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ABSTRACT 
 
Tissues are organized in niches where cell types interact to implement specific functions. 
Spatial -omics technologies allow to decode the molecular features and spatial interactions 
that determine such niches. However, computational approaches to process and interpret 
spatial molecular profiles are challenged by the scale and diversity of this data. Here, we 
present CellCharter, an algorithmic framework for the identification, characterization, and 
comparison of cellular niches from heterogeneous spatial transcriptomics and proteomics 
datasets comprising multiple samples. CellCharter outperformed existing methods, identified 
biologically meaningful cellular niches in different contexts, and discovered spatial cancer cell 
states, characterized by cell-intrinsic features and spatial interactions between tumor and 
immune cells. In non-small cell lung cancer, CellCharter revealed a cellular niche composed 
of neutrophils and tumor cells expressing markers of hypoxia and cell migration. Expression 
of these markers determined a spatial gradient associated with cancer cell state transition and 
neutrophil infiltration. Moreover, CellCharter showed that similar compositions of immune cell 
types can exhibit remarkably different spatial organizations in different tumors, highlighting the 
need for exploring spatial cell interactions to decipher intratumor heterogeneity. Overall, 
CellCharter is a flexible and scalable framework to explore and compare the spatial 
organization of normal and malignant tissues. 
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INTRODUCTION 
 
High-throughput molecular profiling of tissue samples allows to decipher heterogeneity and 
biological activity among species, organs, and cells. Technological advances in the past few 
decades have made it possible to characterize a great variety of molecular features unbiasedly 
and, often, at single-cell resolution1. Spatial -omics approaches represent the latest revolution 
of this progress2. These technologies allow not only to quantify molecular features in single 
cells, but also to retain information on the physical location of each cell within the tissue, so 
as to map molecular data on the tissue architecture3,4. Spatial molecular profiles were shown 
to recapitulate tissue anatomy and reveal cellular niches characterized by specific admixing 
of different cell types5–7. Recently, these technologies have been applied to cancer tissues8 to 
dissect, for example, the association between cellular patterns and disease aggressiveness9–
11, or to investigate whether the oncogenic potential of mutated cells depends on their location 
within a tissue12,13. However, these technologies are often still limited in terms of resolution 
and/or scalability. Various types of spatial -omics technologies are currently being developed, 
the most advanced of which can be broadly categorized into spatial proteomics and spatial 
transcriptomics. Beyond the type of molecule that is assayed (protein or mRNA), spatial 
proteomics and transcriptomics approaches mostly differ in terms of resolution and coverage. 
Spatial proteomics largely relies on multiple cycles of multiplexed immunofluorescence or on 
imaging mass cytometry/spectrometry3,14. As such, they provide single-cell resolution data but 
low coverage, with only tens or a few hundred proteins that can be quantified. Spatial 
transcriptomics can be divided into image-based and sequencing-based approaches15,16. The 
former typically assays up to a thousand genes but achieves single-cell or even sub-cellular 
resolution. The latter can cover the entire transcriptome but within fixed-size spots that usually 
comprise between 10 and 100 cells. High-resolution implementations of sequencing-based 
spatial transcriptomics have been proposed, but they haven’t yet reached standardization and 
commercialization17–21. 
 
In parallel with the development of these technologies, new computational approaches have 
emerged to process and analyze spatial molecular profiles. One approach for characterizing 
the spatial cellular architecture is spatial clustering, which assigns cells to clusters based on 
both their intrinsic features, such as protein or mRNA abundance, and the features of 
neighboring cells in the tissue. Hence, whereas clustering approaches that are exclusively 
based on cell-intrinsic features determine populations of molecularly similar cells, spatial 
clustering determines cellular niches characterized by specific admixing of these populations. 
Methods to perform spatial clustering are mostly based on three general approaches: Hidden 
Markov Random Field (HMRF22), Graph Neural Networks (GNN23), and Neighborhood 
Composition (NC). HMRF is an extension of Hidden Markov Models that determines the state 
(i.e., cluster) of a cell based on its features and the state of an unbounded number of 
neighboring cells. A Bayesian version of HMRF is used in BayesSpace24, whereas DR.SC25 
combines dimensionality reduction of the feature space and HMRF into a single operation. 
GNN is a machine learning technique that generates vector-based representation of a node 
(e.g., a cell) from the convolution of features of its neighbors in a network26. The number of 
layers of the GNN determines the number of feature convolutions, allowing to propagate 
information beyond the immediate neighborhood. Tools like SEDR27 and STAGATE28 use a 
GNN to determine network representations of spatial transcriptomics datasets, where cells are 
nodes, and links are drawn based on spatial proximity. Lastly, by NC, we refer to methods that 
cluster cells based on the proportion of cell types within their neighborhood5. These 
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approaches require manually curated cell type annotations and do not represent truly 
systematic clustering approaches. Nonetheless, in specific contexts, they represent a scalable 
solution, especially for spatial proteomics datasets that, in a single tissue slide, may reach 
millions of cells. 
 
Outstanding challenges in the field concern scalability and portability. Indeed, given the 
currently scarce availability of spatial -omics datasets, most methods have not been designed 
to simultaneously cluster, characterize, and compare large numbers of samples. GNN 
approaches have high computing and memory requirements, even when using Graphics 
Processing Units (GPUs), as they require loading the entire network in memory. This becomes 
rapidly unfeasible for large tissue slides or when clustering multiple slides together, either 
preventing the use of the tool or requiring breaking the sample into subsections. Beyond 
scalability, clustering multiple samples requires correcting for potential batch effects. 
Currently, only BayesSpace is predisposed to include a batch effect correction procedure, 
while the other tools leave to the user to implement and integrate one. Moreover, with rapidly 
evolving technologies, tools need to be usable with data generated with different techniques. 
None of the current approaches satisfies this criterion, either because they require specific 
cell layouts or because they cannot scale with high-throughput single-cell assays. Finally, with 
expected increasing data availability, there is a need for tools capable not only to identify 
spatial clusters, but also to determine their biological features and understand how these 
features change across tissue types and conditions. Here, we introduce CellCharter 
(https://github.com/CSOgroup/cellcharter), a new algorithmic framework to address these 
challenges. 
 
