds (Fig. 3E), which means233

that the communities consist of an increasing number of234

species and/or that the communities are increasingly even.235

Accordingly, in DS, the effective number of consumed nu-236

trients and toxic compounds increases over the 50 rounds237

(Fig. 3F). This increase in coverage and community diversity238

was not observed for the other selection methods (Fig. 3E,239

Fig. S2).240

Given the complementarity in nutrient uptake and toxic com-241

pound degradation, one might expect species to grow and de-242

grade better together compared to when they are alone, as243

they may be facilitated by other species that degrade com-244

pounds that they themselves cannot. We use “synergy” to245

quantify whether a community property (e.g. degradation) is246

greater than that of its member species together (Fig. 3G).247

Against a baseline of all possible species combinations for248

a given community size – richness in our models increases249

niche overlap and competition for resources, which decreases250

synergy – communities selected by DS have significantly251

higher synergy, for both degradation and cumulative biomass252

(Kruskal–Wallis H test, p < 10−9 in either case, Fig. 3G).253

In sum, communities selected by DS invest more into degra-254

dation compared to communities from other methods. These255
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communities are diverse in composition, consist of species256

with minimal niche overlap, and cover the toxic compounds257

evenly (Fig. 3F).258

Disassembly can explore more species combinations259

by diversifying the selected communities. Seeing that260

communities selected by DS are diverse and efficient de-261

graders, we now investigate how the method finds these com-262

munities. First, DS explores more species combinations than263

the other methods (Fig. 4A, B, Fig. S3). The classical propag-264

ule method (PS) can only find sub-communities of the species265

combinations present in round 0. Similarly, while migrant266

pool (MS) is in principle able to search all sub-communities267

of the first set of selected communities, they are in practice268

limited to a smaller subset as species tend to go extinct due269

to the toxic compounds, inter-species competition and/or the270

dilution bottleneck at each round. Accordingly, most com-271

munities available for selection by PS or MS resemble one272

another, seen as a rapid drop in between-community (or beta)273

diversity (Fig. 4C, D, Fig. S4). In contrast, changing the274

species composition of some selected communities by insert-275

ing or removing species at random, DS can search a larger276

number of communities and the resulting drop in beta diver-277

sity is not as steep. The beta diversity of the no-selection278

control depends on the diversity of the initial communities.279

Propagule selection —but not migrant pool— per-280

forms better by periodically adding species to se-281

lected communities. In the disassembly method, more and282

better communities can be found by randomly adding and283

removing species in some of the communities. To explore284

whether species introduction could improve PS and MS in285

our models (previously shown for PS (23)), we implemented286

two new versions (PIS and MIS), where in each round, a287

fixed number of communities chosen at random will re-288

ceive one or more “invader” species (also chosen at ran-289

dom) with a defined initial population size. With this modi-290

fication, PIS increases the maximum degradation (one-sided291

Wilcoxon signed-rank test of degradation scores in round 50292

versus 0, p < 10−3, n = 50, Fig. 2B) and improves upon293

the standard PS method (two-sided Wilcoxon signed-rank294

test, p < 10−6, n = 50) in the IBM. The results are how-295

ever model-dependent. While the PIS method still improved296

upon the PS method in the ODE model (two-sided Wilcoxon297

signed-rank test, p < 10−3, n = 50), we did not find any298

significant improvements in the maximum degradation score299

compared to round 0 (p = 0.9, n = 50, Fig. 2D). Further,300

PIS finds higher-ranking communities than PS in both the301

IBM (two-sided Wilcoxon signed-rank test for differences in302

ranks between PIS and PS, p < 10−6, n = 50, Fig. 2F) and303

the ODE model (p < 10−3, n = 50, Fig. 2H) over the 50304

rounds. PIS can explore more combinations than the regular305

PS, and the initial drop in beta diversity is less severe in both306

models (Fig. 4A-D), indicating that there is more variability307

for selection to act on. In contrast, MIS does not improve308

significantly on MS, either in terms of degradation, ranks or309

investment. Even though MIS explores more species combi-310

nations than MS, the beta diversity rapidly drops (Fig. 4C),311

and the introduced species do not contribute much to diver-312

sity or degradation of the resulting communities.313

Mutation and selection can decrease per-species in-314

vestment, but this increases biomass, maintaining315

community degradation. We have shown that DS can im-316

prove degradation by exploring many different species com-317

binations and find ones that rank highly. Shuffling species318

around is, however, not the only way to improve degradation319

scores. Our models allow for mutations to the parameter fik320

that determines the trade-off between investment into degra-321

dation and biomass production for a cell. If a mutant is more322

competitive than its parent, it can replace the original type in323

future rounds, even as other species come and go around it.324

To investigate the effect of mutations, we now compare the325

investment into degradation of species at round 50 to that of326

their ancestors from round 0, and analyze how these changes327

affect degradation at the community level.328

In DS, the total per-species investment
∑10
k=1 fik into degra-329

dation was significantly lower after 50 rounds of selection330

than that of the corresponding ancestral species (one-sided331

Wilcoxon signed-rank test of total investment in initial vs fi-332

nal round of selection, p < 10−6, n = 50, Fig. 5A, Fig. S5).333

Given the trade-off between investing into growth versus334

degradation, the communities made up of evolved species335

had greater total biomass than communities composed of the336

corresponding ancestral species (one-sided Wilcoxon signed-337

rank test of total AUC in communities, initial vs final round,338

p< 10−9, n= 50, Fig. 5B), such that overall, the degradation339

of the evolved communities was marginally but significantly340

higher (+6×10−3 units, averaged over all species sets, one-341

sided Wilcoxon signed-rank test p < 10−3, n= 50) than that342

of communities made up of their ancestors (Fig. 5C, Fig. S6).343

Compared to the improvement in degradation due to finding344

better species combinations, the improvement due to species345

evolution is very small and is not likely to have a large effect346

on the outcome of selection.347

In summary, the disassembly method improved the degrada-348

tion scores over the 50 rounds of selection by finding better349
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species combinations. Within those communities, individual350

