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Abstract

Cell dynamics and biological function are governed by changing patterns of gene expression. Intricate
gene interaction networks orchestrate these changes. Inferring these interactions from data is a notoriously
difficult inverse problem. The majority of existing network inference methods work at the population
level. They construct static representations of gene regulatory networks, and they do not naturally
allow us to infer differences in gene regulation across heterogeneous cell populations. Here we build
upon recent dynamical inference methods that model single cell dynamics using Markov processes, which
leads to an information-theoretic approach, locaTE, which employs the localised transfer entropy to infer
cell-specific, causal gene regulatory networks. LocaTE uses high-resolution estimates of dynamics and
geometry of the cellular gene expression manifold to inform inference of regulatory interactions. We find
that this approach is superior to static inference methods, often by a significant margin. We demonstrate
that factor analysis can give detailed insights into the inferred cell-specific GRNs. In application to
three experimental datasets, we demonstrate superior performance and additional insights compared to
stancard static GRN inference methods. For example, we recover key transcription factors and regulatory
interactions driving mouse primitive endoderm formation, pancreatic development, and haematopoiesis.
For both simulated and experimental data, we find that locaTE provides a powerful, efficient and scalable
network inference method that allows us to distil cell-specific networks from single cell data.

1 Introduction
Cell identity is controlled by the dynamics of gene regulation networks. Identifying and characterising
gene regulatory interactions is a central aim of cell and systems biology. A frequently cited advantage of
single cell assays is that population heterogeneity is captured, allowing for the detection and study of rare
cellular phenotypes that would otherwise be unobservable from bulk studies [1]. This also allows us to detect
variability within groups of cells which would conventionally be regarded as being of the same “type”. The
popularity of single cell data has spurred rapid advances in data analysis and modelling methods such as
trajectory inference [2], dimensionality reduction [3], and network inference [4, 5].

In contrast to bulk assays where only population-averaged expression can be measured, single cell data
is more abundant, often vastly so. Modern datasets allow us to overcome the “large-p small-N problem” [6],
in which the number of predictions outnumber the number of samples [7]. This problem has been plaguing
gene regulatory network inference because the number of predictions grows quadratically with the number
of genes considered. In this vein, a collection of methods have been developed for network inference from
single cell data, some of which build on methods originally intended for bulk expression data, and others
which are specifically tailored to single cell data. The recent surveys in [8, 9, 5] provide an overview of
the current methodology. The overwhelming majority of network inference methods aim to reconstruct
a single static network [5, 8] that describes the set of possible interactions occurring within an observed
population. Given the biological importance of cellular heterogeneity, a natural expectation is that variations
in transcriptional state may correspond to variations in (cell state dependent) regulatory interactions which
cannot be represented as static networks [7], and indeed has been observed empirically in previous studies
[10, 11].
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Figure 1: Cell-specific network inference from estimated dynamics. LocaTE takes as input a tran-
sition matrix P that encodes inferred cellular dynamics as a Markov chain on the cell state manifold. By
considering the coupling pXτ , X´τ q, locaTE produces an estimate of transfer entropy for each cell i and each
pair of genes pj, kq.

The clear need for methods that can learn cell-specific networks [7, 12], is now leading to new classes
of network inference methods [13, 14]. These methods seek to infer multiple networks (e.g. one per cell
type, or even one per cell) from single-cell resolved data, thus allowing us to learn about variation in
regulatory relationships over time and between conditions. Such methods generally rely on neighbourhood
or cluster information to construct networks that are cell, time, or context-specific. Existing methods
for cell-specific network inference have focused on inferring undirected networks. If from gene expression
measurements we hope to infer causal or directed interactions, then information about underlying dynamics
in a cell population is essential [15]. To this end, many methods for static network inference take advantage
of pseudotemporal orderings to inform network inference [16, 17, 18, 19, 20]. The one-dimensional nature
of pseudotime necessarily imposes a total ordering over cells, resulting in a loss of finer structure of the cell
state manifold. Recent work on trajectory inference from a Markov process viewpoint [21, 22, 23, 24] depart
from this framework and are able to model more complex dynamics on the set of observed cell states directly,
and are free from assumptions on the trajectory topology (and do not require coarse graining of the data).

Here we adopt the transfer entropy (TE) [25] as an information-theoretic measure of causality. Transfer
entropy, like other information-theoretical measures, is a model-free framework which has been used widely
in contexts such as neuroscience where abundant time-series data are available. In a Gaussian setting it
reduces to the linear Granger causality [26]. Transfer entropy has been used to predict static networks
using a pseudotemporal ordering [16, 17]. We demonstrate that the transfer entropy can be adapted to infer
cell-specific networks without imposing a prescribed ordering of cells.

Inference of cell-specific networks will help us to address problems in developmental biology, where it
is often the transient dynamics that are the most interesting since these are likely to correspond to major
epigenetic changes [7]. Our approach is tailored to such problems since we make no restricting simplifying
assumptions: the cell state space is treated as a continuum, and a priori no partitioning or clustering is
required to group or classify cells.

2 Method
Local transfer entropy of expression dynamics We represent the transcriptional state of a cell as
a vector of expression levels X “ pXp1q, . . . , XpNqq. Transfer entropy does not make assumptions on the
specific form of a model, but for the sake of illustration let us consider a model of cellular dynamics where
the expression level of each transcript Xpiq is governed by a stochastic differential equation (SDE) of the
form

dX
piq
t “ f piqpX

p1q
t , . . . , X

pNq
t qdt` σpiqpX

p1q
t , . . . , X

pNq
t qdBt. (1)

Note that this framework includes the chemical Langevin equation (CLE) [27], a biophysically derived model
of single cell expression dynamics. Under the Itô interpretation [28, 29], for a small time interval τ we may
write approximately,

X
piq
t`τ “ X

piq
t ` f piqpX

p1q
t , . . . , X

pNq
t qτ ` σpiqpX

p1q
t , . . . , X

pNq
t q

?
τZpiq, (2)
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where the Zpkq are independent and identically distributed Gaussian random variables. It is straightforward
to condition on tXpiq

t “ xu,

X
piq
t`τ |tX

piq
t “ xu “ x` f piqptX

pkq
t uk‰i, xqτ ` σpiqptX

pkq
t uk‰i, xq

?
τZpiq. (3)

For any other gene Xpjq, j ‰ i, following [30, Section 4.2], the transfer entropy with time lag τ is defined to
be

TEτ pX
pjq Ñ Xpiqq :“ E

X
piq
t

”

IpX
piq
t`τ , X

pjq
t |X

piq
t q

ı

, (4)

where

IpX,Y |Zq :“ EX,Y

“

log ρXY |Z ´ logpρX|Z b ρY |Zq
‰

(5)

is the mutual information of two random variables, X,Y , conditional on a third variable, Z. Under the
discrete approximation, the transfer entropy will be positive whenever f piq or σpiq depend on Xpjq, since
then one has IpX

piq
t`τ , X

pjq
t |X

piq
t q ą 0. In the biophysically relevant setting of the CLE, the functions f and σ

share the same functional dependence on tXpkquk when Xpiq “ x, and so for infinitesimal time-scales τ a non-
zero transfer entropy implies regulation, i.e. Bjf piq ą 0, Bjσ

piq ą 0. In the practically relevant setting where
the time-scale τ is short, the data processing inequality [31] guarantees that direct interactions will dominate
indirect interactions, i.e. for a feed-forward loop Xpiq Ñ Xpjq Ñ Xpkq, one has that Iik ă mintIij , Ijku [32].

The concept of transfer entropy has previously been used for inference of static networks where pseu-
dotemporally ordered expression data are available [16, 17]. However, in these methods the expectations in
(5), (4) are taken with respect to the set of lagged tuples of cells along a total ordering. This introduces
a strong dependence on the input pseudotemporal ordering; it also results in loss of resolution: any varia-
tion in regulatory activity over the expression space is integrated out to yield a static network. This can be
problematic since biological trajectories may exhibit bifurcating, cyclic or converging trajectories, potentially
requiring multiple runs of GRN inference on different subsets of a dataset.

We propose to take, for each observed cell X̂, the expectation (5) with respect to the evolution described
by the transition kernel P τ of (1) starting from some neighbourhood N pX̂q of the cell. For short time scales,
τ, and an appropriately sized neighbourhood, N pX̂q, (i.e. large enough to take expectations, but not so large
as to lose local detail), the resulting dynamics are therefore local. This is best understood as a conditional
transfer entropy,

TEτ

”

Xpjq Ñ Xpiq | X0 P N pX̂q
ı

:“ EX0PN pX̂q IpX
piq
τ , X

pjq
0 |X

piq
0 q.