RESULTS 
 
Inference, characterization, and comparison of spatial clusters 
We designed CellCharter to achieve three main objectives: 1) to analyze large cohorts of 
spatially profiled samples, 2) to be agnostic of the underlying technology used to generate 
spatial molecular profiles, and 3) to implement not only a spatial clustering algorithm, but also 
a suite of approaches for cluster characterization and comparison. CellCharter starts by taking 
in input a spatial transcriptomics or proteomics dataset represented as a matrix of features, 
corresponding to the abundance of a given gene or protein in each cell or spot, and spatial 
coordinates of each cell/spot (Fig. 1a - left). Dimensionality reduction and batch effect 
correction of the feature space are then performed using variational autoencoders29–31 (VAE) 
specifically designed for either transcriptomics or proteomics data. VAE-derived embeddings 
define the new set of features for each cell/spot. Notably, this is the only step of our method 
that depends on the type of spatial -omics data used in input and, given the modular 
architecture of CellCharter, switching from one VAE to another will not affect the rest of the 
analyses. Next, CellCharter builds a network of cells/spots based on their spatial proximity 
and, for each cell/spot 𝐴, we define the 𝑙-neighborhood of 𝐴 as the set of cells/spots that are 
at most 𝑙 steps away from 𝐴 in the network, where 𝑙	is a user-defined parameter (in Fig. 1a - 
center, 𝑙 = 3). To aggregate the features of each cell/spot with those of its 𝑙-neighborhood, we 
assign to each cell/spot 𝐴 the concatenation of its own vector of features and a series of 
vectors each containing the averages of each feature among the set of cells/spots at distance 
𝑖	from 𝐴, for each 𝑖	 ∈ [1, 𝑙]. In principle, aggregation metrics other than the average can be 
used (see Methods). Lastly, cells/spots are clustered based on this vector of aggregated 
features using a Gaussian Mixture Model (GMM) approach. To determine the final number of 
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clusters, CellCharter introduces an approach that assesses the stability of a given number of 
clusters based on the Fowlkes-Mallows index32 (Fig. 1a - right). Briefly, GMM is run multiple 
times (n = 10 in this manuscript) for each number of possible clusters within a user-defined 
range. A solution with n clusters is considered “stable” when cluster assignments are highly 
reproducible across multiple GMM runs for n, n-1, and n+1. By incorporating a batch effect 
correction step and using a highly scalable approach to encode spatial information, 
CellCharter is particularly suited to simultaneously determine spatial clusters among multiple 
samples, which is desirable to validate spatial niches across independent experiments and 
compare them across different conditions.  
 
In addition, CellCharter improves existing downstream analyses and implements new ones to: 
(1) determine cluster proportions for each sample; (2) compute cell type enrichment for each 
cluster (when cell type annotations are available); (3) estimate significant spatial proximity 
among clusters (cluster neighborhood enrichment or cluster NE) and how it varies among 
conditions (differential cluster NE); (4) characterize and compare cluster shapes (Fig. 1b). 
CellCharter introduces an analytical approach to compute asymmetric cluster NE, which is 
more efficient than currently available permutation-based methods and allows discriminating 
when the neighborhood of one cluster is enriched in another cluster but not vice versa. For 
example, this condition is well illustrated by spatial clusters derived by CellCharter on a tissue 
section of a mouse normal spleen analyzed using the CODEX spatial proteomics platform5 
(Fig. 1c). Here, the germinal center-enriched (GC) cluster (orange) is exclusively in contact 
with the marginal zone-enriched cluster (light blue) and a cluster found at the boundary 
between GC and periarterial lymphatic sheaths (PALS, purple). However, both the marginal 
zone and the GC-PALS boundary clusters make several interactions with other clusters, hence 
the enrichments of interactions between different clusters are asymmetric and this relationship 
is well captured by the cluster NE approach implemented in CellCharter (Fig. 1c). In addition, 
CellCharter is, to the best of our knowledge, the only methodology that allows to characterize 
cluster shapes. Specifically, it analyzes the shape of each cluster component, i.e., the set of 
cells belonging to the same cluster and within a connected component of the cell network that 
CellCharter uses to encode spatial proximity. For each cluster component, CellCharter 
computes its boundary, using an approach based on alpha shapes33, from which it derives the 
area and perimeter of the component, and its bounding box, i.e., the smallest rectangle 
encasing the cluster component, from which it derives the minor and major axes. Based on 
these measures, we compute 4 scores: curl, which expresses how curved or twisted a shape 
is, elongation, which is the ratio of the major and minor axes, linearity, which assesses how 
well a shape can be approximated by a linear path, and purity, which quantifies the fraction 
of cells within a cluster boundary that belong to that cluster (Fig. 1d). Representative cluster 
components from the mouse spleen dataset demonstrate how combinations of these scores 
allow to describe shapes as linear, round, circular, and irregular (Fig. 1e). Overall, CellCharter 
is a comprehensive suite to identify, characterize, and compare spatial cell clusters. 
 
To demonstrate the effectiveness and efficiency of CellCharter, we first assessed its spatial 
clustering performance against state-of-the-art approaches. To this purpose, we used an 
annotated spatial transcriptomics dataset (10x Genomics Visium) comprising 12 samples (4 
samples from 3 donors) of human dorsolateral prefrontal cortex (DLPFC)34. Within each 
sample, spots have been manually assigned to one of six cortical layers (L1-L6) or to white 
matter (WM) (Suppl. Fig. 1a). These labels are shared among samples and were used as the 
true spatial clusters. For each spatial clustering algorithm, we performed hyperparameter 
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tuning on 3 samples (one for each donor) and we clustered the spots of the remaining 9 
samples, either on each sample individually or on all of them jointly. Spatial clusters obtained 
with each method were compared to the true clusters using the Adjusted Rand Index (ARI) 
and each method was run 10 times with different seeds to assess the robustness of the 
solutions. Whereas STAGATE obtained the best performance when clustering individual 
samples (Suppl. Fig. 1b), CellCharter outperformed existing tools when jointly clustering all 
samples, both in terms of best ARI (Fig. 1f) and average ARI over multiple runs (Fig. 1g, 
Suppl. Fig. 1c). In addition, CellCharter was the most efficient algorithm in terms of 
computational and memory efficiency, both in its GPU and CPU versions (Fig. 1h), except for 
BayesSpace which was slightly faster than CellCharter in CPU, although requiring more 
memory. Interestingly, 99.85% of running time in CellCharter was dedicated to dimensionality 
reduction and batch correction (Suppl. Fig. 1d), highlighting the high efficiency of the 
clustering procedure. It is to be noted that if supplying additional samples does not provide 
additional information for the training of the VAE, the time required for dimensionality reduction 
and batch correction does not increase. Indeed, the running time of CellCharter did not 
increase when clustering more than 6 samples, whereas the running time of BayesSpace 
continued to increase (Fig. 1h). To further evaluate the performances of the best methods 
from the previous comparisons, CellCharter and STAGATE, we used a single-cell resolution 
spatial proteomics dataset (based on the CODEX platform) comprising 3 samples of normal 
mouse spleen and 6 samples of mouse spleen derived from an animal model of systemic 
lupus erythematosus5. Manual annotations from the original work classified regions in these 
samples as B-follicles, marginal zones, PALS, or red pulp (Fig. 1i). Spatial clustering was 
jointly performed on all samples. Even though no ground truth annotations were provided for 
individual cells, challenging a quantitative assessment of the clustering results (e.g., by ARI), 
visual comparisons of spatial clusters and manually annotated regions clearly showed that 
CellCharter clusters best approximated the true tissue components (Fig. 1i), generating 
clusters with higher purity (Suppl. Fig. 1e) and that better mimicked the spleen anatomy than 
STAGATE. Notably, on this large dataset (707,466 cells in total), CellCharter was four times 
faster than STAGATE, largely due to its more scalable approaches for spatial features 
encoding and clustering (Fig. 1j). 
 