species evolved to invest less into degradation and more into351

biomass production. As an effect of the trade-off between352

degradation and growth, the communities still maintain their353

degradation capabilities and the most efficient communities354

are the species combinations found in round 50, composed of355

either their ancestral or evolved genotypes.356

Communities selected by DS are less stable than357

those selected by PS and MS. The disassembly method358

has features to ensure heritability and promote within-359

community diversity: we re-inoculate species in fixed and360

equal abundances, punish extinctions and re-inoculate ex-361

tinct species. Controlling the ecological dynamics so tightly362

means that if we were to simply transfer these communities363

without adjusting relative abundances and without selection,364

as in the no-selection treatment, they could drift towards a365

different equilibrium with a lower degradation score. To as-366

sess the ecological stability of the selected communities, we367

transferred the communities from round 50 for an additional368

25 rounds of growth and dilution, this time without selec-369

tion (Fig. 6A) and found that the degradation scores of com-370

munities selected by DS dropped by −0.21± 0.14 on aver-371

age when left to their natural dynamics, close to how much372

the selection method increased the degradation (0.22±0.06).373

This indicates that the high performance of these commu-374

nities relied on controlling the ecological dynamics. This375

means that the communities converge, once ecologically sta-376

ble, to a degradation score that is not significantly different to377

the average of the initial communities (one-sided Wilcoxon378

signed-rank test, p= 0.24, n= 50, Fig. 2A, B).379

In contrast, the degradation does not drop as much in commu-380

nities selected by the classical methods PS and MS (−0.02±381

0.03 and −0.03± 0.03 in max degradation, respectively,382

Fig. 6A). The methods are stable in the sense that the com-383

munities do not change much after the first few rounds of384

selection, either in terms of composition (Fig. 3E) or degra-385

dation (Fig. S7). The methods with invasion, PIS and MIS,386

show an intermediate drop in degradation (−0.07±0.07 and387

−0.07± 0.04) indicating that the invasion step has an effect388

on community stability. In order to remain effective, the com-389

munities found by DS should be grown in the same condi-390

tions as they were selected, i.e. (i) from equal abundance, (ii)391

without any intermediate rounds of growth in between rounds392

of selection. The latter has been suggested to stabilize the dy-393

namics and improve the community selection (23).394

Varying experimental parameters to decrease the size395

of the experiment. Our model shows that DS can outper-396

form other propagation methods, as long as the ecological397

dynamics of the communities are controlled. However, DS398

is more cumbersome than the other methods from an exper-399

imental perspective: constantly dis- and re-assembling com-400

munities and having to adjust the population sizes of each401

species at every round could cost a lot of time and resources.402

We now investigate how four experimental parameters im-403

pact the degradation scores in DS, and affect experiment size.404

We focus on DS but also compare it to the other methods405

(Fig. 6B-E, Fig. S8-S11).406

The parameter with the strongest effect on experiment size407

and the maximum degradation score is the number of species408

in the initial set (Spearman’s rank correlation coefficient409

ρ = 0.67, p < 10−9, Fig. S9). This means that the meta-410

community needs to be as rich as possible to efficiently im-411

prove degradation, and the main effort should be invested412

into managing a larger number of species, ideally by adding413

species that have positive effects on degradation or the growth414

of others. In contrast, the number of communities clearly415

affects experiment size, but it had a weaker correlation to416

degradation for DS (ρ = 0.35, p < 10−9), meaning that the417

number of communities could be decreased, which would re-418

duce effort with a limited effect on community performance.419

Next, we turn to two parameters that affect the degradation420

scores but not size of the experiment. The number of com-421

munities receiving an invading species is negatively corre-422

lated with degradation (ρ = −0.29, p < 10−9). Introducing423

species to a smaller number of communities should improve424

the final degradation score (Fig. S8). Finally, the dilution fac-425

tor (i.e. how large a fraction of the culture to re-inoculate for426

the next round of growth) is positively correlated to degrada-427

tion scores (ρ= 0.52, p < 10−9).428

Discussion429

The major challenges for community breeding are ensuring430

(i) that the community function is heritable, (ii) that within-431

community selection does not dominate over between-432

community selection and (iii) that communities differ suffi-433

ciently in phenotype. While other theoretical studies have434

investigated heritability and the balance between within- and435

between-community selection (6, 21–23), our “disassembly”436

method contributes to improving the third point: how to437

maintain variability between communities.438

We have shown that disassembly can improve significantly439

upon the maximum degradation scores of simulated syn-440

thetic communities, compared to a random line and a no-441

selection control. The method further outperformed the clas-442

sical propagule and migrant pool methods, which could only443
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improve the maximum function for some initial combination444

of species, confirming previous findings (3, 23).445

The problem with the classical methods is that they rapidly446

lose between-community diversity, which selection acts upon447

to improve community function. In these methods, diversity448

only arises through mutations, or through loss of species due449

to competition and dilutions between rounds of growth, while450

directed selection reduces between-community variability by451

only propagating a small subset of high-performing commu-452

nities. When communities become increasingly similar, fit-453

ness differences become increasingly random which makes454

selection less effective (23). By removing and introducing455

species, the disassembly method reshuffles the species com-456

position to access new communities that sometimes outper-457

form the original best community. As proposed in (23), we458

show that the classical methods can be improved by periodi-459

cally invading them with new species, which allows them to460

maintain some variability. This approach still under-performs461

compared to disassembly, however.462

In a sense, the disassembly method is inspired by the463

crossover operator used in genetic algorithms in the field of464

evolutionary computing (27–29), whereby building blocks465

are recombined between digital individuals and generate vari-466

ability for selection to act on. Of course, crossover in ge-467

netic algorithms is itself inspired by recombination in sex-468

ual organisms (30, 31). While interesting, these parallels do469

not map directly to species exchange in community breeding,470

where the units that are subject to exchange are well-defined471

and have their own ecology and within-species evolution.472

Next, heritability is crucial for evolution (32) and a major473

challenge for community selection (6). In the disassembly474

method, as in (6), we sidestep the issue of heritability and475

ecological stability by re-assembling communities in a fixed476

abundance and equal species proportions. In our models, this477

allows community dynamics to unfold in almost the same478

way after each transfer. The disadvantage of this approach is479

that we cannot guarantee that communities selected by disas-480

sembly would maintain either their community composition481

or function when propagated by regular dilution. One way to482

overcome this would be to include a few rounds of transfer-483

ring without selection to allow the communities to equilibrate484

before each selection step (23). This would, however, make485

disassembly quite inefficient, in which case, propagule with486

invasion can be more stable than disassembly (Fig. 6A).487

Another factor that we do not explore in detail here is the488

relationship between community stability and the timing of489

selection. While our model is robust to timing errors, a com-490

munity that degrades the toxic compounds too quickly can in491

principle be invaded by cheater cells that profit from the ini-492

tial degradation and out-compete degraders in the absence of493

toxic compounds (6). Such ecological succession was found494

in a chitin-degrading community (16, 33).495

While we have focused on increasing community perfor-496

mance from an applied perspective, our study provides im-497

portant insights into discussions on the levels of selection and498

whether group selection can dominate over individual-level499

selection. Our choice to implement mutations (unlike other500

theoretical studies (23)) means that selection will also act at501

the level of individual genotypes. We found that competi-502

tion between individuals is indeed strong in our simulated503

communities, leading individual species to reduce their in-504

vestment into degradation in favor of growth. Interestingly,505

though, the faster growth rate of these evolved species com-506

pensates for the reduced investment by producing larger pop-507

ulation sizes of degraders, such that the difference in degrada-508

tion between ancestral and evolved communities was negli-509

gible. Our approach does not overcome within-community510

selection for growth, but this may not impact community511

function as much as one might expect when the community512

function is indirectly coupled to growth. Going back to the513

practical perspective, in a lab setting, it may be worth investi-514

gating whether the best selected species composition is more515

efficient when assembled from ancestral or evolved strains.516

Ultimately, the goal of our investigation is to help design ex-517

periments rather than just computer simulations. While we518

found that our method can efficiently search for better species519

combinations, its scope is limited to communities that can be520

disassembled in the lab, and the effort needed to find out how521

to isolate species from the communities should not be un-522

derestimated. We have, however, confirmed that a periodic523

introduction of species (which is possible independently of524

whether we can remove species or disassemble the commu-525

nities) improves the propagule method (23) to balance exper-526

imental feasibility and improvement of community functions.527

From an experimenter’s perspective, it is also useful to con-528

sider where one can reduce the size and complexity of the ex-529

periment. We find that the parameter with the biggest effect530

on the method is the size of the initial species set and that531

the disassembly method is more efficient for larger sets of532

species (Fig. 6). Disassembling rich communities may how-533

ever prove quite challenging in practice, and future experi-534

mental work will aim to make this step more efficient. We535

also find that for disassembly, a higher number of commu-536

nities grown in each selection round can compensate for the537

number of selection rounds needed since we are then able to538

search more distinct communities per round of selection.539
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We have made a number of assumptions for our models.540