This enables us to infer regulatory interactions that are specific to the local cell context. Some information-
theoretic static inference methods [4, 16] condition on a third gene in order to remove indirect interactions.
Instead of conditioning separately on each potential indirect interaction, our framework conditions on a local
region of the expression space. This can be interpreted as conditioning on some (potentially non-linear)
function of the overall gene expression profile that is determined by the construction of the cellular manifold
(e.g. in the case of PCA, this would be an affine combination).

Finally, since we model dynamics as a general Markov process, no assumptions on the ordering of cells
or topology of trajectories is made or necessary.

Inference in practice Typically we do not have information about the drift and diffusion terms [28] in
(1); dynamical information must instead be inferred from observed expression data. This trajectory inference
problem has been widely studied [22, 33, 2]. Since we are interested in cell-specific networks, we restrict our
focus to a class of methods that model cellular dynamics as a Markov process involving drift and diffusion
over a manifold of cell states [21, 23, 34, 24]. Let X “ txiu

N
i“1 be a sample from a population of cells, where

xi P RM is the vector of mRNA expression values for cell i; M denotes a graph constructed from X that
can be thought of as approximating some underlying manifold of cell states [35]. We assume that we have
access to a transition matrix P P RNˆN that is supported on M and that adequately describes the (“true”)
dynamics of (1). In practice, as we do in Section 3, we could use a range of recently reported methods to
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estimate P . Then M equipped with P encodes a discrete Markov chain that approximates the true cellular
dynamics. In what follows, we will write vnw “ t1, . . . , nu for n P N.

For any cell, x P M, we can construct (using e.g. a uniform distribution, truncated Gaussian, etc.)
a probability distribution supported on its neighbourhood, πx

0 . We can then consider a Markov process
Xt, t ě 0 that starts from X0 „ πx

0 and evolves under P . For some fixed τ the resulting coupling is

pX0, Xτ q „ diagpπx
0 qP

τ “: γx
τ . (6)

For a pair of genes, pj, kq, we quantify the local transfer entropy for the causal relationship j Ñ k from
knowledge of the coupling γx

t and the gene expression states,

TE
”

X
pjq
0 Ñ Xpkq

τ

ı

“ EpXτ ,X0q„γx
τ

”

IpX
pjq
0 , Xpkq

τ |X
pkq
0 q

ı

, (7)

Repeating this computation for all cells, xi P M, and gene pairs, j, k P vMw, we arrive at a tensor, Ĝ P

RNˆMˆM , such that, Ĝijk, is the transfer entropy score of j Ñ k in the neighbourhood of cell, xi. Since
the TE score matrix, Ĝi, for each cell has been learned from a local neighbourhood, it is potentially noisy.
Furthermore, it is impractical (due to limited data and computational resources) to condition on potential
indirectly interacting genes [16]. Thus, TE scores may contain noise and spurious signals resulting from
indirect interactions. To deal with this, we first filter interaction scores using context likelihood of relatedness
(CLR) [36, 4] and then solve a manifold-regularised optimisation problem to both de-noise the interaction
signals, and to attenuate noise and indirect interactions [16, 13].

Context likelihood of relatedness. Given raw TE scores Ĝ, we use the context likelihood of relatedness
[37] to filter scored interactions. The CLR algorithm has been shown to be an efficient mechanism for filtering
out indirect interactions in the context of mutual information scores[37] and other information theoretical
measures [4] For a pair of genes pi, jq and given a interaction score matrix, A, we compute zi (resp. zj) to
be the z-score of Aij with respect to Ai¨ (resp. A¨j). Then we define the weighted CLR score for pi, jq to be

rAij “
Aij

2

b

maxp0, ziq2 `maxp0, zjq2. (8)

Applying CLR filtering along the first axis of Ĝ, we obtain the filtered tensor, rG. We modify the original
approach of [37] and weigh the CLR score by the initial MI value Ĝij . This is important since CLR was
originally designed to filter interactions in static networks. In cell-specific networks, very few edges may be
“active” in any given cellular context; then entire rows or columns of Ĝ may consist only of noise. Computing
z-scores along those rows or columns would put both noise and signal on the same scale.

Smoothing and denoising The tensor rG contains a (noisy) matrix of filtered interaction scores, one for
each cell. For notational convenience we write rG as rG P RNˆM2 , i.e. each row is a length-M2 unfolded score
matrix. We propose to solve the optimisation problem G “ argminX LpX;L, rGq where

LpX;L, rGq “
1

2

N
ÿ

i“1

wi}Xi¨ ´ Ĝi¨}
2
2 `

λ1

2
trpXJLXq ` λ2

N
ÿ

i“1

wi}Xi¨}1, (9)

λ1, λ2 are hyper-parameters, w is a vector of cell weights, and L is the symmetric graph Laplacian on
M. The term associated with λ1 is a manifold regularisation term corresponding to an expectation that
regulatory relationships should vary smoothly with changes in cell state, i.e. trpXJLXq is large for rapidly
fluctuating X. The term associated to λ2 is a Lasso [6] term that encourages X to be sparse, reflecting
our knowledge of biological networks [15, 13]. Together, the objective (9) encourages both parsimony and
sharing of information along the cell state manifold. The problem is a case of L1-L2-regularised least squares,
and can be solved efficiently using the scheme described in the appendix.
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Using a backward transition matrix Since above we consider couplings of the process at times p0, τq,
TE scores may reflect the underlying dynamics up to a shift in time. To remedy this, we consider couplings
symmetric in time, i.e. between p´τ, τq. While time-reversal of a diffusion-drift process away from equilib-
rium is generally not a well-posed problem, in practice, suitable backward operators have been constructed by
transposing the transition matrix [23, 38] (see Appendix A.2 for further discussions). Given an approximate
backward operator, Q, a time-symmetric coupling, γx

τ “ pQ
Jqτ diagpπx

0 qP
τ , can be constructed.

Extracting a static network Cell-specific networks can be aggregated across a cell population to generate
a static network. Averaging over individual cell-specific networks can be understood as applying the so-called
“tower” property of conditional expectation. Here we observe that inferred cell-specific networks become less
informative near the endpoints of trajectories, where temporal information is lost. Similarly, averaging may
result in signals from small subpopulations of cells to be diluted. Thus, some reweighting strategies (or
heuristics) will be useful to infer appropriate static networks.

Computational considerations The problem of cell-specific network inference is at least OpNM2q for
N cells and M genes, since each cell-gene-gene triplet must be considered. For each triplet pi, j, kq locaTE
calculates the joint distributions of pXpkq

τ , X
pjq
0 , X

pkq
0 q under the coupling γpiq. While in the worst-case (if γ

were dense) this would have complexity OpN2q, in all our applications we consider sparse γ where transitions
only occur between nearby cells, in which the complexity is Op|γpiq|q ! N2. The CLR filtering step is also
OpNM2q, and the regression step primarily involves iterative matrix products of sparse N ˆ N against
N ˆM2. We implemented locaTE using the Julia programming language [39] to take advantage of its speed
for numerical computation.

We note that with exception of the regression step, which is global, all computational steps are easily
parallelised across cells. The calculation of TE scores can alternatively be parallelised across gene pairs. This
allows locaTE to take advantage of large scale parallelisation when available, potentially drastically reducing
the compute time required. We find empirically that a large portion of computational burden arises from the
construction of the joint distribution, pXpkq

τ , X
pjq
0 , X

pkq
0 q. Since this is effectively an accumulation operation,

this can be significantly accelerated using GPU computation. We observe speedups of 100 ´ 200ˆ using
a NVIDIA V100 card1. Other steps in the locaTE pipeline (regression, factor analysis) amount to linear
algebra operations and are also amenable to GPU acceleration. For datasets in excess of „ 104 cells, the
computational cost could be greatly reduced by first grouping sampled cells into metacells, using e.g. the
approach in [41].

3 Results
We first discuss two simulation examples where the true regulatory interactions are known by design. To
illustrate the advantages of cell-specific networks, we consider examples where the network is rewired over
time. Results for a wider range of “simple” developmental trajectories are provided in Appendix B.2.

3.1 Simulated data: branch-dependent logic
Overview We start by considering a scenario where a static network cannot capture the mechanisms
underlying gene regulation. In the network in Figure 2(a) a bifurcation driven by a toggle-switch feeds into
one of two “gene expression modules”. Modules A and B involve the same genes tg6, g7, g8, g9u, but with
very different interactions among the genes: the flow of information in each module is the mirror image of
the other.