CellCharter identifies changing cellular niches in the spleen of systemic lupus mice 
The mouse spleen spatial proteomics dataset gave us the opportunity of using CellCharter to 
characterize and compare spatial clusters between two conditions: healthy spleen (BALBc 
model) vs. spleen in mice affected by systemic lupus erythematosus (MRL model) (Fig. 2a). 
Using the cluster stability analysis introduced in CellCharter, we determined stable cluster 
solutions for n = 4 and n = 11 clusters (Fig. 2b) and selected the higher number of clusters to 
have a more fine-grained description of the tissue architecture (Suppl. Fig. 2a). Cells were 
assigned to all spatial clusters in all samples, although in different proportions (Fig. 2c). 
Indeed, while BALBc samples showed a similar distribution of cluster proportions, MRL 
samples appeared to be more heterogeneous, particularly among stages of the disease (early, 
intermediate, and late). Using available cell type annotations, CellCharter determined cell type 
enrichments within each cluster and, consistent with the notion of cellular niche, most clusters 
were enriched for specific combinations of cell types, recapitulating the spleen tissue 
architecture (Fig. 2d). For example, we identified a GC cluster (C3), composed of B cells and 
follicular dendritic cells (FDCs), a PALS cluster (C5) composed of CD4+ and CD8+ T cells, and 
a cluster at the GC-PALS boundary (C2), which, especially in MRL samples, was enriched in 
B220 positive (B220+) double-negative (CD8-CD4-) T cells.  
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Figure 1: CellCharter identifies, characterizes, and compares spatial clusters.  
a) Workflow of CellCharter. From left to right: Spatial molecular profiling generates a gene and/or protein 
expression matrix comprising the coordinates (x,y) of each cell; dimensionality reduction and batch 
correction are performed on this matrix, and, for each cell (cellA), its features are concatenated with the 
features of its neighbors; lastly Gaussian Mixture Model clustering is performed and best cluster 
solutions are chosen based on cluster stability. b) Downstream analyses implemented in CellCharter 
for the characterization and comparison of spatial clusters. c) Example of 3 spatial clusters (color coded) 
in a tissue sample of mouse spleen analyzed by CODEX (left) and symmetric (top right) vs. asymmetric 
(bottom right) neighborhood enrichment analysis. d) Schematic representation of the four metrics (curl, 
elongation, linearity, and purity) implemented in CellCharter to describe shape of spatial clusters. e) 
Example of spatial cluster components (color coded) in a tissue sample of mouse spleen analyzed by 
CODEX (left). Heatmap representation of the shape metric values for each cluster component (right). 
Cluster components are grouped in representative shape classes: linear, round, circular, and irregular. 
f) Manually annotated and predicted cluster labels by all the evaluated methods for one tissue slide 
from the Visium DLPFC dataset. The best Adjusted Rand Index (ARI) value is reported out of 10 
repetitions. g) Mean ARI for each DLPFC sample (over 10 repetitions, y-axis) obtained by the listed 
methods (x-axis) upon performing joint spatial clustering of all samples (n = 9 samples). h) Runtime 
and memory requirement for the evaluated clustering methods at increasing DLPFC dataset size. i) 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.10.523386doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523386
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manual annotations and spatial clusters (color coded) determined by STAGATE and CellCharter in two 
tissue samples of mouse spleen analyzed by CODEX. j) Running time (GPU) of STAGATE and 
CellCharter to perform spatial clustering of 9 mouse spleen samples. For both methods, the running 
time of the three main steps are shown separately. 
 
From normal spleen samples to increasing stages of the disease, the number of cells assigned 
to the GC cluster progressively decreased as opposed to the cells assigned to the GC-PALS 
cluster (Fig. 2e-f, insets 1-2-3). Other areas of the spleen were split into multiple clusters 
based on the prevalence of different cell types. For example, the large red pulp area was split 
into 3 clusters characterized by different dominant cell types, B cells (C7), erythroblasts (C8), 
and NK cells (C9); whereas 2 separate clusters were associated with trabecular structures 
(C10, C11), one of which was highly enriched in granulocytes, marked by Ly6G expression 
(C11). The granulocyte-enriched cluster exhibited a gradual expansion with the emergence 
and progression of the disease (Fig. 2e-f, insets 4-5-6). One cluster was associated with 
staining artifacts or missing markers (C1) (Suppl. Fig. 2b).  
 
To further appreciate changes in spatial architecture from normal spleen to systemic lupus, 
we performed cluster neighborhood enrichment (NE) and differential cluster NE analysis, to 
determine preferential interactions and changes of interactions among clusters. As 
anticipated, we found significant NE changes between BALBc and MRL samples, concerning 
the GC, marginal zone, and GC-PALS clusters. Indeed, in MRL samples, the GC cluster (C3) 
decreased interaction enrichment with the marginal zone (C4) in favor of interactions with the 
GC-PALS cluster (C2) (Fig. 2g). Comparison of cluster shapes in these three clusters 
revealed that both the GC-PALS and germinal center clusters significantly increased their curl 
values, while GC-PALS and marginal zone clusters significantly lost linearity (Fig. 2h). These 
shape differences indicated increased irregularity of the clusters and loss of the tissue 
architecture that characterize normal spleen anatomy (Fig. 2i). Overall, changes in cluster 
proportions (Fig. 2c), differential cluster NE (Fig. 2g), and shape comparisons (Fig. 2h) 
reflected a gradual expansion and infiltration of T-cells from the GC-PALS cluster into the 
germinal center (Suppl. Fig. 3a), which is consistent with germinal center activation after 
infection35. Differential cluster NE analysis also showed a change in the spatial arrangement 
of the trabecula-associated clusters (C10 and C11) and their relationship with the PALS (C6) 
and B cell-enriched red pulp (C7). Indeed, in MRL samples granulocyte-enriched trabeculae 
(C11) were present in higher proportion than in the normal spleen, and were restricted in the 
red pulp, whereas the other trabecular cluster (C10) was in contact with PALS, specifically the 
PALS cluster that was enriched in dendritic cells (Fig. 2g). Interestingly, cluster C11 lacked 
expression of CD31 (Suppl. Fig. 3b), a marker shown to be absent in spleen capillaries within 
the red pulp but present in the central arteries which are surrounded by the PALS36. Hence, 
in MRL samples, CellCharter captured the emergence of two distinct trabecular niches 
establishing preferential spatial interactions that were not present in the normal spleen: a 
CD31+/Ly6G- cluster in proximity of PALS and a CD31-/Ly6G+ cluster within the red pulp (Fig. 
2j). Overall, these analyses and results well demonstrate the potential of CellCharter not only 
to determine biologically meaningful spatial cellular niches, but also to discover how these 
niches emerge and/or change in different conditions. 
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Figure 2: Spatial cellular niches in the spleen of healthy mice and mice affected by systemic 
lupus. a) We applied CellCharter to a spatial proteomics dataset of spleens of healthy mice (BALBc) 
and mice with systemic lupus erythematosus (MRL). b) CellCharter cluster stability (y-axis) for range of 
numbers of cluster (x-axis). Most stable cluster solutions are highlighted. c) CellCharter spatial cluster 
proportions in each sample. MRL samples are grouped based on disease stage (early, intermediate, 
late). d) Cell type enrichment in each spatial cluster. Based on cell type enrichment and spatial location 
in the tissue, every cluster was associated with an anatomical area of the spleen (annotated on the 
right). e-f) Spatial clusters in one healthy sample (BALBc-1) and three systemic lupus samples at 
different disease stages: MRL-4 (early), MRL-8 (intermediate), MRL-9 (late). Areas 1, 2, and 3 zoom in 
on representative clusters associated with germinal centers. Areas 4, 5, 6 zoom in on representative 
clusters associated with granulocyte-enriched trabecular structures. g) Cluster neighborhood 
enrichment (left and center heatmap) and differential neighborhood enrichment (right heatmap) 
between spatial clusters in healthy mice and in mice affected by systemic lupus. Examples of 
differentially enriched neighborhoods are highlighted. h) Curl and linearity values (y-axis) for clusters 
C2 (left), C3 (center), and C4 (right) in healthy (green) and systemic lupus samples (red). p-values were 
computed by two-tailed Wilcoxon test. i) Representative examples of C2, C3, and C4 cluster component 
from healthy (top) and systemic lupus samples (bottom). j) Representative examples of C6, C10, and 
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C11 cluster components from BALBc-2 and MRL-5 samples (top) and matching immunofluorescence 
staining images for the indicated markers (bottom). Insets (1 and 2) highlight the differential composition 
of trabecular clusters C10 and C11. 
 