First, we assume a well-mixed liquid culture, where in re-541

ality, clumps may affect species interactions and community542

function. We also assumed a trade-off between degradation543

and growth in both models and that the toxic compounds can-544

not be used as nutrients. Both assumptions serve to decou-545

ple the community phenotype from population growth and546

while they are not completely independent, a smaller con-547

tribution from growth on the community phenotype should548

make artificial selection more difficult. In a sense, this is549

the more interesting problem to explore, since all the meth-550

ods we explored are expected to improve a community phe-551

notype that is aligned with population growth. Further, we552

have assumed that species diversity is key to functional di-553

versity: each species can only degrade a subset of the toxic554

compounds in our model and complete removal of the com-555

pounds depends on finding other species with complemen-556

tary degradation capabilities. Within-community diversity is557

in this way fundamental for community success, and also de-558

creases competition, as each species only uses a subset of the559

nutrients. In our simulations, it is therefore unlikely that any560

mono-culture scores higher than a multi-species community,561

and the median size of a selected community was 6.9± 1.8562

species after 50 rounds of selection by disassembly (in the563

IBM model). This optimum will, however, differ for each564

system (25).565

Taken together, we have introduced a new approach to com-566

munity selection, where species composition is shuffled be-567

tween competing communities, allowing for a greater explo-568

ration of the space of possible communities to find the best569

performing ones. In doing so, we have been able to im-570

prove community function with respect to randomly assem-571

bled communities, but show that genetic mutation can con-572

tribute to reduced investment by individual strains into com-573

munity function. We are testing this approach experimentally574

in parallel work.575

Materials and methods576

Growth and community function. We separately imple-577

ment an individual-based model (IBM) of individual cell578

growth and a system of ordinary differential equations579

(ODEs) that model population-level dynamics. Both mod-580

els simulate different microbial species growing together in581

batch culture, in a medium containing 4 types of nutrients582

that allow cells to grow, and 10 toxic compounds that cause583

cell death. Species are described by how quickly they grow,584

the rate at which they convert nutrients into biomass and how585

they are affected by toxic compounds. We describe the details586

of both models in the following sections. All interspecies in-587

teractions are due to the consumption of nutrients and degra-588

dation of the toxic compounds. The concentration of each589

nutrient j = 1, 2, 3, 4 is denoted by Nj and the concen-590

tration of each toxic compound k = 1, 2, . . . , 10 is denoted591

by Tk. The removal of toxic compounds in either model is592

determined by the parameters fik that denote the fraction of593

resources that a cell (IBM) or population (ODE) of type i594

invests into the degradation of toxic compound k. The re-595

maining fraction 1−
∑
k fik is invested into growth. As we596

describe in the following section, fik is the only parameter597

that is subject to mutation and therefore gives rise to differ-598

ent strains of the same species.599

Communities are created in two steps: First we draw a li-600

brary of 15 species, each with unique (random) combinations601

of model parameters sampled as described in Table 1 and602

2. These species are then randomly assigned (with replace-603

ment) to 21 communities of four species each, such that each604

species is present in at least one community.605

In each round, each community grows and degrades the toxic606

compounds independently of the other communities, for 80607

time-steps in the IBM and 100 in the ODE model. The root-608

mean-square decrease in Tk from the initial time point t0 to609

the last tend forms the basis of our community function, the610

degradation score D:611

D = 1−

√√√√ 1
10

10∑
k=1

(
Tk(tend)
Tk(t0)

)2
. (1)

These scores are used to rank the communities, so that we612

can propagate the best ones by the different selection meth-613

ods (elaborated below). To compare the selection methods,614

we simulate 50 rounds of growth, degradation and selection615

with the different methods. Upon propagating communities616

to fresh medium, we only transfer the cells and no leftover617

media. To reduce bias due to initial conditions, we run 10618

simulations with different initial communities for each out of619

5 sets of 15 species (Fig. 1F). The same exact set of initial620

conditions is used for all selection methods to make compar-621

isons fair.622

Within-species evolution. In both models, a strain i of623

the ancestral species li (“l” as in lineage) invests a fraction624

0 ≤ fik ≤ 1 of the resources that they take up into degra-625

dation of toxic compound k. These fractions can mutate,626

creating new strains of the same species that invest different627

amounts into degradation and the rest, 1−
∑
k fik, into popu-628

lation growth. The mutations take place at cell division in the629

IBM and during community replication in the ODE. The dis-630
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tinction between “species” of a fixed set of 15 and “strains”,631

that emerge from an ancestral strain of each species as mu-632

tations arise, is important. For example, in the disassembly633

method described below, we inoculate a fixed concentration634

of each species in each round, which can consist of different635

strains of the species, depending on their frequency in the636

previous round.637

To evaluate the evolution of the total investment fi·=
∑
k fik638

(Fig. 5A) of species l, we compare the investment of the an-639

cestral strain i to that in the last round of selection (or as late640

as possible in case the species went extinct). The average641

per-species investment is weighted by the population size Si642

of the different strains i of species l,643

f̃l· =
∑

i of species l

Sifi·/
∑
i

Si (2)

to emphasize the investment of abundant strains instead of644

small recent mutants that have not contributed as much to the645

community function. The value f̃l· is further averaged over646

the 10 repeated runs (recall: each run starts from the same647

set of species) for each of the 15 species, without weighting648

by population size. For the statistical comparison, we hence649

have 75 data points: 15 species per each of the 5 sets.650

Individual-based model (IBM). We simulate well-mixed651

batch cultures that initially contain 10 cells per species in652

the communities. All cells are initially equally exposed to653

Tk(t0) = 700 units of each of the 10 toxic compounds, which654

can cause cell death (see below), and have equal access to655

Nj(t0) = 2000 units of each of the 4 nutrients that allow the656

cells to divide and reduce the concentrations of toxic com-657

pounds (see below). These processes occur according to the658

parameters of each strain i (Alg. 2, Table 1, Fig. S12).659

Cell division consists of two steps, here called “activation”660

and “replication”, that respectively involve the acquisition of661

some nutrients by the cell and their utilization for cell repro-662

duction (34). Cells of strain i share their parameters (Table 1)663

and can be in either of two states: the initial “inactivated”664

with population size pi0, or the “activated” with size pi1. Ev-665

ery activation, replication, mutation and death event occurs666

with a given probability by random sampling from a Poisson667

distribution with rate population ·probability (22).668

Degradation and activation are costly and are carried out first.669

At each time step, a cell of type i can take up an amount nij670

of the nutrient j with current concentration Nj , with671

max_uptake=
∑
j

(nij if Nj > nij). (3)