A static network (in the graphical modelling sense) is insufficient to describe this system, since the
directionality of some interactions depends on cellular context. Context dependence can alternatively be
understood as arising from the presence of higher-order interactions. Consider gene 7, which may either be

1TE calculation for each cell in the Hayashi et al. mESC-Endoderm example [40] took 5ms (GPU, NVIDIA V100) vs. 847ms
(CPU single core, Intel Xeon Gold 6242 @ 2.8 GHz)
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Figure 2: Simulated networks. (a) Bifurcating network: 5-gene bifurcating subnetwork feeding into two modules
A, B involving the same 4 genes g6, g7, g8, g9. 4-gene modules A, B each involve different regulatory interactions
involving the same species; tSNE embedding of simulated cell profiles, coloured by inferred diffusion pseudotime
cluster. (b) LocaTE output as a NˆM2 matrix in order of increasing pseudotime (top), shown alongside the ground
truth Jacobians (bottom). (c) Interactions inferred by locaTE averaged by cluster (top) shown against ground truth
interactions averaged by cluster. (d) AUPRC ratio for locaTE and other methods across 10 sampled simulation
datasets, in the setting of cell-specific inference. We show as a horizontal line the AUPRC ratio achieved by perfect
knowledge of the static network. (e) Switch network: Blue (resp. red) interactions are active when pg6 ^ p␣g5qq is
FALSE (resp. TRUE). Notably, gene 2 interacts both directly and indirectly with gene 4, depending on the system
state. (f) LocaTE output as a N ˆM2 matrix in order of increasing pseudotime (top), shown alongside the ground
truth Jacobians (bottom). (g) Interactions inferred by locaTE averaged by cluster (top) shown against ground truth
interactions averaged by cluster. (h) AUPRC ratio for locaTE and other methods across 10 sampled simulation
datasets, in the setting of cell-specific inference. We show as a horizontal line the AUPRC ratio achieved by perfect
knowledge of the static network.
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Figure 3: Regulatory modules using locaTE-NMF. (a) Top: Regulatory modules for the simulated bifurcating
network found by locaTE-NMF with k “ 8, shown as a graph spectral layout. Selected modules are shown (top 10%
of edges), along with the module activity on tSNE coordinates in inset. Bottom: smoothed module activities against
simulated time. (b) Top: Regulatory modules for the simulated switch network found by locaTE-NMF with k “ 5,
shown as a graph spring layout. Selected modules are shown (top 20% of edges), along with the module activity on
PCA coordinates in inset. Bottom: smoothed module activities against simulated time.

activated by gene 6 (in module A) or by gene 8 (in module B). This could be understood conceptually as a
hyperedge, since the corresponding Boolean rule would be

g7Ð pg6^ pg4^␣g5qq _ pg8^ p␣g4^ g5qq.

Inference of higher-order interactions is known to be an even more challenging statistical problem than
inference for pairwise interactions [15, 4]. Without trying to address this problem in generality, cell-specific
networks allow us to disentangle interactions for a certain subclass of higher-order interactions: those which
can be understood to be locally first-order, conditional on some latent variable that is encoded in the cellular
context. Since existing cell-specific network inference methods [13, 14] infer undirected edges only, such
methods are unable to distinguish the direction of information flow in this example and thus would predict
identical networks for either branch.

Simulation We simulate the network in Figure 2(a) using the BoolODE software package [5]. This uses
a chemical Langevin equation scheme for simulating biologically plausible expression dynamics: dXt “

fpXtqdt`gpXtqdBt where f, g have specific forms dictated by the reaction network. From 1,000 independent
realisations of the system’s trajectories, we generate a set of 1,000 sampled cells by sampling a cell state
from each trajectory at a time chosen uniformly at random. As a measure of ground truth interactions for
each cell xi, we compute the corresponding Jacobians Jijk “ Bjfkpxiq. In Appendix B.1 we document the
Boolean rules used to implement this network.

Inferring dynamics As input our method requires a cell-state transition matrix P . We construct an
assumed “ground truth” matrix P from the velocity of sampled cells in the expression space (“RNA velocity”)
as follows. For each observed cell, xi, we calculate the corresponding velocity vector, vi “ fpxiq. From this,
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we can construct transition probabilities to a neighbourhood of xi (in gene expression space),

Pij “
exp

´

xxj´xi,viy

σ

¯

ř

kPN ris exp
´

xxk´xi,viy

σ

¯1tj P N risu (10)

where 1 denotes the 0-1 indicator function. We set N to be the k-NN neighbourhood with k “ 25, and chose
the bandwidth σ following the median heuristic of [23]. We also consider other approaches for constructing
P : as in [38], the inner product can be replaced with cosine similarity or Pearson correlation between xj´xi

and vi in order to estimate transition probabilities depending only on the orientation of vi.
In addition to velocity-based methods, we consider a transition matrix based on diffusion pseudotime

[42], which corresponds to a random walk biased in the direction of increasing pseudotime. We also consider
the methods StationaryOT [34] and PBA [21], which were shown to have good performance for inferring
stochastic dynamics without depending on pseudotime or velocity estimates.

Inferring causal interactions We apply the method described in Section 2 with a backward matrix
obtained via the transpose (see Section A.2), for a range of parameter values pτ, λ1, λ2q. To construct
the initial neighbourhood distribution πx

0 we use quadratically regularised optimal transport [43], which
produces a local neighbourhood density similar in effect to a truncated Gaussian. In Figure 2(b) we show
the individual cell-specific networks obtained for τ “ 3, λ1 “ 25, λ2 “ 10´3 represented as vectors against
the pseudotemporal ordering, and in Figure 2(c) we show the averaged networks over the cell clusters
corresponding to the two branches. We observe overall that the the de-noised result G resembles the ground
truth. The averaged networks for module A and module B are directed and reflect the mirrored connectivities
described in Figure 2(a). Averaging networks is convenient for summarising the inference output for cell-
specific networks, but may obscure the cell-specific nature of the inference result. To illustrate this, in Figure
S7(b) we show the interaction scores for the two edges g6 Ñ g7, g7 Ñ g6, which are specific to modules A
and B, respectively. We observe that the flow of information between genes 6 and 7 is reversed on opposite
branches, demonstrating that locaTE can resolve the cell-specific directionalities of edges.

Comparison to other methods There is a lack of methods for inferring cell-specific GRNs. CeSpGRN
[13] is perhaps the method most similar to locaTE in terms of the problem it seeks to address: inferring a
N ˆGˆG array of cell-specific gene-gene interaction scores. It is limited to undirected interactions due to
use of the (Gaussian) Graphical Lasso. For a larger set of comparisons we also consider methods for static
network inference. We consider three information-theoretic methods: TENET [17] and Scribe [16], both
of which infer static directed networks from pseudotime-ordered single-cell data, as well as PIDC [4] which
infers an undirected network using partial information decomposition. We additionally consider SCODE [18]
and (for the experimental datasets) GRISLI [20], which are ODE-based models for directed inference.

Cell-specific edge detection For each triple pi, j, kq with i P vNw and j, k P vMw, we treat the problem
of detecting an edge j Ñ k in cell xi as a binary classification problem with some threshold q. To construct
the set of true positives, we consider the matrix ΠJ , where Π is a neighbourhood transition matrix such that
Πi¨ “ πxi

0 . The motivation for considering this instead of simply using the raw Jacobians, J , is that cell-
specific interactions are necessarily inferred using neighbourhood information. Strict cell-wise comparison to
a ground truth would be overly stringent and sensitive to small perturbations in the expression space. By
computing ΠJ , the ground truth signal is smoothed over the same neighbourhood that was used for inference,
allowing for more robust assessment of classifiers. We classify all potential edges for which pΠJqijk ą 0.5 to
be “true” edges.

In Figure S7(c) we show the Precision-Recall (PR) curves calculated for locaTE, as well as raw transfer
entropy (TE), transfer entropy followed by CLR filtering (TE+CLR), and the method CeSpGRN [13] which
infers cell-specific undirected networks. We find that the CLR filtering step improves upon raw TE scores
in terms of prediction performance, and that locaTE improves substantially upon both TE and TE+CLR.
This demonstrates that both the CLR filtering and the regularised regression step are essential for inference:
this can be understood as a combined effect of (1) removal of indirect interactions using the CLR algorithm,
and (2) sharing of information along the cell state manifold and attenuation of noise using the smooth and
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sparse regression. We also compute a ground-truth static network by aggregating the cell-specific ground
truth networks and calculate a static network AUPRC, corresponding to the best-case performance for a
static method, i.e. if all cells were estimated to have the same static network.