Using CellCharter to decipher intratumor heterogeneity 
 

Intratumor heterogeneity is characterized by both heterogeneous cancer cell populations, or 
cancer cell states, and diverse composition of the tumor microenvironment (TME)37–40. In this 
context, spatial molecular profiles of multiple tumor samples offer the opportunity to decipher 
how tumor and TME cell populations organize and interact in the tissue. To exploit this 
opportunity, we used CellCharter to analyze data from 8 non-small cell lung cancer tissue 
sections derived from 5 patients: 4 lung adenocarcinoma (LUAD) and 1 lung squamous cell 
carcinoma (LUSC) (Fig. 3a). All tissue samples were previously analyzed using the Nanostring 
CosMx spatial transcriptomics platform41, which assayed mRNA expression for 960 genes at 
single-cell resolution. 
 
CellCharter identified three possible stable solutions with n = 3, 8, or 20 clusters (Fig. 3b). We 
examined these solutions to investigate what information was captured by clustering at 
different granularity. For each solution, we identified “tumor-enriched” clusters, i.e., clusters 
that were largely composed of tumor cells (85-90%). Notably, more than 90% of tumor cells 
were contained in tumor-enriched clusters (Suppl. Table 1). Interestingly, we found that with 
n = 3 clusters, tumor areas from all 8 samples were largely grouped into one main tumor-
enriched cluster that was shared among all patients (Fig. 3c - top). With n = 8 clusters, the 
majority of patients exhibited one private tumor-enriched cluster (Fig. 3c - center). Lastly, with 
n = 20 clusters, each patient exhibited multiple private tumor-enriched clusters, potentially 
reflecting distinct cancer cell states (Fig. 3c – bottom and Suppl. Fig. 4a). Hence, to a certain 
extent, CellCharter stable cluster solutions reflected a hierarchy of biological entities: cancer, 
individual tumors, and intratumor cell states. To further explore spatial features of intratumor 
heterogeneity, we focused on the 20-cluster solution. Cell type enrichment analysis confirmed 
the presence of several tumor-enriched clusters and clusters characterized instead by distinct 
combinations of immune and stromal cell types, referred to as TME-enriched clusters (Fig. 
3d). Tumor-enriched clusters were almost invariably patient-specific but shared between 
independent samples derived from the same patient (Fig. 3c – barplot). The only exception 
was cluster C4, which was shared among LUAD-5 and LUAD-12 and exhibited an enrichment 
for spatial interaction with the same TME-enriched cluster (C17) in both tumors (Fig. 3d-e).  
 
Cluster NE analysis showed that tumor-enriched clusters within the same patient typically 
exhibited preferential interactions with distinct TME-enriched clusters (Fig. 3e and Suppl. Fig. 
4b). For example, in patient LUAD-9, we found 2 major tumor-enriched clusters (C0, C12): C0 
exhibited frequent interactions with a cluster composed of neutrophils and NK cells (C11), 
whereas C12 mostly interacted with a cluster composed of tumor cells and CD4+ T cells (C18) 
(Fig. 3f). To investigate whether different spatial arrangements corresponded also to different 
intrinsic transcriptional features, we performed differential expression analysis between 
clusters C0 and C12 (Suppl. Table 2). Among the upregulated genes in C0 compared to C12, 
we found the hypoxia-inducible gene NDRG1, which may also promote stem-like phenotypes 
and epithelial-to-mesenchymal transition (EMT) in lung cancer42,43, the angiogenic factor 
VEGFA, which is also induced by hypoxia44, and several genes associated with cytokine 
signaling and neutrophils chemotaxis. Prominent examples of these genes were S100A8 and 
S100A9, and chemokines CXCL1, CXCL2, and CXCL3 (Fig. 3g), which beyond their role as 
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neutrophil attractants45 have also been shown to promote tumor invasion and metastatic 
capacity24. Gene set enrichment analysis confirmed that proteins involved in cytokine signaling 
and neutrophils chemotaxis were enriched among upregulated genes in C0, which is 
consistent with this cluster always being in spatial proximity with the neutrophil-enriched 
cluster C11 (Fig. 3e-f). Upregulated genes in C12 compared to C0 were instead enriched for 
cell proliferation markers, such as MKI67, and comprised the fibroblast growth factor receptors 
FGFR1 and FGFR2 and the histone modifier EZH2 (Fig. 3g), which is frequently over-
expressed in aggressive lung adenocarcinoma46. Consistent with the upregulated markers in 
the two clusters, gene signature scores associated with cytokine signaling, response-to-
hypoxia, and EMT were higher in cluster C0 than in C12 (Suppl. Fig. 5a) and co-localized in 
the tumor niche surrounding the neutrophil-enriched cluster C11 in independent tumor 
samples (Fig. 3h and Suppl. Fig. 5b-d). Conversely, these signatures exhibited an anti-
correlated spatial gradient with a cell proliferation signature (Fig. 3h and Suppl. Fig. 5e). In 
particular, response-to-hypoxia signature scores decreased in tumor cells as their distance 
from the neutrophil-enriched cluster C11 increased and this pattern was specific for 
neutrophils in this spatial cluster (Suppl. Fig. 6a). A positive correlation between response-to-
hypoxia signature scores and neutrophil infiltration was further confirmed in multiple 
independent lung adenocarcinoma datasets (Suppl. Fig. 6b). The spatial cellular niche 
revealed by CellCharter in these tumors is likely associated with inter-cellular interactions 
between neutrophil and tumor cells. Indeed, it is known that tumor growth leads to the 
emergence of hypoxic and necrotic regions, within which cells secrete neutrophil-recruiting 
chemokines such as IL-8, IL-6, CXCL1, CXCL2, CXCL5, CXCL8, and SOD247–49, several of 
which were over-expressed in cluster C0 (Suppl. Table 2). Neutrophil recruitment further 
boosts this signaling and, importantly, promotes angiogenesis, cancer cell migration, and 
EMT. Our results hence indicate the presence of a cancer cell “spatial state” characterized by 
distinct cell intrinsic features and cancer-TME interactions.  
 