The max_uptake scales down the amount of degradation672

or the probability to activate when not all the nutrients con-673

sumed by the cell are present.674

Regardless of their activation state, at each time step, all the675

cells of a strain (i.e. the total population size Si = pi0 +pi1)676

degrade the amount fik ·max_uptake units of each toxic677

compound k, consuming fi· units of nutrients in total. If there678

are not enough nutrients, a smaller fraction of Si degrades,679

determined by the amount of nutrients available. When a680

toxic compound is depleted, its degradation and thus the cor-681

responding nutrient consumption does not occur.682

Following degradation, an inactive cell can activate with683

probability684

ai · (1−
∑
k

fik) ·max_uptake ·
∑
j

(
n̂ij

Nj(t)
Nj(t0)

)
, (4)

where n̂ij is a re-scaled version of nij : if some nutrients are685

depleted, their nij are set to 0 and the nij of the remaining686

nutrients are re-scaled such that
∑
j nij = 1. To activate, a687

cell of type i consumes in total 1−fi· units of nutrients and if688

the it does not replicate, it needs the same amount of nutrients689

in subsequent time steps to remain activated.690

The amount of nutrient of type j that is consumed for degra-691

dation and activation depends on the parameters nij and on692

the amount of each nutrient that is available. When one693

type of nutrient gets depleted, cells will take up more of the694

other available nutrients that they require. At every time step695

we check how many cells of strain i can degrade and acti-696

vate based on the scarcest nutrient. Thus, when a nutrient j697

is nearly depleted, fewer cells that require this nutrient de-698

grade and have the chance to activate in the current time699

step. In following time steps, when nutrient j is depleted,700

cells consume the remaining required nutrient types. So, al-701

though now cells would use nutrients less efficiently, if these702

nutrients are sufficiently abundant, a greater population can703

degrade and activate. This models a pause in degradation704

and division caused by a metabolic shift towards consum-705

ing fewer nutrients. These events are stochastic and lead to706

noise between runs of the model with the same starting con-707

ditions. When we calculate the growth and degradation of708

specific communities such as the 32767 possible combina-709

tions of species (Fig. 2 E-F, Fig. 3 G), we average the results710

over three replicates of the simulations. We use the same seed711

for the random number generators for consistency.712

At each time step, activated cells divide with probability ri ·713

(1−fi·) without additional cost, resulting in two inactivated714

daughter cells: one daughter maintains the parameter values,715

and the other is susceptible to mutation with probability µ=716

0.01. Upon mutation, the previous value of at least one fik717
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Parameter Description Randomly sampled from

li Species ID of strain i
ai Activation probability Beta(2,2)
ri Replication probability Beta(2,2)
nij Consumption rate of nutrient j Uni(0,1), Sparse,

Rescaled so that∑
j nij = 1

fik Fraction of consumed nutrients invested Uni(0,1), Sparse,
into degradation of toxic compound k Rescaled so that∑

k fik = Uni(0,1)
mik Death rate of strain i due to toxic compound k Uni(0.001,0.02), Sparse

Table 1. Parameters defining a microbial strain i in the IBM. Growth rates, death rates and degradation investment vectors rij ,mik and fik are made sparse by multiplying

them by a vector drawn from Bernoulli(0.5). Each species can this way only take up a random fraction of nutrients, be affected by a random fraction of the toxic compounds

and degrade another fraction of the toxic compounds. Despite changing by mutation, the total investment fi· is limited to the interval [0, 1].

is multiplied by a random number from the lognormal (µ =718

0,σ2 = 0.4) distribution, making sure the total investment fi·719

falls in the [0, 1] interval. As a result, a new strain of the720

same species with population pi0 = 1 is introduced.721

At each time step, activated and inactivated cells may die with722

a probability determined by the following Hill function:723

∑
k

mik
T 2
k

T 2
k +K2 (5)

Where Tk is the current concentration of toxic compound k724

and the constant K = 700.725

Population-level model. As the IBM above, the ODE
model simulates well-mixed batch cultures with nutrients and
toxic compounds, extending a previous model (25). In the
model, the population size Si of each strain i in a community
grows in relation to the concentrations of nutrients Nj and
decline by the toxic compounds Tk (Fig. S13) by the model
parameters in Table 2. Growth, death, nutrient uptake and
degradation is described by the following ODE system:

dSi
dt

=
(

(1−
∑
k

fik)ρi(N)−µi(T)
)
Si (6)

dNj
dt

=−
∑
i

ρi(Nj)
Yi

Si (7)

dTk
dt

=−Tk
∑
i

fikδiρi(N)Si (8)

The bold-face N, T denote the vectors of all nutrients and
toxic compounds, respectively. We assume Monod and Hill

functions for the per-capita growth and death rates ρi, µi.

ρi(N) =
∑
j

rij
Nj

Nj +KN
(9)

µi(T) =
∑
k

mik
T 2
k

T 2
k +K2

T

(10)

The system of equations Eq. (6)–Eq. (8) is solved with a stan-726

dard ODE solver (dopri5, (35, 36)) for 100 time steps with727

initial conditions Si(t0) = 100, Nj(t0) = 100 and Tk(t0) =728

100 for all i, j, k.729

The investment fik can mutate to form different strains of730

the same species. When this happens, we add a new popula-731

tion equation of the type Eq. (6) to the ODE system, with the732

same parameters rij , mik, Yi and di as the ancestor but with733

the modified fik. To not make the system of equations too734

large, we have limited the number of strains to 28 per com-735

munity. We estimate this to be enough since we expect mu-736

tants to rapidly replace their ancestral strains if their growth737

rate is higher, and otherwise disappear rapidly. If there are738

already 28 strains in a community, then no more mutants are739

allowed. Otherwise, when communities are propagated to the740

next round of growth, any surviving strain can have a mutant741

with probability 0.05. Having chosen which strains i to mu-742

tate, we pick one or more traits fik at random and multiply743

them by numbers drawn at random from lognormal(0, 0.4)744

and ensure that both the mutated traits fik and the total in-745

vestment fi· falls in the [0, 1] interval. The mutant receives746

the same rij , mik, Yi and di parameters as its ancestor and747

is introduced with population size 100, the same as the initial748

population before the first round of growth. This population749

size is chosen relatively high, in order to speed up the com-750

petition between ancestor and mutant strain.751
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Parameter Description Sampled from

li Species ID of strain i
rij Maximum growth rate Uni(0.01, 0.1)

with respect to nutrient j Sparse
KN Half-saturation constant KN = 10

for nutrients (fixed)
mik Maximum death rate Uni(10−4, 10−3)

with respect to toxic compound k Sparse
KT Half-saturation constant KT = 10

for toxic compounds (fixed)
fik Fraction of amassed nutrients Uni(0,1), Sparse

that are invested into Rescaled so that
degradation of toxic compound k

∑
k fik = Uni(0,1)

Yi (Average) biomass yield lognormal(log(10−3), log(5))
with respect to the nutrients

δi (Average) degradation efficiency lognormal(log(10−4), log(5))
with respect to the toxic compounds

Table 2. Parameters defining a microbial strain i in the ODE model. Growth and degradation parameters in relation to nutrients and toxic compounds Nj and Tk . All

parameters are assumed to be positive, and the investment fik is limited to the interval [0, 1]. The matrices of growth rates, death rates and degradation investment rij ,

mik and fik are made sparse by multiplying them by matrices drawn from Bernoulli(0.5), i.e. flipping a coin for each entry. In this way, each species takes up approximately

half of the nutrients, is affected by half of the toxic compounds and degrades half of the toxic compounds.