To investigate the performance of locaTE further we use the BoolODE package to generate 10 datasets
using different kinetic parameters for each simulation [5, Methods]. Thus, variation across datasets results
both from the random sampling of cells, as well as differences in the simulated biophysics. For each dataset,
we infer cell-specific networks using locaTE using several methods for trajectory inference. We consider
three approaches using velocity information: dot-product, cosine similarity, and Pearson correlation. We
also consider StationaryOT and PBA, as well as a transition kernel based on diffusion pseudotime [42]. In
Figure 2(d) we summarise performance in terms of AUPRC ratio, that is the AUPRC for inferred cell-specific
networks relative to that of a random predictor.

These results show that the trajectory reconstructions used as input to locaTE can affect the inference
result: the dot-product velocity kernel outperforms the cosine and correlation velocity kernels. This is not
unexpected, since cosine and correlation kernels depend only on the orientation of the velocity vector and
not on its magnitude – thus losing information. StationaryOT performs similarly to cosine and correlation
kernels, and the PBA and the pseudotime kernel perform worst. However, we find that all locaTE-based
methods outperform the undirected method CeSpGRN, indicating that the availability of even potentially
poor dynamical information can lead to improved inference of directed interactions. All methods perform at
least as well as the static network baseline, illustrating the value of cell-specific network inference methods
in general.

Static networks as aggregates As most methods in the literature deal with the static inference problem,
we investigate the performance of locaTE by averaging local networks across cells to form a static network
(see Figure S7(e) for representative examples). We show AUPRC ratios in Figure S7(d) for networks inferred
by locaTE, as well as other selected static inference methods. In this setting we find that locaTE performs
similarly well across trajectory inference methods, and that CeSpGRN performs marginally better. This can
be understood, at least in parts, because the aggregated networks for modules A and B together in Figure
2(a) would be indistinguishable from the corresponding undirected network (as we show in the next example,
this is not always the case). Competing static methods all perform worse, with PIDC performing best, and
SCODE performing worst, broadly in keeping with the conclusions of [5].

Downstream factor analysis Instead of using the de-noising regression described previously, we can
also apply techniques from factor analysis to the tensor of TE values. Methods such as non-negative matrix
factorisation (NMF) and non-negative tensor factorisation (NTF) seek a simplified, low-rank description of
the data. In the context of cell-specific GRNs, we are faced with an N ˆ G ˆ G array. By applying NMF
(or NTF) to the flattened N ˆ G2 matrix (resp. N ˆ G ˆ G tensor), we effectively seek groups or modules
of interactions that are active together in some region of the cell state space; here the regulatory state of a
given cell is represented as a linear combination of some inferred archetypal regulation patterns. We derive
a numerical scheme for finding matrix and tensor low-rank representations of the TE score matrix that
incorporates the same smoothing and sparsity priors as (9). This can be used as a drop-in replacement for
the (full-rank) problem (9). We describe these in detail in Appendix A.4 (NMF) and Appendix A.5 (NTF).

In Figure 3(a) we illustrate the utility of NMF and NTF for finding simplified representations of regulatory
interactions inferred using locaTE for the bifurcating example. Applying locaTE-NMF with k “ 8 factors,
we find regulatory modules whose activities are localised in the cell state manifold. Following a similar
approach to [44], an undirected graph was constructed from the locaTE-NMF gene regulatory modules
with edge affinities calculated from the Wasserstein distance between the normalised module activities. We
present a spectral layout of this graph, which exhibits the bifurcating structure that reflects the underlying
process. Examining the top edges of selected modules shows that key portions of the regulatory dynamics
are recovered. Two distinct phases of the bifurcation are found: the first corresponding activation of genes
4 and 5 by gene 3, and the second corresponding to deactivation of gene 1 by genes 4 and 5. Along each of
the branches, locaTE-NMF uncovers elements of the different regulatory logics that involve the same genes.

Tensor factorisation differs from matrix factorisation in that the learned atoms have the additional con-
straint of being separable. Because of this added structure, tensor decompositions are often found to have
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better properties (identifiablity of factors, robustness to noise [45]). We apply locaTE-NTF to find 16 rank-
one factors of the scGRN tensor, and we apply k-means clustering to group the rank-one atoms into 8 clusters
based on their activities. We find that the resulting clusters largely resemble the ones found by NMF. Unlike
NMF however, the clusters can be decomposed into smaller rank-one components, and appear less noisy
than the atoms found by NMF owing to the additional constraint. In Figure S8 we show how clusters 1
and 3 from the NTF representation split into rank-one components, demonstrating that the rank constraint
leads to finer grained representations of regulatory states.

3.2 Simulated data: switch-like behaviour
We next consider a scenario where differential regulation occurs along a linear trajectory instead of a bifur-
cation. This inference problem is more subtle than a bifurcating process given the lack of a clear branching
or clustering structure upon which regulatory interactions depend. We consider a model network depicted
in Figure 2(e): this network either contains a feed-forward loop g2Ñ g3Ñ g4, or g2Ñ g4Ñ g3, depending
on the position of a cell along the trajectory. The interaction g2 Ñ g4 is first indirect and then becomes
direct: the nature of this differential regulation is such that static GRN inference methods would observe a
superposition of these interactions, i.e. g2Ñ g3Ñ g4 as well as g2Ñ g4. As an example, this could poten-
tially lead to the g2Ñ g4 interaction being erroneously identified as an indirect interaction and thus being
pruned, if filtering heuristics such as CLR or the data-processing inequality were used [37, 17]. Cell-specific
networks may be able to disentangle these two effects.

We implement this network in BoolODE and simulate 1,000 cells. As before, we apply locaTE using a
transition kernel derived from the simulated velocity information and the same parameters as in the bifurcat-
ing dataset. We find from Figure 2(f, g) that the inferred interactions accurately capture the true directed
interactions. In Figure 2(h) we demonstrate that locaTE significantly outperforms competing methods in
terms of AUPRC, for both cell-specific and static networks. locaTE substantially outperforms CeSpGRN
in both settings for this example, in contrast to the previous example, where CeSpGRN performed well for
static inference.

We next apply locaTE-NMF to find k “ 5 regulatory modules following the same procedure as for
the bifurcating example. In Figure 3(b) we show a force-directed layout of the regulatory module graph,
upon which we label modules that correspond to the regulatory logic when the switch condition g6^ p␣g5q
is respectively on and off. In contrast to the results shown in Figure 2(g), which made use of a separate
clustering step, this demonstrates that locaTE-NMF can identify distinct regulatory states in an unsupervised
manner independent of clustering.

Together, our simulated network analyses demonstrate that locaTE is able to use dynamical information
in the form of transition matrices to improve inference of directed interactions, often substantially so. Un-
surprisingly, better estimates of dynamics lead to better results for network inference. Perhaps what is more
remarkable is that, even after aggregating cell-specific networks produced by locaTE, the resulting static
networks generally outperform competing static inference methods (see Figures S7(d, e), S9(d, e)).

3.3 mESC differentiation dataset using StationaryOT
We first consider the dataset of Hayashi et al. (2018) [40], consisting of 456 cells and 100 TFs. This dataset
is a time-series of mouse embryonic stem cells differentiating through to primitive endoderm, sampled at 0,
12, 24, 48, 72h. Cells in this differentiation process follow a linear trajectory, as can be seen in Figure 4(a).
To infer trajectories, we apply StationaryOT [34] using quadratically-regularised optimal transport to ensure
a sparse transition kernel (see Section B.3 for details). Using this transition matrix, we infer cell-specific
networks with locaTE, resulting in a 456ˆ 100ˆ 100 array of interaction scores.

Since no ground truth is available for cell-specific networks in this experimental dataset, we are only able
to validate the output of locaTE against a static benchmark. In [19] the authors constructed a reference
network from known regulatory interactions in the embryonic stem cell atlas from pluripotency evidence
(ESCAPE) database [46], which consists of 19 regulators and 100 targets. Starting from the array of cell-
specific interaction scores, we obtain a static 100ˆ 100 GRN by averaging interaction scores across cells and
comput precision-recall curves relative to the interactions in our benchmark network (Figure 4(c)). Cells
from the last 10% of pseudotime were excluded since informative dynamics are lost at the end of the observed
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trajectory. For comparison, we run CeSpGRN, which infers cell-specific undirected networks, and a collection
of static inference methods. We compare a subnetwork of the inferred networks to the ESCAPE reference. In
the directed setting, we find that locaTE outperforms other methods in terms of AUPRC, and performs well
in terms of EP (0.496, compared to a best EP of 0.553 for TENET and baseline of 0.343). For undirected
inference locaTE is out-performed by SCODE (AUPRCs of 0.453 and 0.483 respectively). Together with the
observation that SCODE performs poorly for directed inference, this suggests that, despite being a method
for directed inference, SCODE may be prone to detecting interactions but with the wrong directionality;
PIDC [4] is the second best performing method in terms of AUPRC (0.456).