Lastly, we wondered whether cell types present in the same proportion among patients could 
assume different spatial arrangements. To investigate this possibility, we focused on the 
composition and spatial organization of the TME in the 5 lung cancer patients. Based on 
previously annotated cell types, LUAD-5, LUAD-9, and LUAD-12 exhibited a similar 
composition of immune and stromal cells, with a high fraction of neutrophils and fibroblasts 
(Fig. 4a). In these samples, epithelial cells and monocytes were both enriched in cluster C10 
in LUAD-9, but clustered separately in LUAD-5 (C2 and C5) (Fig. 4b - left). Similarly, 
neutrophils and fibroblasts were both enriched in cluster C14 in LUAD-12 but were enriched 
in different clusters (C11 and C17) in LUAD-9 (Fig. 4b - right). To quantify these differences, 
we performed cell-type NE analyses for each of these samples among all cell types (Suppl. 
Fig. 7). Consistent with spatial cluster compositions (Fig. 4b), epithelial cells and monocytes 
were spatially closer than expected in LUAD-9, but not in LUAD-5 (Fig. 4c - top). Indeed, these 
cells were highly intermixed in LUAD-9, but spatially segregated in LUAD-5 (Fig. 4d). Even 
more striking were the different neighborhood enrichment and spatial arrangements of 
neutrophils and fibroblasts in LUAD-12 and in LUAD-9 (Fig. 4c - bottom). These cell types 
consistently exhibited high intermixing and co-clustering in LUAD-12, whereas they were 
spatially segregated in different clusters in LUAD-9 (Fig. 4e). These results well demonstrate 
the power of including spatial information in single-cell molecular profiles. Indeed, whereas 
classical scRNA-seq analyses would have predicted similar TME composition in these 
samples, spatial transcriptomics revealed drastically different admixing of immune and stromal 
cell types. 
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Figure 3: Spatial cellular niches in non-small cell lung cancer. a) We applied CellCharter to a single-
cell spatial transcriptomics dataset comprising 8 slides from 5 non-small cell lung cancer patients. b) 
CellCharter cluster stability (y-axis) for range of numbers of cluster (x-axis). Most stable cluster solutions 
are highlighted. c) CellCharter spatial cluster proportions in each sample for three numbers of clusters 
solutions (left) and the corresponding cell labels for tumor cell-enriched clusters in representative 
samples (right). (LUAD: lung adenocarcinoma, LUSC: lung squamous cell carcinoma.) d) Cell type 
enrichment in each spatial cluster (n = 20 clusters). e) Neighborhood enrichment analysis between the 
TME-enriched clusters (source) and the tumor-enriched clusters (target). Only TME clusters for which 
there is a positive neighborhood enrichment with at least one tumor-enriched cluster are shown. f) 
Representative example of TME-enriched and tumor-enriched clusters in LUAD-9 R1. g) mRNA 
expression fold-change (log2 – y-axis) of differentially expressed genes between the clusters C0 and 
C12 in patient LUAD-9 (left) and gene set enrichment analysis of genes upregulated in C0 (pink) and 
C12 (brown) (right). h) Gene expression signature scores of tumor cells in LUAD-9 R1 for four different 
gene signatures.  
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Figure 4: Cell type composition versus cell type admixing. a) Immune and stromal cell type 
fractions in tumor samples from 5 non-small cell lung cancer patients (LUAD: lung adenocarcinoma, 
LUSC: lung squamous cell carcinoma). b) Cell type enrichment (top) and cell type percentages (bottom) 
of the indicated cell types (rows) in the indicated spatial clusters (column). c) Cluster neighborhood 
enrichment (left and center heatmaps) and differential neighborhood enrichment (right heatmap) 
between the indicated cell types in the indicated tumor samples. Examples of differentially enriched 
neighborhoods are highlighted. d-e) Spatial cluster assignments (top) and cell type labeling (bottom) 
for the indicated clusters and cell types in the indicated samples. 
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DISCUSSION 
 
The design and development of computational tools to analyze data from emerging 
technologies pose two major challenges: 1) anticipating which technologies will ultimately 
prevail and, hence, which type of data will be most frequently generated, and 2) anticipating 
the needs and requirements of analyses that are not yet possible. Spatial molecular profiles 
are currently generated for a limited number of samples and using a wide range of 
technologies, most of which are upgraded or completely change from one year to the other. 
In the next few years, as technologies will mature, we expect that multiple layers of spatial 
omics data will be generated for large collections of samples. To address these challenges, 
we designed CellCharter to be technology-agnostic and highly scalable. We tested 
CellCharter on 3 different technologies comprising spatial proteomics based on cyclic 
immunofluorescence of fluorophore-conjugated oligonucleotides, sequencing-based spatial 
transcriptomics, and image-based spatial targeted transcriptomics. CellCharter generated 
meaningful results in all applications, recapitulating tissue morphologies and biological 
processes, such as germinal center activation in autoimmune disease. Importantly, we 
improved the benchmarking procedure by introducing a hyperparameter tuning phase to avoid 
biases in testing, by repeating runs multiple times to increase the reliability of the results, and 
by testing the quality of clustering of all samples jointly. CellCharter outperformed existing 
approaches and was significantly faster than existing methods, allowing to jointly cluster 
multiple samples simultaneously. This provides a critical advantage when it comes to matching 
and comparing clusters across samples or conditions and makes our tool the most suitable to 
analyze large datasets of spatial profiles. 
 
To accommodate both spatial proteomics and transcriptomics datasets, CellCharter was 
developed with a modular architecture, where only the dimensionality reduction and batch 
correction step is dependent on the data type. In addition, CellCharter is fully compatible with 
the scverse ecosystem, a consortium of Python tools for the analysis of omics data in life 
sciences50. This design will facilitate the use and integration of additional data types. For 
example, emerging spatial profiling technologies have been proposed to study epigenetic cell 
features51, copy number alterations52, chromatin accessibility53, and combined single-cell 
RNA-seq and protein profiles17,54,55. In addition, all these molecular layers could be combined 
with cell morphology and tissue architectural features derived from hematoxylin and eosin 
(H&E) staining. To analyze these data types with CellCharter, it will be sufficient to introduce 
the correct model to generate the feature embeddings, without modifying the other steps of 
the analysis. In particular, recently proposed deep neural networks trained on a large collection 
of H&E images56, together with the models already included in CellCharter, could prove 
extremely valuable to generate embeddings that integrate transcriptional or proteomic 
features with tissue histology. Spatial niches determined from this combination of features 
could empower digital pathology by revealing histological features associated with specific 
molecular phenotypes, which could serve as prognostic markers in the clinic. 
 
Lastly, our results on non-small cell lung cancer tissues effectively demonstrated the potential 
of spatial -omics profiles to investigate intratumor heterogeneity in terms of both cell-intrinsic 
features and cell-cell interactions. The recent wide application of scRNA-seq to large tumor 
cohorts has allowed to determine, on the one hand, stromal and immune cell subtypes with 
fine granularity57 and, on the other hand, cancer cell states defined by concurrent activation of 
specific transcriptional programs58. Spatial clustering on similar cohorts will reveal where and 
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which of these cell subtypes and states interact, determining unique cellular niches. In this 
study, we determined a lung cancer cellular niche where tumor cells characterized by a 
response-to-hypoxia and EMT transcriptional state surrounded a neutrophil cluster, prompting 
mechanistic hypotheses on the emergence of this cell state and interactions. In this sense, 
spatial and non-spatial single-cell omics data provide complementary information that, when 
available across multiple samples and conditions, will provide a holistic definition of cell state 
based on both the intrinsic molecular features of a cell and its set of interactions. Moreover, in 
the same dataset, we showed differential admixing of immune cell populations that were 
present in similar proportions across different samples. With the extent of immune infiltration 
and immune cell type composition entering the clinic as markers of therapeutic response59,60, 
it will be interesting to explore the functional and prognostic impact of cell type admixing as 
well. Overall, cell spatial coordinates introduce a new critical layer of information to decode 
phenotypic heterogeneity from molecular data. In this context, CellCharter offers a flexible and 
scalable solution to interpret spatial information and exploit its potential. 
 
 
 
METHODS 
 
CellCharter: Spatial clustering 
Spatial clustering groups spots or cells based on the features of the spot/cell itself, and the 
features of the surrounding neighbors. CellCharter’s approach for spatial clustering involves 
building a network from the coordinates of the spots/cells, performing dimensionality reduction 
and batch effect removal. Then, for each cell, aggregating its features with the ones of its 
neighbors, and finally running clustering on the aggregated matrix. 
 