Artificial selection methods. After scoring all communi-752

ties in a given round (see above), a fraction of these “par-753

ent” communities is propagated to “offspring” for the next754

round of growth (Fig. 1A, Alg. 1). Here we implement755

several methods of propagating the selected communities756

as described below (Fig. 1B, C), and compare them to a757

no-selection control (NS) where each community is propa-758

gated by 100-fold or approximately 20-fold (stochastic pro-759

cess based on Poisson distribution) dilution, respectively for760

the ODE model or IBM (Fig. 1E). NS shows the baseline761

change in community function due to interspecies interac-762

tions and changes to the species composition (23).763

Propagule selection. In the propagule method, the 7 commu-764

nities with the highest scores are propagated to the next round765

by dilution (10, 24) (Fig. 1C, Alg. 7, Alg. 8). The commu-766

nities are populated uniformly such that each selected par-767

ent contributes 3 offspring communities for the next round.768

The important design parameters are the dilution factor and769

the fraction of communities to propagate, i.e. the selection770

bottleneck. In previous experimental studies, dilution factors771

between 5 and 30 have been used for bottlenecks between772

1/10 and 1/3 of parent communities (8–10, 17, 19). We keep773

a wide bottleneck, selecting 7 out of 21 communities, before774

diluting them by a factor 100 (ODE model) or approximately775

20 in the IBM (where population sizes are smaller and we776

sample the cells to propagate at random, according to a Pois-777

son distribution) for the next round. See also simulation stud-778

ies in (5, 6, 22, 23, 37). We compare PS to the random control779

PR, where the communities are selected at random without780

regards to their degradation scores. We also compare PS to781

a version that we call propagule with invasion (PIS) and its782

corresponding random control (PIR). In this version, we in-783

troduce at least one species to 5 out of the 21 offspring com-784

munities (chosen at random with uniform probability) (23).785

Migrant pool selection. Here, selected parent communities786

are mixed in a migrant pool before new offspring commu-787

nities are formed by taking samples from the pool (10, 24)788

(Fig. 1D, Alg. 9). Previous experiments have used micro-789

bial communities from wastewater (18), soil and rhizospheres790

(8, 10–14), marine environments (16) and other strain collec-791

tions (38), selecting between 1/10 and 2/7 of communities792

and diluting them by factors between 1/100 and 1/2. The793

method has also been subject to at least one simulation study794

(5). We select 7 communities out of 21, merge them in a pool795

and create 21 new communities by sampling without replace-796

ment cells from the pool with an approximately 20-fold di-797

lution (stochastic process according to Poisson distribution).798

We compare MS to a random control (MR), where we se-799

lect communities with uniform probability without regards to800

their degradation scores. We also implement a version of mi-801
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grant pool selection where we introduce one or more species802

to 5 out of the 21 offspring communities (chosen at random803

with uniform probability), and call this migrant pool with in-804

vasion (MIS and the random control MIR).805

Disassembly selection. Our proposed method is intended for806

synthetic communities, where each species can be grown sep-807

arately and isolated from a multispecies community, such that808

the communities can be disassembled between transfers. We809

select 7 out of 21 parent communities by degradation scores810

(Fig. 1D, Alg. 10). By disassembling these communities,811

we maintain a record of samples of each species that were812

present in at least one selected community in each round. If813

a species is present in more than one selected community, we814

sample from the highest-scoring community that this species815

was part of. In this way, we are able to re-introduce any816

species that went extinct.817

To select against extinctions and communities whose mem-818

bers out-compete one another, we scale the degradation score819

D by the fraction of surviving species at the end of a round820

of growth as follows:821

D̂ =D× number of surviving species
number of species in the community

. (11)

For example, if a 5-species community loses one member822

species, its degradation score is scaled by 0.8. Next, we draw823

21 offspring communities from the 7 (n= 1, . . . , 7) selected824

parent communities for the next round of growth, in propor-825

tion to their scores D̂ with probability:826

1∑
k D̂k

D̂n, (12)

for each selected community. In this way, parent communi-827

ties with (i) high degradation scores and (ii) low or no extinc-828

tions will have more offspring. The offspring communities829

have the same species composition as their parents, but we830

reset the initial abundance of each species to a specified pop-831

ulation size (100 in the ODE, around 10 cells in the IBM by832

a random sampling with replacement from a Poisson distri-833

bution) to standardize the growth conditions between rounds,834

i.e. to maintain heritability.835

To introduce variability between communities, we change the836

species composition of a few of the 21 offspring communi-837

ties. First, we choose 5 offspring communities at random838

and remove one or more species, always one species plus an839

additional number drawn from Poisson(0.5). If the drawn840

number is equal to or higher than the number of species cur-841

rently in the community, we leave one species to avoid emp-842

tying or completely changing the community composition.843

Having found a number of species to remove, we choose844

the species to remove with uniform probability, but avoid re-845

moving any species that is present in only this community.846

Next, we introduce one or more invader species —as above,847

1+Poisson(0.5)— chosen with uniform probability from the848

frozen stock, to 5 randomly chosen communities. These 5 are849

chosen anew and could be the same communities that we just850

removed species from, or not. In order to maintain diversity,851

we ensure that all species appear in at least one community852

by preferentially introducing species that are not currently853

present in any offspring community. See Alg. 10 for more854

details.855

Statistical and other analyses. Correlations are evaluated856

by the Spearman’s rank correlation coefficient ρ. We com-857

pare selected communities to the set of all possible commu-858

nities by a Kruskal–Wallis H test for differences in median.859

We use the scipy (36) implementations for all three methods.860

We quantify species diversity within a community (Fig. 3E,861

Fig. S2) as the Hill number of order 1 or the average effective862

number of species present in the community (39, 40), which863

is based on the Shannon index H ′:864

exp(H ′) = exp(−
∑
l=1

pl logpl), (13)

which in turn depends on the species’ relative abundances865

pl = Sl/Stot (14)