Since locaTE infers cell-specific networks, we can ask questions at finer resolution than possible at the
population level. To demonstrate the power of this type of analysis, we use locaTE-NMF with k “ 8 factors
to find regulatory modules that are active at different stages along the trajectory (Figure 4(d)). Hierarchical
clustering of the inferred factor activities produces three groups, corresponding to “early”, “mid”, and “late”
trajectory stages. For each cluster we compute a representative network by taking weighted averages of
NMF factors, and the top 0.25% of edges for each stage are shown in Figure 4(e). It is clear that the nature
of the inferred regulatory interactions changes drastically between stages. Included among the top inferred
interactions are the canonical ones previously reported to be associated with maintenance of pluripotency
and embryonic development, including Nanog-Zfp42 [47], Foxd3-Nanog [48] and Sall4-Klf2 [49] which are
active early in the trajectory. Top inferred interactions for the late trajectory include Epas1 (Hif2a)-Pou5f1
(Oct4), which is known to play a role in embryonic development [50]; and Epas1 (Hif2a)-Bhlhe40 (Dec1),
which plays a role in suppression of Deptor [51], a stemness factor known to be downregulated during ES
differentiation [52].

For each stage, we rank potential regulators by their out-edge eigenvector centrality and show the 25
top-ranked genes for each stage (see Figure S13(a)). We find that many of the top genes are known to be
associated with stem cell development, including Nanog, Pou5f1 (Oct4), Sox2 [48], Gata6 [53], Zfp42 [47].
These gene lists are input to Metascape [54] to find corresponding Gene Ontology (GO) annotations (Figure
S13). Among the gene set annotations found for the early trajectory, we find that enriched pathways with
the highest confidence are those associated with pluripotency and embryonic morphogenesis. Annotations
for the mid and late trajectory largely correspond to cell fate commitment, endoderm formation, and organ
development. These annotations reflect the developmental progression of embryonic stem cell differentiation
to primitive endoderm.

3.4 Pancreas development dataset with RNA velocity
Next we consider a murine pancreatic development dataset of Bastidas-Ponce et al. [55]; here aspects of
the cellular dynamics are captured in the form of RNA velocity estimates. The dataset consists of 2,531
cells, and we filter for 82 transcription factors following the preprocessing of [20]. We apply the scVelo [56]
package to produce RNA velocity estimates, and CellRank [23] with a cosine kernel to produce a transition
matrix encoding the inferred dynamics on the cell set.

We apply locaTE with the RNA-velocity derived transition matrix, and obtain a 2, 531ˆ82ˆ82 array of
cell-specific interaction scores. In Figure 5(a) we show a UMAP embedding of the full dataset with streamlines
visualising RNA-velocity dynamics. To illustrate the heterogeneity in the networks inferred by locaTE, we
also colour cells by their corresponding cell-specific GRN using the first diffusion component in “scGRN-
space” (see Figure S14(b)). This reveals a clear gradient along the differentiation trajectory, suggesting that
the networks output by locaTE capture a progression in regulatory interactions over developmental time.
The highest-scoring interactions involve the genes Fos and Egr1, which are well known to play a role in stress
response [58]. Fos expression has been documented to be an dissocation-induced artifact in scRNA-seq [59],
and we therefore conservatively filter out interactions involving Fos or Egr1 in subsequent analyses.

As a first summary of the inference output, we produce an 80ˆ80 static GRN by averaging (as before we
exclude the last 10% of pseudotime). Figure 5(b) shows the top 1% of edges from this network. We observe
that the genes with highest out-edge eigenvector centrality include Nkx6-1, known to be a master regulator
of pancreatic beta cell development [57, 60], as well as Isl1 and Pdx1, known determinants of alpha and beta
cell fate [61]. In [57] the authors report evidence for a 4-gene network (henceforth referred to as the α/β
network) involving Nkx6-1, Pdx1, Isl1 and Arx, that drives alpha and beta fate determination (Figure 5(e)).
We find that all 4 genes have high out-edge centrality in the inferred static network, and furthermore we find
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Figure 4: ES-endoderm development dataset. (a) PCA embedding of 456 cells along an ES-endoderm differ-
entiation trajectory, coloured by (top) example neighbourhood density (bottom) change in density along evolution
of Markov process. (b) PCA embedding of (top) expression profiles (bottom) cell-specific interaction networks,
coloured by diffusion pseudotime. (c) Precision-recall curves against the ESCAPE reference for static inference, both
directed and undirected. (d) Regulatory module activities found using locaTE-NMF, clustered by activity along the
trajectory. (e) Graph layout of regulatory modules found by locaTE-NMF colored by cluster together with inferred
networks (top 0.25% of all edges) for early, mid and late module clusters. Network nodes (TFs) are coloured by
out-edge eigenvector centrality. Overall activity for each cluster of modules is shown (inset). (f) Static network
produced by averaging locaTE scGRNs, excluding final 10% of pseudotime.
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Figure 5: Pancreatic development dataset. (a) UMAP embedding of murine pancreatic development
dataset [55], with smoothed RNA velocity vector field shown. Cells are coloured according to their cluster
annotation. Averaged scGRNs are shown for selected clusters corresponding to Ngn3´, Ngn+ endocrine
progenitor, alpha and beta cells respectively. Top 1% of edges are shown, after filtering for edges involving
stress response gene Fos and Egr1. Direct (indirect) edges belonging to the α/β subnetwork are shown
in red (purple). Nodes are coloured by out-edge eigenvector centrality. (b) Static GRN constructed by
averaging over first 90% of pseudotime. Top 1% of edges are shown, after filtering for stress response genes.
(c) Nkx6.1-Arx expression and interaction scores in UMAP coordinates, and average activity of the 4-gene
α/β subnetwork of [57]; (d) Putative driver interactions associated with beta-cell fate. (e) Alpha-beta fate
determination network of [57].
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that the α/β network is recapitulated in the top-1% edges inferred network, as highlighted by the coloured
edges in Figure 5(a, b).

This dataset contains annotations for cell types. To investigate differences in regulatory state between
subpopulations, we produce cluster-averaged networks for each celltype. In Figure 5(a) we show the top
1% edges of cluster-averaged, filtered networks for the Ngn3´ EP (endocrine progenitor), Ngn3+ EP, beta
and alpha clusters (see Appendix S14 for remaining clusters). We note that the inferred network for Ngn3´
EP cells includes Sox9-Hes1. Sox9 is known to play a key role in maintaining the pancreatic progenitor cell
state by regulating Hes1 [62], an inhibitor of Neurog3 (Ngn3) [61]. This interaction is no longer present
in the Ngn3+ network, further evidence for its role in maintaining the Ngn3´ cell state. This interaction
also does not appear in the static GRN in Figure 5(b), illustrating the need for cell-specific networks in
capturing localised signals, which would be static networks or population averaging. Out-edge eigenvector
centrality of the Ngn3´ EP cluster identifies additional potential regulators including Foxa3, known to
be implicated in endodermal organ formation [63]; and Hmga2, a chromatin-associated protein expressed
during development that does not directly regulate downstream genes, but appears to have widespread
indirect effects via chromatin interactions [64].

Clusters corresponding to alpha and beta committed cells yield networks that are distinct from the
progenitor clusters. In particular, we find that the α/β network is prominent in both subpopulations. This
implies that these genes play key roles in the fate determination mechanism. To investigate this at a finer
scale we visualise expression levels and interaction scores for the Nkx6.1-Arx interaction in Figure 5(c). We
observe a fate decision boundary from expression levels that reflects the competition between Nkx6.1 and
Arx corresponding to beta and alpha fate. The interaction scores for both the Nkx6.1-Arx edge and the
entire α/β subnetwork are also strongest near this boundary. Examining again the out-edge eigenvector
centrality, we identify Xbp1 as a top regulator specific to the alpha and beta subpopulations, recently found
to be critical to maintenance of beta-cell identity [65].

Modelling of cellular dynamics as Markov processes naturally allows estimation of fate commitment in
terms of absorption probabilities [21, 23, 34] and so examining correlation of gene interactions with fate
commitment can be used to construct a putative “lineage driver” network that is correlated to a cell fate
of interest. In Figure 5(d) we construct such a network for the alpha and beta cell lineages. As we expect,
the α/β network is strongly correlated to beta cell fate. We find that Isl1 and Nkx-6.1 have higher out-edge
eigenvector centrality towards the alpha and beta lineages respectively, reflecting their roles in the known
network.