Spatial network construction 
We represent spatial -omics data as networks, with spatial locations as nodes, connected by 
an edge if they are in close proximity to each other. Depending on the technology, we used 
different approaches implemented in the Squidpy library61 (v1.2.2) to build the network. Given 
the regular structure of the Visium data, we assigned as neighbors, for each spot, the 6 closest 
surrounding spots. For the CODEX and CosMx data, we built the network using Delaunay 
triangulation62. However, Delaunay triangulation leads to long edges between cells, especially 
at the borders of the slide. Hence, we removed edges between nodes at a distance greater 
than the 99th percentile of all distances between connected nodes. 
 
Dimensionality reduction and batch effect removal 
Spatial transcriptomics allows for measuring thousands of genes simultaneously, thus 
generating high-dimensionality data. We used scVI30 to perform dimensionality reduction and 
batch effect removal of the spatial transcriptomics (10x Visium and Nanostring CosMx) 
samples. Spatial proteomics data have lower dimensionality, measuring the expression of tens 
or hundreds of genes. In this case, dimensionality reduction may not be necessary. However, 
we used it to reduce noise and the running time of clustering. For this purpose, we used 
scArches31. 
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Neighborhood aggregation 
Incorporating into a spot or cell the features of the neighbors is done by neighborhood 
aggregation. This approach consists of concatenating the features of the spot/cell with 
features aggregated from neighbors at increasing layers from the considered spot/cell, up to 
a certain layer 𝐿. Aggregation functions are used to obtain a single feature vector from the 
vectors of multiple neighbors. Common aggregation functions are mean, standard deviation, 
min, and max. New aggregation functions can be defined according to the relationships with 
neighbors we want to capture. For example, standard deviation can be used to measure the 
variability of cell phenotypes around a certain spot/cell. Additionally, more than one 
aggregation feature can be simultaneously used to capture multiple types of relationship, for 
a total of 𝐽 aggregations. Given 𝑋 the matrix of spot/cell features (dimensionality-reduced or 
not), 𝐴(") for 𝑙	 ∈ {0, … , 𝐿} the adjacency matrix of the neighbors at layer 𝑙, 𝑓$ 	for 𝑗	 ∈ {0, … , 𝐽}	the 
aggregation functions, (𝑋, 𝑌) the matrix concatenation operation, and 𝑋	 ⋅ 𝑌 matrix inner 
product operation, then the output of the neighborhood aggregation step is a matrix 𝑍: 
 

𝑍 = 9𝑋, 𝑓%:𝐴(%) ⋅ 𝑋;, … , 𝑓&:𝐴(%) ⋅ 𝑋;, … , 𝑓%:𝐴(') ⋅ 𝑋;, … , 𝑓&:𝐴(') ⋅ 𝑋;< 
 
Clustering 
The matrix 𝑍 contains information about the spots/cells and their neighbors. Thus, the final 
step is to perform clustering on 𝑍 using a Gaussian Mixture Model (GMM). CellCharter uses 
an implementation of GMMs of the PyCave library63 (v3.2.1) that is able to run efficiently on 
CPU or GPU for multiple samples simultaneously.  
 
Cluster stability 
Clustering with a GMM requires specifying the desired number of clusters 𝐾. Thus, CellCharter 
provides a procedure based on the stability of the clustering to identify the best candidates for 
𝐾. The objective is to identify the values of 𝐾 for which the clustering result is similar among 
multiple runs with 𝐾 clusters and also similar to the runs with 𝐾 − 1  and 𝐾 + 1 clusters. The 
user specifies the range of values of 𝐾 to explore and the maximum number of repeated runs 
𝑅 to perform for each value of 𝐾. For each 𝐾 in the specified range, CellCharter executes a 
single run of clustering with 𝐾 clusters. At the end of the set of clusterings, the average of the 
Fowlkes-Mallows Index (FMI)32 is measured between the clusters at 𝐾 − 1 and 𝐾, and 
between 𝐾 and 𝐾 + 1. The more stable the clustering with 𝐾 clusters, the higher the average 
FMI. Then, a new set of clusterings is performed and the average FMI is computed of all 
combinations of results between the 𝑟 = 2 runs at 𝐾 − 1 and 𝐾, and at 𝐾 and 𝐾 + 1. The 
process is repeated until the 𝑟 = 𝑅. Moreover, to improve the computational efficiency, it is 
possible to set that, for each new additional run 𝑟, if the mean squared deviation between the 
average FMIs at 𝑟 − 1 and 𝑟 is lower than a user-defined tolerance value, then the process 
has converged and it completes without the need to reach 𝑟 = 𝑅.  Since the process generates 
up to 𝑅 models for every candidate of number of clusters, once a value for 𝐾 has been chosen, 
CellCharter selects, out of the 𝑟 models, the one with the highest marginal likelihood. 
 
CellCharter: Cell type enrichment 
Identifying the cell type composition of spatial clusters can aid in their characterization. We 
implemented cell type enrichment of cell type 𝑡 in cluster 𝑐 as the ratio between the proportion 
of cells of type 𝑡 in 𝑐 (observed value) and the proportion of cells of type 𝑡 in all samples 
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(expected value). The ratios are then	𝑙𝑜𝑔(-normalized to obtain a zero value if the likelihood 
of 𝑡 to be in 𝑐 is equivalent to random chance, a negative value for depletion, and a positive 
value for enrichment. In the CODEX mouse spleen dataset, a cell type was considered 
enriched with a log2 fold-change greater than 0.58, equivalent to a fold-change of 1.5. In the 
CosMx NSCLC dataset, a cell type was considered enriched with a log2 fold-change greater 
than 1, equivalent to a fold-change of 2. 
 
CellCharter: Neighborhood enrichment 
Analytical neighborhood enrichment 
Given cells partitioned into 𝐾 groups 𝐶) for 𝑘	 ∈ {1,… , 𝐾} with adjacency matrix 𝐴 of the spatial 
network composed of 𝑉 nodes and 𝐸 edges. Be 𝑘* the node degree of cell 𝑣. The proximity 
between two groups can be computed from their neighborhood enrichment, which measures 
how likely are the cells between two groups to be connected by an edge, compared to random 
chance. We developed an analytical formulation of the neighborhood enrichment between 
groups 𝐶+ and 𝐶$, which is computed as the ratio between the observed and the expected 
number of links connecting cells belonging to 𝐶+ and the cells belonging to 𝐶$. 
Formally, the observed value is: 

L 𝐴*,
*∈.!,,∈."

 

 
 
The expected value is: 

L 𝑘,
*∈.!,,∈."

⋅ 𝑘, ⋅
1
2|𝐸|

 

 
The final result is a matrix of size 𝐾	 × 𝐾. 
 
Asymmetric neighborhood enrichment 
A symmetric formulation of the neighborhood enrichment fails to capture unbalanced 
connectivities between groups (Fig. 1c). Hence, we developed an asymmetric version of the 
neighborhood enrichment, that takes into account the proportion rather than the number of 
edges between two groups. The observed value between groups 𝐶+ and 𝐶$ 	is the number of 
edges between 𝐶+ 	and 𝐶$ 	divided by the total number of edges of the cells of the group 𝐶+: 
 

∑ 𝐴*,*∈.!,,∈."
∑ 𝑘**∈.!