where we divide the population size Sl of each species by the866

total population size in the community Stot =
∑
lSl. If more867

than one strain is present, we sum up their population sizes868

to find the species’ total population size. We then average869

exp(H ′) over all communities to find the average effective870

number of species. The measure falls between 0 and 15 ef-871

fective species in an average community.872

Beta diversity (Fig. 4 C, D, Fig. S4) is calculated by consider-873

ing each community as a vector of the population sizes of the874

15 species. Species absence from the community is marked875

by zero. We find the beta diversity as the average Bray-Curtis876

dissimilarity of each of the 210 possible pairs in the 21 com-877

munities.878

The community coverage of nutrients and toxic compounds879

(Fig. 3F) is quantified similarly to species diversity, as the ef-880

fective number of toxic compounds invested into or nutrients881

taken up. Toxic compound coverage is calculated from the882

vector f̃·k =
∑
l f̃lk of total investment into degrading toxic883

compound k in a given community. The ’tilde’ indicates that884

we have scaled the flk for each strain of a species by the cor-885

responding population sizes of the strains in the community886
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as in Eq. (2). In this way, we emphasize the most relevant887

strain of each species and do not bias the result to the number888

of competing strains within a species. Note that we do not889

scale f̃·k by species abundance in the community. Once each890

investment f̃·k is rescaled so that
∑
k f̃·k = 1, we calculate891

the effective number of toxic compounds invested into as892

exp(H ′) = exp

(
−
∑
k=1

f̃·k log f̃·k

)
, (15)

and average this value over all 21 communities. The measure893

falls between 0 (no toxic compounds are invested into) and 10894

(all compounds). For the nutrient coverage, we use the same895

calculation using the nutrient uptake rates nij , but without896

scaling between different strains as this parameter does not897

mutate. The effective number of nutrients taken up takes val-898

ues between 0 and 4, the number of different nutrients.899

To evaluate the stability of the selection methods (Fig. 6A),900

we choose the highest-scoring community that each method901

found after 50 rounds of selection (one community for each902

repeated run of each species set), and seed 10 replicates with903

its identical initial composition. Then we grow and dilute904

them for a further 25 rounds, as we would do for the no-905

selection treatment. We do not allow mutations in these906

rounds, to focus only on the ecological stability of the found907

communities. For the analysis of sensitivity to the number of908

species in the initial species pool (Fig. 6C, Fig. S9), we sam-909

ple 5 random subsets of 6, 9, 12 from the original set of 15910

species, and run for each of them 5 simulations with differ-911

ent 21 initial communities. Drawing new species sets of the912

corresponding size would introduce further variance, which913

we would rather avoid. For the effect of the dilution factor914

(Fig. 6E, Fig. S11), we multiply the 10-cell inoculum by a915

factor 0.2, 0.5, 1, 2 or 5 for the disassembly method and scale916

the 5% dilution fraction for the other methods by the same917

factor.918
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DRAFT

Supplementary tables1035

Method 1 Method 2 p (IBM) p (ODE)
DS ∅ 4×10−10 4×10−10

DS PS 8×10−10 8×10−10

DS MS 8×10−10 -
DS PIS 1×10−9 2×10−8

DS MIS 8×10−10 -
DS DR 8×10−10 8×10−10

DS NS 8×10−10 8×10−10

PS ∅ 1.0 1.0
PS MS 1×10−7 -
PS PIS 4×10−9 7×10−5

PS PR 8×10−10 3×10−9

PS NS 8×10−10 0.1
MS ∅ 1.0 -
MS MIS 0.67 -
MS MR 8×10−10 -
MS NS 0.3 -
PIS ∅ 9×10−6 0.8
MIS ∅ 1.0 -

Table S1. P-values for Fig.2A-D a Wilcoxon signed-rank test of difference in maximum degradation between methods.

Method 1 Method 2 p (IBM) p (ODE)
DS PS 8×10−10 7×10−10

DS MS 8×10−10 -
DS PIS 8×10−10 7×10−10

DS MIS 8×10−10 -
DS DR 8×10−10 8×10−10

DS NS 8×10−10 7×10−10

PS MS 1×10−4 -
PS PIS 3×10−8 7×10−4

PS PR 2×10−9 7×10−7

PS NS 8×10−10 3×10−6

MS MIS 8×10−2 -
MS MR 2×10−8 -
MS NS 2×10−9

Table S2. P-values for Fig.2E-H a Wilcoxon signed-rank test of difference in degradation ranks between methods.
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DRAFT
Method 1 Method 2 p (IBM) p (ODE)

DS PS 6×10−9 8×10−10

DS MS 8×10−10 -
DS PIS 8×10−10 8×10−10

DS MIS 8×10−10 -
DS DR 8×10−10 6×10−4

DS NS 8×10−10 8×10−10

PS MS 1×10−9 -
PS PIS 0.1 0.01
PS PR 2×10−8 0.5
PS NS 8×10−10 0.3
MS MIS 0.13 -
MS MR 1×10−9 -
MS NS 1×10−5 -

Table S3. P-values from a Wilcoxon signed-rank test of difference in total investment in communities, between methods for Fig.3A-D.
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Supplementary figures1036
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Fig. S1. The difference in median degradation between round 50 and round 0 for each propagation method, corresponding to Fig. 2. The two-sided Wilcoxon test for

difference in degradation against the no-selection control is significant for the selection methods DS, PS and MS. Data generated by the IBM.
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Fig. S2. Time-series of the species diversity (effective number of species per community) corresponding to Fig. 4D. Each panel shows the mean ± standard deviation over

the 10 repeated runs, for each species set 1-5, for one propagation method. Data generated by the IBM.
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Fig. S3. Time-series of the number of explored communities, corresponding to Fig. 4B. Each panel shows the mean± standard deviation over the 10 repeated runs, for each

species set 1-5, for one propagation method. Data generated by the IBM.
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Fig. S4. Time-series of the beta diversity corresponding to Fig. 4F. Each panel shows the mean± standard deviation over the 10 repeated runs, for each species set 1-5, for

one propagation method. Data generated by the IBM.
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Fig. S5. Distribution of p-values from a one-sided Wilcoxon signed-rank test of whether the total investment fl· of a species is larger/smaller in the last round where a species

survived, than the investment of the ancestral species. There is one bar for each selection method, with 15 species x 5 sets of species for each bar. The alternative hypothesis

is that difference in investment (ancestral-evolved) is greater (green) or less (blue) than zero. Data generated by the IBM. Data for DS is shown in Fig. 5.
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Fig. S6. Histogram of difference in max degradation between evolved and ancestral communities. Triangles indicate the mean values for each species set. Data generated

by the IBM.
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Fig. S7. Time-series of max. degradation over 50 rounds of selection, for the different propagation methods. Each plot corresponds to one species set and shows the

maximum degradation in the meta-community averaged over repeats, with the standard deviation in shades of the corresponding color. For each species set, each repeat etc,

the degradation score at transfer 50 forms the swarms in Fig. 2. The black line shows the degradation score of the best ancestral community out of the 32767 combinations.

Data generated by the IBM.
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Fig. S8. Effect on max community degradation score from changing the number of communities to receive a migrating species. Data generated by the IBM.
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Fig. S9. Effect on max community degradation score from changing the number of species in the ancestral community. Different marker shape indicates sub-sample (1-5) for

each species group of size 6, 9, 12. For 15 species we keep the original species sets. Data generated by the IBM.
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Fig. S10. Effect on max community degradation score from changing the number of communities. Data generated by the IBM.
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Fig. S11. Effect on max community degradation score from scaling the dilution factor or inoculum size. Data generated by the IBM.
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Fig. S12. Illustration of the variables and processes in the individual-based model. Cells of a certain species vary in their preferences for nutrients and degradation capabilities.