3.5 Haematopoiesis with extensions of RNA velocity
One advantage of our Markov framework is that it is agnostic to how the dynamics are inferred. Currently,
inference, interpretation and downstream use of RNA velocity estimates is a contentious topic [66, 67] and
remains an active research area. Marot-Lassauzaie et al. [68] propose κ-velo, an alternative method for
estimating RNA velocity and provide an example application to a haematopoiesis dataset where the more
established method scVelo [56] fails to recover expected trajectories. We apply locaTE to this dataset using
inferred dynamics computed by κ-velo. A bifurcation in the trajectories between myeloid and erythroid
lineages is a prominent feature in this data set (see Figure 6(a)). Erythroid-myeloid cell fate determination
is governed by a genetic switch comprised of mutually antagonistic Gata1 and Spi1 (known also as PU.1)
[69] (see illustration in Figure 6(f)). In Figure 6(b) we show the locaTE interaction score for the Gata1-
Spi1 interaction alone along with the smoothed RNA velocity vector field. We find that the peak activity
corresponds to a “dead zone” in the velocity field, while in the surrounding regions downstream, the velocity
fields are coherent and indicative of lineage commitment. This is of practical interest [68] as one interpretation
of this could be that it corresponds to cells which have high fate plasticity and are still in the “decision-
making” process.

We apply locaTE-NMF to find k “ 16 regulatory modules, and in Figure 6(d) we show a layout of
the graph constructed from modules in the same manner as Figure 3 (see Figure S16(a) for all modules).
From this we can see two clear branches corresponding to erythroid and myeloid fate. We find a module
(see Figure 6(d), labelled Myel-Ery) which appears concentrated near the bifurcation point on the UMAP
coordinates. This module is centered around activity of Spi1 and Gata1, as well as Mef2c, which is known to
be involved in lymphoid-myeloid fate determination [70]. In this module locaTE-NMF detects the key Gata1-
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Figure 6: Early-stage haematopoiesis. (a) Smoothed velocities found by κ-velo shown on UMAP co-
ordinates, colored by cluster annotation. (b) Average locaTE score for Gata1-Spi1 interactions shown on
UMAP coordinates along with smoothed velocities. (c) Static network (top 1% of all edges) produced by
averaging locaTE scGRNs along the first 90% of pseudotime. (d) Graph layout of regulatory modules
found by locaTE-NMF colored by proximity (measured by mean first passage time) from the HSC module,
shown alongside representative networks of selected modules (top 0.25% of all edges) corresponding to HSC,
Myeloid-Erythroid decision boundary, Erythroid, Eosinophil and Myeloid-Lymphoid. (e) Smoothed regula-
tory module activites shown against pseudotime. (f) Myeloid-Erythroid fate determination schematic.
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Spi1 (PU.1) interaction (edge highlighted in red). In Figure 6(d, e) we display other regulatory modules
found corresponding to various degrees of fate commitment, including haematopoietic stem cells (HSCs).
These networks uncover known hallmarks of haematopoietic development: the myeloid-lymphoid progenitor
(labelled Myel-Lymph) module prominently features Irf8, understood to play a key role in the development
of myeloid and lymphoid lineages [71, 72] (note that the lymphoid lineage is not captured in this dataset).
The erythroid module is centered on a different set of genes such as Gfi1b [73]. The HSC module features
Junb prominently, which has been implicated in homeostasis in the long-term HSC population [74]. The
HSC module contains interactions involving Baz2b, a master regulator which has been found to reprogram
lineage-committed cells to a multipotent state [75]. In the static network produced by aggregating locaTE
scGRNs (see Figure 6(c)) we find that interactions such as Gata1-Spi1 are obscured due to the population
averaging. Cell-specific methods such as locaTE that are required to learn interpretable representations of
regulatory states in an unsupervised fashion without the need for clustering.

4 Conclusion
Biology is dynamic and a static representation of a network can never do justice to what we observe phenotyp-
ically. To discern molecular causes requires experimental and theoretical advances to progress in lock-step.
The power of single cell data, and the insights we can gain from such data, crucially rely on flexible statistical
analyses that allow us to dissect the differences between gene regulatory networks (and programs) and how
they differ between cells.

Gaining deeper mechanistic insights into single-cell data requires a framework to reconstruct cell-specific,
causal networks. Our method, locaTE, relies on computing the transfer entropy (TE) [25, 30] for pairs of
genes to measure causal relationships. The approach uses approximations of the underlying dynamics but
makes no extraneous assumptions on linearity of interactions, the distribution of gene expression counts, or
the topology of the trajectory.

By using neighbourhoods in gene expression space we can infer cell-specific networks without going to
the extreme N “ 1 case. How to pool information across cells most efficiently will ultimately decide on the
success of such methods and the insights they provide. Temporal ordering helps enormously, but we are still,
by and large, not able to collect meaningful single cell transcriptomic time-course data. Pseudo-temporal
ordering or some of the many versions of RNA velocity entering the literature can provide useful information,
as can, related multi-omic data, such as scATAC-seq.

Directions for future work include investigating approaches using which local information can help dealing
with technical zeros (dropout) in single cell data. We investigated the application of data-imputation methods
for the pancreatic dataset; however, we found that imputation worsened performance for all inference methods
considered. This effect has been reported previously to be due to spurious signals being amplified [76] between
non-interacting genes.

The problem of inferring cellular dynamics, upon which application of methods such as locaTE crucially
depend, is far from solved. In particular, accurately modelling and quantifying RNA velocity remains
challenging in practice [66, 38]. Metabolic labelling assays may also provide a more accurate source of
dynamical information [24]. Lastly, a further route for improving locaTE and network inference in general
is to use relevant prior information to guide network inference.
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A Method
A.1 Code availability
An open-source Julia implementation of locaTE is available at https://github.com/zsteve/locaTE.jl.

A.2 Constructing a backward operator
It is straightforward to write:

Qij “ PrX´t “ xj |X0 “ xis “
PrX0 “ xi|X´t “ xjsPrX´t “ xjs

PrX0 “ xis

“
pP tqjiPrX´t “ xjs

PrX0 “ xis

If P encoded a reversible Markov chain and we chose PrX´t “ ¨s to be the stationary distribution, this
would give us time-reversal at equilibrium. Since we are interested in the behaviour of the process away
from equilibrium, we must prescribe PrX´t “ ¨s away from equilibrium. In practice, we find that taking
PrX´t “ ¨s “ Unif works well – this is equivalent to simply taking the transpose of P and rescaling, as done
in [23]. We refer the reader to the analysis presented in Section 4.3 of [38] for a more detailed discussion on
the transpose as a backward operator and its interpretation in the continuous limit.

A.3 (Smoothness, sparsity)-regularised regression
The problem (9) is convex and a straightforward numerical algorithm for its solution can be derived using
the alternating direction method of multipliers (ADMM) [77]. With auxiliary variables W,Z with the same
dimensions as X, the corresponding ADMM scheme is

Xpk`1q “ pα` λ1L` ρIq´1pαĜ` ρpZpkq ´W pkqqq (11)

Zpk`1q “ argmin
Z

λ2}Z}1 `
ρ

2
}Xpk`1q ´ Zpkq `W pkq}22 “ proxρ´1λ2}¨}1

pXpk`1q `W pkqq (12)

W pk`1q “W pkq `Xpk`1q ´ Zpk`1q (13)

where ρ ą 0 is the ADMM relaxation parameter (we take this to be 0.05), α “ diagpwq and

proxλ}¨}1
pxq “ sgnpxqp|x| ´ λq`,

interpreted elementwise.

A.4 Regularised non-negative matrix factorisation
Now we consider the same problem setting as (9), but this time we also require that the N ˆM2 matrix of
recovered interactions G be low rank. For a target rank k, we seek “tall” matrices U P RNˆk, V P RM2ˆk

such that G « UV J. That is, for a cell i, its scGRN is given by a linear combination of the columns of V
with coefficients Ui1, . . . , Uik:

Gi¨ “ pUV Jqi¨ “

k
ÿ

ℓ“1

UiℓV¨ℓ.