 

 
The expected value is equivalent to the expected value of the symmetric version, divided by 
the total number of edges of the cells of the group 𝐶+: 
 

L 𝑘,
,∈."

⋅
1
2|𝐸|

 

 
In this context, the asymmetric neighborhood enrichment is computed as the difference 
between the observed and expected values, rather than the ratio. 
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Differential neighborhood enrichment 
The differential neighborhood enrichment between two conditions is defined as the difference 
between the neighborhood enrichment matrices of the two conditions. To evaluate if a value 
is significant, we permute the condition label of each sample and perform bootstrapping 
multiple times to estimate an associated p-value. The p-value for the differential neighborhood 
enrichment between groups 𝐶+ 	and 𝐶$ is the proportion of cases in which the permuted value 
is greater than the observed value if the latter is positive and the permuted value is lower than 
the observed value if the latter is negative. This approach requires computing the 
neighborhood enrichment several times. The development of an analytical version of the 
neighborhood enrichment, rather than relying on permutations to calculate the expected value, 
makes it computationally tractable. 
 
CellCharter: Shape characterization 
The same cellular niche can be present in multiple tissues or even in multiple locations of the 
same tissue sample. This implies the existence of multiple cluster components, which are 
connected components of cells belonging to the same spatial cluster. To characterize the 
shape of a spatial cluster, it is necessary to identify its cluster components, determine their 
boundaries, and compute the value of the metrics that we developed to describe shape (linear, 
round, circular and irregular). For determining the boundaries of a cluster component, we 
developed a new technique based on alpha shapes33. For each component, we computed the 
alpha shape with a starting value of alpha that depends on the resolution of the data. If the 
alpha value was too small, the alpha shape of the component would result in multiple 
separated polygons. If so, we doubled the alpha value and repeated the computation of the 
alpha shape. The procedure is iterated until an alpha shape composed of a single polygon is 
obtained. Finally, the boundaries of the cluster component are the alpha shape with the 
minimum alpha value that results in a single polygon. To keep shapes simple, holes with an 
area relative to the boundary area lower than a threshold 𝑎 (e.g., 0.1) were removed. Thus, a 
boundary can contain holes with an area greater than 𝑎 times the area of the boundary. Once 
we determined the boundary of each component, we used the Shapely library64 to compute 
geometric information such as its perimeter 𝑃, area 𝐴, its minor and major axes from its 
minimum rotated rectangle that are used to compute the following four shape metrics. 
 
Curl 
Curl measures how twisted or curved is a cluster. It is computed as one minus the ratio 
between the major axis of the minimum rotated rectangle that fits the polygon and the fiber 
length. Circular and irregular clusters have a high curl. 
 

𝑐𝑢𝑟𝑙 = 1 −
major axis length

fiber length = 1 −
major axis length

4𝐴
𝑃 − √𝑃( − 16𝐴

 

 
Elongation 
If we fit the minimum rectangle surrounding a cluster, a linear cluster will result in a rectangle 
with the minor edge much shorter than the major edge. Elongation is defined as one minus 
the ratio between the length of the minor axis and the length of the major axis.  
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𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 = 1 −
minor axis length
major axis length 

 
Linearity 
We developed a new metric that we called linearity. It measures the ability of a cluster 
component to approximate a linear path. First, we computed the skeleton of the polygon using 
a type of skeletonization65 implemented in the scikit-image library66. Then we used the sknw 
library67 to obtain a weighted network in which a node is a juncture between lines of the 
skeleton, and two nodes are linked by an edge if they are connected by a line in the skeleton. 
The weight of an edge is the length of the line connecting the two junctures. Linear and circular 
clusters tend to have a skeleton that is composed of a single main axis, with a few short lines 
branching out of it, while the skeleton of round and irregular clusters has numerous 
bifurcations of similar length. Thus, linearity is defined as the length of the longest path in the 
network divided by the total length of the network. To take into account also circular clusters, 
we include as paths also all the possible cycles which form a basis for cycles in the network, 
computed using the NetworkX library62. 
 

𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 =
longest path length
total skeleton length 

 

Purity 
Cells of a cluster may be locally intermixed with cells of other clusters. If the intermixing does 
not exceed the level at which the cells of the cluster form a connected component, cells of 
different clusters could be found within the boundaries of a cluster component.  
Purity measures the degree of cluster intermixing within a component. Very compact clusters 
will have a higher purity than sparse and irregular clusters. Thus, given 𝑁 cells within the 
borders of a cluster component, for each cluster 𝑘 ∈ 	 {1, … , 𝐾}, 𝑁) cells are assigned to cluster 
𝑘 such that ∑ 𝑁))∈{%,…,2} = 𝑁, then the purity of a cluster component of cluster 𝑘Z is defined as: 
 

𝑝𝑢𝑟𝑖𝑡𝑦 =
𝑁)4
𝑁
	 

 

Benchmarking comparison of CellCharter with existing tools 
We compared CellCharter against four established methods for spatial clustering: DR.SC 
(v.2.7), BayesSpace (v.1.4.1), SEDR (commit 18616df), and STAGATE (v1.0.0). The dataset 
is composed of annotated samples of six-layered human dorsolateral prefrontal cortex, 
processed using the 10x Genomics Visium platform34. The samples are divided into two pairs 
of adjacent slides from each of the three donors, for a total of 12 slides. Almost every Visium 
spot was assigned to one of the six cortical layers (L1-L6) or to white matter (WM), for a total 
of seven labels, with few spots for which a label couldn’t be assigned. We evaluated the 
methods in two settings: 

• individual: each sample is clustered and evaluated individually 
• joint: all the samples are clustered jointly and evaluated both individually and jointly. 
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First, we divided the 12 samples into a validation set and a test set. The former was composed 
of samples 151507, 151672, and 151673, one for each donor, selected randomly and used 
for hyperparameter tuning. We assigned the remaining 9 samples to the test set. Once the 
hyperparameters were selected, we run 10 repetitions of spatial clustering of each sample 
separately and compared the predicted labels of the method against the annotation labels by 
computing their Adjusted Rand Index (ARI). For the joint benchmarking, we integrated all 9 
test samples and performed 10 repetitions of joint clustering on the concatenated dataset. We 
compared the accordance of the predicted labels against the manual annotations by 
computing the ARI in two conditions: for each sample separately to assess the variability of 
the results between different samples; for all samples together, to assess the consistency of 
the labels across multiple samples. In both settings, spots with the unassigned label were 
included in the clustering but excluded from the evaluation. Additionally, running time and 
memory requirements were computed for 5 repetitions of joint clustering for each increasing 
number of samples, from 2 to 12. 
 