Cells use the available nutrients to degrade the toxic compounds and for cell division.
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Fig. S13. Illustration of the variables and processes in the ODE model. Populations of cells vary in their preferences for nutrients and degradation capabilities. The populations

use the available nutrients to degrade the toxic compounds and to grow.
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Pseudo-code for implementation of models and selection methods1037

Input: A set of 15 species, defined by model parameters.
Input: Experimental parameters: Number of communities, time span [t0, tend] of growth in batch. Community bottleneck

β = 1/3, dilution ratio d ∈ [0, 1]. Initial conditions Si(t0), Nj(t0), Tk(t0).
Assemble 21 communities by randomly drawing 4 species with replacement from the species set. Ensure that each species is
present in at least one initial community.

for Each round of selection do
// Population growth, interspecies competition and invasion of mutants
for Each community do

Grow the communities for a time span [t0, tend]. (IBM implementation: Alg. 2, ODE implementation: Alg. 6).
Save the population sizes Si(tend) for each strain i in the community
Save the end-state concentrations Tk(tend) for each toxic compound k
Compute the degradation score D from Tk(tend) by Eq. (1)

end
// Propagate the communities by the chosen selection method
// Required parameters: the community bottleneck β, dilution ratio d
// Required variables: degradation scores D for each community
// For propagule method, follow Algs. 7 and 8
// For migrant pool method, IBM only, follow Alg. 9
// For disassembly method, follow Alg. 10
// Replenish the substrates
Set Nj(t0) =N0 and Tk(t0) = T0 for all j, k

end
Algorithm 1: Overall flow of the selection simulations from population growth, community dynamics and mutations to propa-
gation by the different selection methods.
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Input: A community where each microbial strain i is defined by the parameters in Tab. 1. Size of the inactive and active
sub-populations pi0, pi1 and total population size Si = pi0 +pi1. Nutrient concentrations Nj , toxic compound
concentrations Tk.

Input: Mutation parameters: mutation rate µmut, trait deviation σm.
for Each time step do

for Each community 1, . . . , 21 do
for Each strain i do

// Maximum uptake of nutrients of this strain, used to scale the growth and degradation according to the
concentration of nutrients
max_uptake :=

∑
j(nij if Nj > nij)

// If some nutrients are depleted we re-scale nij to consume the remaining nutrients in higher amounts
if Nj < nij then

nij := 0
end
n̂ij := nij∑

j
(nij ifNj>nij)

// The largest number of cells that can consume the scarcest nutrient at this time step, we just take its integer part
Smaxi := int(min(Nj/n̂ij if Nj > n̂ij))
// Toxic compound degradation
if Smaxi > 0 then

// Maximal population that can degrade
Pi,tot := min(Smaxi , Si)
for Each compound Tk do

if Tk cannot be completely degraded in this time step then
Tk := Tk−Pi,tot ·max_uptake ·fik
for Each nutrient Nj do

Nj := Nj− n̂ij ·Pi,tot ·fik
end

end
else

Degrade the remaining toxic compounds and consume the corresponding nutrients
end

end
end
// Cell division step 1: Costly activation
Alg. 3.

end
end
// Cell division step 2: Replication
Alg. 4.
// Cell death
Alg. 5.

end
Algorithm 2: Implementation of population growth, competition and mutations in the IBM model described in the section
Individual-based model.
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Input: Communities where each strain i is defined by parameters in Tab. 1. Inactive and active sub-populations pi0, pi1. The
maximal population Smaxi that can afford to consume nutrients, based on their current availability. Re-scaled nutrient
consumption rates n̂ij . Current nutrient concentrations Nj .

Input: Parameters: Initial nutrient concentration N0.
// Cell activation
if Smaxi > 0 then

// Already activated cells consume nutrients
if Smaxi ≥ pi1 then

Nj := Nj− n̂ij ·pi1 · (1−
∑
k fik)

Smaxi := Smaxi −pi1
end
else

Deactivate cells that cannot afford to stay activated, consume the corresponding nutrients for cells that remain
activated, set Smaxi := 0

end
// Newly activated cells
cells_activate := Poisson(ai ·pi0 ·max_uptake · (1−

∑
k fik) ·

∑
j(n̂ij ·Nj/N0))

if cells_activate > pi0 then
cells_activate := pi0

end
if cells_activate > Smaxi then

cells_activate := Smaxi

end
pi0 := pi0− cells_activate
pi1 := pi1 + cells_activate
for Each nutrient Nj do

Nj := Nj− n̂ij · cells_activate · (1−
∑
k fik)

end
end
else

Deactivate all the activated cells
end
return Populations pi0, pi1 for strain i, current nutrient concentrations Nj

Algorithm 3: Activation of cells, the first step of cell division in the IBM described in Alg. 2.
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Input: Communities where each strain i is defined by parameters in Tab. 1. Inactive and active sub-populations pi0, pi1.
for Each community do

for Each strain i in the community do
// Calculate the number of new cells appearing due to division
new_cells :=Poisson (pi1 · ri · (1−

∑
k fik))

if new_cells > pi1 then
new_cells := pi1

end
// Calculate how many new_cells will carry mutations
mutants :=Poisson (new_cells ·µmut)
if mutants > new_cells then

mutants := new_cells
end
pi1 := pi1−new_cells
pi0 := pi0 +new_cells ·2−mutants
//Mutation
for Each new mutant do

Add a new strain i to the community, with the model parameters of the ancestor and set pi0 := 1 and pi1 := 0
Decide which fik to mutate by drawing from Bernoulli

(
1

Ntox

)
for each fik; ensure that at least one fik mutates

for Each successful draw do
Multiply the chosen fik, by a factor x∼ lognormal(0.0,σm)
Re-scale so

∑
k fik ≤ 1, if needed

end
end

end
end
return Populations pi0, pi1 for each strain i, including the new ones resulted from mutation.

Algorithm 4: Replication and mutation, second step of cell division of the IBM described in Alg. 2.

Input: Communities where each strain i is defined by parameters in Tab. 1. Inactive and active sub-populations pi0, pi1.
Current concentrations Tk of toxic compounds. Death rates mik and K constant for the Hill function.

for Each community do
for Each strain i, looping over the community in reverse order do

pi0 := pi0−Poisson
(
pi0 ·

∑
k(mik ·

T 2
k

T 2
k

+K2 )
)

; ensure that pi0 ≥ 0

pi1 := pi1− Poisson
(
pi1 ·

∑
k(mik ·

T 2
k

T 2
k

+K2 )
)

; ensure that pi1 ≥ 0

if pi0 +pi1 = 0 then
remove strain i from the community

end
end
Randomly shuffle strains in community

end
return Populations pi0, pi1 for each strain i.