We consider a general loss function of the form

LpU, V ;L,Gq “
1

2
}UV J ´G}22 `

α

2
trpV UJLUV Jq ´ βxH,UV Jy

`
λ1

2
trpUJK1Uq ` µ1}U}1

`
λ2

2
trpV JK2V q ` µ2}V }1.
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We explain the loss function term by term. The first term encourages a fit to the matrix G of raw TE values.
We impose a penalty on the smoothness of the low-rank reconstruction (w.r.t. the graph Laplacian L) with
weight α. We add an (optional) affine term on the reconstruction, where the entries of the matrix H can be
thought of as a prior on which interactions may occur. Positive (negative) entries of H would correspond
to prior on edge existence (non-existence). Priors could be constructed from gene-gene correlations, prior
knowledge, or additional assay data (e.g. scATAC or ChIP data). In addition, we can impose Tikhonov and
sparsity penalties on the coefficients and atoms.

One can derive multiplicative update equations for the gradient descent, following the approach of [78].
For positivity-preserving updates, we decompose any Laplacian matrices into their positive and negative
parts:

L “ D ´A,

K1 “ D1 ´A1,

K2 “ D2 ´A2.

U Ð
U d pGV ` αAUV JV ` λ1A1U ` βHV q

UV JV ` αDUV JV ` λ1D1U ` µ1

V Ð
V d pGJU ` αV UJAU ` λ2A2V ` βHJUq

V UJU ` αV UJDU ` λ2D2V ` µ2
.

A.5 Regularised non-negative tensor factorisation
Let G have dimensions NˆMˆM , but for notational convenience we do our derivations in a general setting.
Write for convenience X “ S ˆd

i“1 A
piq, where the multilinear product is defined as

pAˆk Bqi1,...,ik´1,j,ik`1,...,id “

nk
ÿ

ik“1

Ai1,...,ik,...,idBj,ik .

In order to derive a multiplicative update scheme, all matrices need to be decomposed into their positive
and negative parts. We write Xpkq for the matricization of X along its k-th mode. We want to derive
multiplicative update scheme for the problem

LpS, tApiqu3i“1q “
1

2
}X ´G}22 `

α

2
trpXJ

p1qLXp1qq ´ βxH,Xy

`

3
ÿ

i“1

λi

2
trppApiqqJLpiqApiqq

`

3
ÿ

i“1

µi}A
piq}1

The final two terms are straightforward to differentiate. For the first term, note that

BApkq
1

2
}X ´G}22 “ BApkq

1

2
}Xpkq ´Gpkq}

2
2

Now employ the identity Xpkq “
“

S ˆd
i“1 A

piq
‰

pkq
“ Apkq

“

S ˆi‰k Apiq
‰

pkq
. Let Bpkq “

“

S ˆi‰k Apiq
‰

pkq
for

convenience, then one has

BApkq
1

2
}X ´G}22 “ ApkqBpkqpBpkqqJ ´GpkqpB

pkqqJ.

The second term is more involved. First consider the case k “ 1, so Xp1q “ Ap1qBp1q.

BAp1q
1

2
xXp1q, LXp1qy “ BAp1q

1

2
tr

´

pBp1qqJpAp1qqJLAp1qBp1q
¯

“ LAp1qBp1qpBp1qqJ.
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For k ‰ 1, note that if we “re-fold” LXp1q along mode 1, we get

S ˆ1 pLA
p1qq ˆją1 A

pjq.

So,
1

2
xXp1q, LXp1qy “

1

2
xS ˆd

i“1 A
piq, S ˆ1 pLA

p1qq ˆją1 A
pjqy

“
1

2
xApkqBpkq, Apkq

”

S ˆ1 pLA
p1qq ˆją1,j‰k Apjq

ı

pkq
y

“
1

2
xApkqBpkq, ApkqB̃pkqy,

where B̃pkq “
“

S ˆ1 pLA
p1qq ˆją1,j‰k Apjq

‰

pkq
. Then,

BApkq
1

2
xApkqBpkq, ApkqB̃pkqy “

1

2
Apkq

´

B̃pkqpBpkqqJ `BpkqpB̃pkqqJ
¯

.

For the third term,

BApkqxH,Xy “ HpkqpB
pkqqJ.

Combining the gradient expressions with the decomposition of Laplacians into positive and negative parts
as done for NMF, we arrive at the update scheme

Ap1q Ð
Ap1q d pGp1qpB

p1qqJ ` λ1W1A
p1q ` αWAp1qBp1qpBp1qqJ ` βHp1qpB

p1qqJq

Ap1qBp1qpBp1qqJ ` λ1D1Ap1q ` αDAp1qBp1qpBp1qqJ ` µ1

Apiq Ð
Apiq d pGpiqpB

piqqJ ` λiWiA
piq ` αApiqC´ ` βHpiqpB

piqqJq

ApiqBpiqpBpiqqJ ` λiDiApiq ` αApiqC` ` µi
, i ą 1,

where for each i ą 1 we define for convenience

C` “ pB̃
piq
` pB

piqqJ `BpiqB̃
piq
` q{2

C´ “ pB̃
piq
´ pB

piqqJ `BpiqB̃
piq
´ q{2.

B Results details
B.1 Simulated data
For each boolean network considered, simulated datasets were generated using the BoolODE package [5],
modified to record additionally the velocity vector of simulated cells as well as the Jacobian matrix of
expression state. We provide below the boolean rules that we used for simulating the two examples in
the main text; all other simulated trajectories were produced using rules provided as part of the BoolODE
package.

Boolean rules: bifurcating

g1Ð ␣pg4_ g5q

g2Ð g1

g3Ð g2

g4Ð ppg3_ g4q ^ p␣g5qq

g5Ð ppg5_ g3q ^ p␣g4qq

g6Ð ppg4^ p␣pg5_ g9qqq _ ppg7_ g6q ^ pg5^ p␣g4qqqq

g7Ð ppg6^ pg4^ p␣g5qqq _ pg8^ pg5^ p␣g4qqqq

g8Ð ppg7^ pg4^ p␣g5qqq _ pg9^ pg5^ p␣g4qqqq

g9Ð pppg8_ g9q ^ pg4^ p␣g5qqq _ pg5^ p␣pg4_ g6qqqq
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(a) (b)

(c) (d)

(e)

Figure S7: Supplementary results for simulated bifurcating network. (a) Interactions inferred
by locaTE averaged by cluster (top) shown against ground truth interactions averaged by cluster. (b)
Interaction scores for g7 Ñ g6 and g6 Ñ g7 shown for each cell on the tSNE embedding. (c) Precision-
Recall (PR) curves for cell-specific edge detection from Ĝ (raw TE values), G̃ (TE + CLR values), or G
(locaTE). Area under PR curve (AUPRC) and early precision at 10% recall (EP) is shown. (d) AUPRC
ratio for locaTE and other methods across 10 sampled simulation datasets, in the static setting. (e) Best
inferred static networks.
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(a) (b)

(c)

Figure S8: Factor analysis extracts groups of differentially regulated genes. Factor analysis results
for scGRNs using (a) locaTE-NMF with k “ 8 factors and (b) locaTE-NTF with k “ 16 factors; the
number of rank-one factors contributing to each cluster for NTF are shown in parentheses. (c) Rank-one
atoms found by locaTE-NTF corresponding to clusters 1 and 3.

Boolean rules: switch

g1Ð p␣g6q

g2Ð ppg1^ p␣pg6^ p␣g5qqqq _ pg7^ ppg6^ p␣g5qqqqq

g3Ð ppg2^ p␣pg6^ p␣g5qqqq _ ppg4_ g3q ^ ppg6^ p␣g5qqqqq

g4Ð ppg3^ p␣pg6^ p␣g5qqqq _ pg2^ ppg6^ p␣g5qqqqq

g5Ð ppg4^ p␣pg6^ p␣g5qqqqq

g6Ð ppg5_ g6qq

g7Ð pg5_ pg7^ pg6^ p␣g5qq ^ p␣g2qqq
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(a) (b) (c)

(d)

Figure S9: Supplementary results for simulated switch network. (a) Interaction scores for g2Ñ g3
and g2 Ñ g4 for each cell on the tSNE embedding. (b) Precision-Recall (PR) curves for cell-specific edge
detection from Ĝ (raw TE values), G̃ (TE + CLR values), or G (locaTE). Area under PR curve (AUPRC)
and early precision at 10% recall (EP) is shown. (c) AUPRC ratio for locaTE and other methods across 10
sampled simulation datasets, in the static setting. (d) Best inferred static networks.

Dimensionality reduction was performed using PCA and a k-NN constructed with k “ 25. Diffusion
pseudotime was then assigned with the root cell taken to be the simulated cell with the earliest simulation
time. Various transition kernels P were then constructed as described below.

Velocity kernel As described in the main text, the velocity kernel was constructed from evaluations
of the drift term of the chemical Langevin SDE using the cellrank.tl.kernels.{ DotProductScheme,
CorrelationScheme, CosineScheme } classes within CellRank [23], with the previously computed k-NN
graph and bandwidth σ estimated using the median heuristic.

Diffusion pseudotime kernel The diffusion pseudotime (DPT) kernel was constructed from the pre-
viously estimated diffusion pseudotime ordering using the cellrank.tl.kernels.PseudotimeKernel class
within CellRank.

Optimal transport kernel Cells in the top 92.5%-97.5% of pseudotime were assigned a negative flux rate
Ri so that the net negative flux was ´50. Remaining cells were assigned a positive flux rate to satisfy the
zero net flux requirement,

ř

i Ri “ 0. StationaryOT [34] with quadratically regularised optimal transport
was applied with ∆t “ 1.0, ε “ 0.05. The cost matrix was taken to be the matrix of pairwise graph distances
constructed from the k-NN graph. To prevent short-circuiting resulting from spurious edges, edges were
ranked by their random-walk betweenness centrality and the top 5% of edges were pruned.
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Population balance analysis (PBA) kernel Population balance analysis [21] was applied using the
previously constructed k-NN graph, the same flux rates Ri as used in the optimal transport kernel, and
diffusivity D “ 1.0.

Inferring scGRNs LocaTE was applied using the simulated expression data and inferred transition ker-
nels P . Expression values were discretised using the Bayesian blocks algorithm as implemented in [4]. The
chemical Langevin simulation is a continuous approximation to biophysically realistic discrete expression
dynamics, and as such produces expression values near zero. Expression values ă 10´0.5 were set to zero to
prevent many bins from being created near zero. A neighbourhood kernel was constructed using quadrati-
cally regularised optimal transport, and the backward kernel was constructed from P as described in Section
A.2. A grid-search was performed over τ P t1, . . . , 5u, λ1 P t1, 2.5, 5, 10, 25u, λ2 P t0, 0.001, 0.005, 0.01, 0.025u.
For comparison, CeSpGRN [13] was applied with a grid search performed over |Dpiq| P t5, 25, 50, 100, 250u,
σ P t0.05, 0.1, 0.25, 0.5, 1.0u, and λ P t0.005, 0.01, 0.025, 0.05, 0.1u.

Evaluating scGRNs For each simulated dataset, ground truth scGRN networks were constructed by
recording the Jacobian for each sampled cell state. Inferred scGRNs were evaluated against this ground
truth by constructing Precision-Recall curves using the approach described in the main text (Section 3.1).
Static GRNs were constructed by averaging scGRNs over the cell population.

For comparison, PIDC [4], TENET [17], Scribe [16] and SCODE [18] were also applied to infer static
networks. For TENET, we report the best results as measured by AUPRC ratio for a range of history lengths
P t1, . . . , 8u.

B.2 Results: simple trajectories
We applied locaTE with several choices of kernel to the simulated trajectory examples from [5]. For com-
parison, we also applied CeSpGRN, TENET, PIDC, Scribe and SCODE. A grid search was performed for
locaTE, CeSpGRN and TENET, and default parameters were used for the remaining methods. Performance
for each method was assessed in terms of the AUPRC ratio for directed edge inference. We summarise
performance with boxplots below, and show representative examples of the recovered static networks.
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(a) Linear network, 1000 cells.

(b) Simple bifurcating network, 1000 cells.

(c) Cycling network, 1000 cells.
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(a) Bifurcating cycling network, 1000 cells.

(b) Trifurcating network, 1000 cells.

(c) Linear long network, 1000 cells.

B.3 mESC dataset
Log-transformed expression values for 100 TFs and pseudotime estimates were fetched from the SCODE
example “data1” [18]. Cells were embedded into the top 25 principal components and a k-NN graph was
constructed with k “ 25. Using this k-NN graph, a cost matrix C of squared pairwise shortest-path distances
was calculated using the Floyd-Warshall algorithm. StationaryOT [34] was then applied using this cost
matrix, treating cells in the final 10% of pseudotime as sink cells. The flux rate Ri for sink cells was
taken to be uniform such that

ř

iPsinks Ri “ ´50, and similarly for non-sink cells so that
ř

iRsinks Ri “ 50.
Quadratically regularised optimal transport was applied with ε “ C, i.e. the mean value of C. The resulting
transition matrix was used as the forward transition matrix for locaTE. The ESCAPE reference network of
[19] was retrieved from https://github.com/gitter-lab/SINGE-supplemental.
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LocaTE was applied to estimate TE using the transition kernel derived from StationaryOT with τ “
1. Expression values were discretised using the Bayesian blocks algorithm as implemented in [4], with
artifactually small values (ă 10´2) set to zero in order to prevent many bins being created near zero. Raw TE
values were first filtered using weighted CLR, and denoising regression was applied with λ1 “ 10, λ2 “ 10´3

using the normalised k-NN graph Laplacian.
To apply locaTE-NMF, the array of raw TE values was scaled to have unit 0.9-quantile. The target rank

was set to k “ 8, L was taken to be the normalised k-NN graph Laplacian, and K1 “ K2 “ I. We chose
α “ 10, β “ 0, λ1 “ λ2 “ µ1 “ µ2 “ 1.

For comparison, PIDC [4], GRISLI [20], TENET [17], SCODE [18] and CeSpGRN [13] were applied using
the same log-transformed expression values and pseudotime estimates. For TENET a history length of 1 was
used, following the usage guidelines in its documentation. We found that TENET tended to perform worse
with longer history lengths. For SCODE, the rank parameter was set to D “ 4 which is the recommended
value. For CeSpGRN, we took a neighbourhood size |Npiq| “ 25, bandwidth σ “ 5, and sparsity level λ “ 0.1
in keeping with the suggested parameter ranges in [13, Section 3.1]. All other parameters were taken to be
their default values.

B.4 Pancreatic dataset
Expression data was processed and RNA velocity was estimated following the CellRank tutorial available
at https://cellrank.readthedocs.io/en/stable/cellrank_basics.html. A transition kernel derived
from RNA velocity was produced using cr.tl.kernels.VelocityKernel using the cosine similarity scheme.
Pseudotime estimates for visualisation were calculated using the function scvelo.tl.latent_time. Inter-
secting the genes that passed filtering with the list of TFs from [20] yielded a subset of 82 TFs. LocaTE
was applied using log-transformed expression values of the TF subset and the transition kernel derived from
RNA velocity, with τ “ 1. All other parameters were chosen to be the same as for the mESC dataset.

C Additional figures
C.1 mESC dataset
Additional figures for the mESC dataset.

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2023.01.08.523176doi: bioRxiv preprint 

https://cellrank.readthedocs.io/en/stable/cellrank_basics.html
https://doi.org/10.1101/2023.01.08.523176
http://creativecommons.org/licenses/by/4.0/


Pseudotime
In

te
ra

ct
io

n

0.00

0.02

0.04

(a)

Sox2

Epas1

Foxq1

Klf2

Gata4

Pou5f1
Elf3

Creb3l2
Foxh1

Rbpj

Kdm5b

Egr1

Parp1

Bhlhe40

Creb3

Six1

Msc

Hopx

Hnf1b

Dnmt3l

Tbx3

Nfil3
Id3

RestSatb2

Sall4

(b)

Figure S12: Smoothed plot of top 1% of inferred interactions (from static network) (a) clustered and shown
against pseudotime (b) coloured by the time of peak activity, where blue corresponds to earliest, and red
corresponds to latest.
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Figure S13: (a) Top 25 TFs for each stage by outgoing eigenvector centrality (b-d) GO terms found by
Metascape for top 25 early/mid/late TFs.
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C.2 Pancreatic development dataset
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Figure S14: (a) Per-cluster networks (top 1% of interactions) (b) First diffusion component of cell-specific
GRNs found by locaTE overlaid on UMAP coordinates (c) Smoothed plot of top 2.5% of interactions
clustered and shown against pseudotime, and corresponding static network with edges coloured by time of
peak activity (d) Putative driver networks for alpha, beta and epsilon fates.
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Figure S15: (a) Top 25 TFs for each stage by outgoing eigenvector centrality (b-e) GO terms found by
Metascape for top 25 TFs from Ngn3- EP, Ngn3+ EP, Beta, Alpha clusters.
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C.3 Haematopoiesis dataset
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Figure S16: (a) Haematopoiesis regulatory modules (top 0.5% of edges) and module activities (inset) on
UMAP coordinates. (b) Velocity pseudotime shown on UMAP coordinates highlights insufficiency of a 1D
ordering.
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