Algorithm 5: Cell death of the IBM described in Alg. 2.
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Input: Strains with model parameters from 2 for each population i.
Input: Mutation parameters: rate µmut, trait deviation σm.
Input: Experimental parameters: Number of toxic compounds Ntox, initial concentrations N0, T0 of nutrients and toxic

compounds, initial population size S0. Time span for growth [t0, tend]
for Each community do

// Growth and competition within one round
Solve the equations Eq. (6)–Eq. (8) for a time span [t0, tend].
Save the end states Si(tend), Nj(tend), Tk(tend).
// Mutations, ODE model
for Each strain i, with probability µmut do

Copy the species parameters to an empty place in the list of populations
Choose a fik at random by drawing from Bernoulli(1/Ntox) for each k = 1, . . . , 10
For each chosen fik, multiply by a factor xk ∼ lognormal(0.0, σm)
Set the inoculum size to S0

end
end
return Si(tend), Nj(tend), Tk(tend), fik
Algorithm 6: Implementation of population growth, competition and mutations in the ODE model described in the section
Population-level model. To solve the equations, we use dopri5 from the SciPy library (35, 36).

Input: Communities with populations Si and degradation scores D. End states Tk(tend).
Input: Experimental parameters: selection bottleneck β = 1/3, dilution ratio d.
Rank the communities by degradation D
Select the top Nβ = 7 of communities with the highest ranks.
// Re-populate the new set of tubes
Allocate 1/β new tubes for each selected community
for Each selected community 1, 2, . . . , 7 do

for Each population Si in the selected community do
// Dilute the population
Dilute Si(t0) := d ·Si(tend)
if Si(t0)< 1.0 then

// The population is extinct
Set Si(t0) := 0.0
Remove all species parameters from the community

end
Copy model parameters and population sizes Si(t0) of each strain in the parent communities to each of the 1/β
offspring communities

end
end

Algorithm 7: Implementation of the propagule selection method for the ODE model.
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Input: Communities with degradation scores D and strains Si with total population Si = pi0 +pi1. End-state concentration
of toxic compounds Tk(tend).

Input: Experimental parameters: selection bottleneck β = 1/3, dilution ratio d.
Rank the communities by D
Select the top Nβ = 7 of communities with the highest ranks
// Re-populate the new set of tubes
Allocate 1/β new tubes for each selected community
for Each selected community 1, 2, . . . , 7 do

for Each strain i in the community do
// Deactivate cells
pi0(tend) = Si(tend)
pi1(tend) = 0
// Dilute the population, new cells will be inactivated
pi0(t0) :=Poisson(d ·Si(tend))
if pi0(t0)> Si(tend) then

pi0(t0) = Si(tend)
end
if pi0(t0)> 0 then

Append strain i with population p0(t0) to the new tube
end
// Delete selected cells to not chose them again
Si(tend) = Si(tend)−pi0(t0)

end
end

Algorithm 8: Implementation of the propagule selection method for the IBM.
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Input: Communities with degradation scores D and strains Si with total population Si = pi0 +pi1. End-state concentration
of toxic compounds Tk(tend).

Input: Experimental parameters: selection bottleneck β = 1/3, dilution ratio d.
Rank the communities by D
Select the top Nβ = 7 communities with the highest ranks, and pool their populations.
// Re-populate the new set of tubes
Allocate 21 new tubes
for Each offspring community 1, 2, . . . , 21 do

for Each strain i in the pool do
// Deactivate cells
pi0(tend) = Si(tend)
pi1(tend) = 0
// Dilute the population, new cells will be inactivated
Draw pi0(t0) from Poisson ( d

Nβ
·Si(tend))

if pi0(t0)> Si(tend) then
pi0(t0) = Si(tend)

end
if pi0(t0)> 0 then

Append strain i with population pi0(t0) to the new tube
end
// Delete selected cells to not chose them again
Si(tend) = Si(tend)−pi0(t0)

end
end

Algorithm 9: Implementation of the migrant pool selection method for the IBM
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Input: Communities with populations Si (in the IBM Si = pi0 +pi1) with model parameters from (Tab. 1, Tab. 2) and
degradation scores D.

Input: Experimental parameters: selection bottleneck β = 1/3, initial population size S0 and number of new communities to
emigrate species from Nemi = 5, and immigrate species to Nimmi = 5.

// Rank the communities
Rank the communities by the degradation score D
// Update the fossil record with the top communities in this round
for Each selected community 1, 2, . . . , 7 do

for Each species l in the selected community do
if The record of species l is not yet updated in this round of selection then

Add all strains i of species l to the fossil record, including the corresponding parameters and population sizes
end

end
end
// Propose new communities in proportion to their degradation scores and survival
Follow Alg. 11
// Emigration
Draw Nemi = 5 communities with uniform probability
for Each chosen community 1, . . . , Nemi do

// Find emigrating species
Number_of_emigrants= 1+ Poisson(0.5)
Verify that at least one species will remain
for Each emigrant do

Choose the emigrant at random, with priority for species that occur in more than one community
Remove all strains of this species from the community

end
end
// Immigration
Draw Nimmi = 5 communities with uniform probability
for Each chosen community 1, . . . , Nimmi do

// Find immigrating species
Number_of_immigrants= 1+ Poisson(0.5)
for Each immigrant do

if There are species that do not feature in any community then
Choose one of them at random

end
else

Choose a species that is not already in the community with uniform probability
end
Take all strains of the species from the species record, add them to the offspring community
Set the population size to S0 (approximately S0 in the IBM, see Alg. 11), in proportion to strain relative abundance

end
end

Algorithm 10: Implementation of the disassembly method.
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Input: The subset of selected communities, their degradation scores D. Population sizes Si of all strains (in the IBM,
Si = pi0 +pi1).

Input: Parameters: Number of species Nspc that were inoculated in the different communities. Inoculum size per species S0.
// Scale degradation scores by species extinctions
for Each selected community 1, 2, . . . , 7 do

// Count the number of surviving species in this community
Set the extinction counter E = 0
for Each species l in the community do

if Si = 0 for all strains of species l then
Set E := E+1
// Re-introduce species l from the record
Take all strains of species l from the most recent record

end
end
// Scale the degradation score D by the fraction of surviving species
Set D̂ :=D · (Nspc−E)/Nspc

end
// Calculate a probability distribution based on degradation scores
Set pn := D̂n/

∑
m D̂m for each community n

// Propose new communities randomly in proportion to pn
for Each offspring community do

Choose a parental community at random, by the probability distribution pn
for Each species l in the parental community do

Copy the growth parameters and fik of all strains i to the offspring community
// ODE: Set the population size of each species to S0 in total, in proportion to the relative abundance of the strains.
// IBM: Sample approximately S0 cells with replacement as follows:
for Each strain i (with population Si) of species l (with population Sl) do

//Deactivate cells
pi0(tend) = Si(tend)
pi1(tend) = 0
// Draw new population
Draw pi0(t0) from Poisson (S0 · SiSl )
if pi0(t0)> 0 then

Add strain i with population pi0(t0) to the new community
end

end
end

end
Algorithm 11: Method to propose new communities based on their degradation scores from the previous round. Called by
Alg. 10
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