Hyperparameter tuning 
For each validation sample, through grid search, we run 5 repetitions for every combination of 
hyperparameters and selected the values associated with the maximum mean Adjusted Rand 
Index (ARI) across samples on the validation set.  
The hyperparameter values candidates and the identified ones are the following: 
 
BayesSpace 

• N. highly variable genes [500, 1000, 2000, 5000]: 1000 
• N. iterations [2000, 5000]: 5000 
• N. principal components [5, 7, 10, 15, 20, 25, 30]: 15 
• γ [1, 2, 3, 4]: 3 

 
SEDR 

• N. hidden features of last fully connected layer [10, 20, 30]: 10 
• N. hidden features of last GCN layer [4, 8, 16]: 16 
• N. principal components [100, 200, 300]: 100 

 
STAGATE 

• N. highly variable genes [1000, 2000, 5000]: 5000 
• N. hidden features [256, 512, 1024]: 1024 
• Latent size [5, 10, 30, 50]: 30 

 
DR.SC 

• Highly variable genes (HVGs) or spatially variable genes (SVGs): SVGs 
• N. spatially variable genes [500, 1000, 2000, 5000]: 2000 

 
CellCharter 

• N. highly variable genes [500, 1000, 2000, 5000]: 5000 
• Latent size [5, 10, 15]: 5 
• N. neighborhood layers [2,3,4]: 4 
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Joint benchmarking 
Joint clustering requires the integration of multiple samples into a single dataset. Given the 
presence of batch effect between patients, all methods for spatial clustering were preceded 
by a dimensionality reduction and batch effect removal step. CellCharter already uses scVI to 
perform dimensionality reduction of the spatial transcriptomics data, which was recently shown 
to be among the best data integration methods for transcriptomics data68. We used the same 
batch effect corrections for the same computational environment: Harmony69 with default 
parameters for the R-based methods (BayesSpace); scVI with default parameters and early 
stopping for the Python-based methods (SEDR, STAGATE, and CellCharter). The R-based 
package DR.SC does not accept dimensionality-reduced data in input, as it implements its 
own dimensionality-reduction technique. Thus, we used DR.SC without batch effect removal 
to evaluate the ARI on the ground truth labels. However, we excluded it from the runtime and 
memory evaluation. 
 
Spatial clustering of CODEX mouse spleen data 
We applied CellCharter to a publicly-available dataset of mouse spleens imaged using the 
CODEX spatial proteomics technology5. The dataset is composed of 3 samples from healthy 
mice and 6 samples from mice with different stages of systemic lupus erythematosus (SLE). 
30 proteins were measured in a total of over 700,000 cells. We used as cell type annotations 
the ones provided by the authors. First, we removed from the dataset the cells labeled as “dirt” 
and excluded MHCII from the markers because of inconsistent staining between the two 
conditions. As the last step of the preprocessing, we computed the network of spatial 
neighbors for each sample. Then, for each sample, we applied z-score normalization to the 
markers individually and used scArches31 (v0.5.3) to perform dimensionality reduction using 
the trVAE model. We removed the last ReLU layer of the neural network to allow for continuous 
and real output values. The trVAE model was trained on the dataset using the mean squared 
error (MSE) loss, two hidden layers of size 128, no MMD, early stopping patience of 5 epochs, 
and a latent size of 10. We used the latent embeddings of all cells extracted from scArches as 
features and estimated the best number of clusters using our stability analysis with a k-
neighborhood of 3, a range for the number of clusters between 2 and 20, and 10 repetitions. 
11 and 4 were the numbers of clusters with the highest Fowlkes-Mallows Index and we chose 
11 to have a more fine-grained view of the spatial architecture of the tissues. The model at 11 
clusters with the highest marginal likelihood was used for the labeling of the cells, even though 
we didn’t find striking differences in the labeling between different runs, given the high 
Fowlkes-Mallows Index (0.78) at 11 clusters. Then, each cluster was labeled based on its cell 
type enrichment and the location of its cells in the tissue.  
 
Comparison between CellCharter and STAGATE 
We compared the running time and label assignment on the CODEX mouse spleen dataset 
between the two best-performing methods according to our benchmark: CellCharter and 
STAGATE. For STAGATE, given the large number of cells included in the CODEX mouse 
spleen dataset, it was not possible to fit the whole dataset into the GPU memory. We relied 
on the batch training strategy of dividing each sample into different subgraphs according to 
the x and y coordinates and using a subgraph as a batch in the training process. We split 
every sample into 24 subgraphs, 4 subgraphs based on the x coordinate and 6 subgraphs 
based on the y coordinate. Given 9 samples, the split resulted in 216 subgraphs. We trained 
STAGATE using a single hidden layer with default parameters: size = 512, latent size = 10, 
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learning rate = 0.001, weight decay = 0.0001, number of epochs = 1000, and performed 
clustering at 11 clusters. On the other hand, CellCharter didn’t require any sample splitting. 
Finally, we compared the running time and label assignment of STAGATE against a single 
run of CellCharter. For assessing the quality of the labels, since no ground truth of the 
anatomical area of the cells is available, we relied on the pathologist annotations5 for a visual 
comparison. 
 
Cluster neighborhood enrichment of CODEX mouse spleen data 
We computed the cluster neighborhood enrichment for each condition separately, removing 
the intra-cluster links to highlight only interactions between different clusters. We then 
performed differential neighborhood enrichment between healthy and systemic lupus 
samples. We run 1000 permutations to estimate the significance using a threshold for the p-
value of 0.01. All significant pairs of clusters remained significant upon Benjamini-Hochberg 
correction with an adjusted p-value threshold of 0.05.  
 
Shape characterization of CODEX mouse spleen data 
For the CODEX dataset, for each spatial cluster, we obtained the cluster components of cells 
belonging to it as the connected components with a size greater than 250 cells. Then, for each 
cluster component, we computed the alpha shape with a starting value of alpha equal to 2000 
pixels and a minimum hole area ratio 𝑎 of 0.1. 
 
Spatial clustering of CosMx NSCLC data 
We applied CellCharter to a publicly-available dataset of NSCLC samples from the Nanostring 
image-based spatial transcriptomics CosMx technology41. The dataset is composed of 8 
samples from 4 lung adenocarcinoma and 1 lung squamous cell carcinoma patient. The 3 
slides from patient LUAD-5 were obtained from serial sections, while the 2 slides from patient 
LUAD-9 were obtained from non-serial sections. The dataset comprises 960 genes measured 
on more than 750,000 cells. We filtered out genes expressed in fewer than 3 cells and cells 
with fewer than 3 genes expressed, performed CPM and log2 normalization. Then, we run 
dimensionality reduction and batch effect removal using scVI (v1.6.2). We used the default 
parameters (one hidden layer of size 128, latent size 10, early stopping with patience of 45 
epochs), batch effect removal based on the sample, and using the patient as a categorical 
covariate. We used the latent embeddings of all cells extracted from scVI as features, a k-
neighborhood of 3, and estimated the best candidates for the number of clusters using our 
stability analysis with 10 repetitions and a range for the number of clusters from 2 to 25. It 
returned 3, 8, and 20 as the best candidates and we chose 20 for downstream analysis. 
 
Cluster and cell type neighborhood enrichment of CosMx NSCLC data 
Cluster neighborhood enrichment between CellCharter’s 20 spatial clusters was run for all 8 
samples together. On the other hand, cell type neighborhood enrichment was run for each 
sample separately. In both cases, we removed intra-cluster (or intra-cell type) links to highlight 
only interactions between different clusters (or cell types).  
 
Differential expression analysis of CosMx NSCLC data 
Using Seurat70, we log-normalized the counts of the original unnormalized data using a scale 
factor equal to 10000. Then we used MAST71 to determine the differentially expressed genes 
between the tumor cells of the spatial clusters C0 and C12. We selected the genes with a log2 
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fold-change higher than 0.5 and a p-value lower than 0.05. We performed gene set enrichment 
analysis of the differentially expressed genes using the GSEA tool72 (v.4.2.3). Given that the 
CosMx NSCLC dataset contains gene expression measurements for 960 genes, to avoid a 
possible bias because of the different gene universe, we used the pre-ranked version, which 
runs the gene set enrichment analysis against the full list of 960 genes ranked from the highest 
to the lowest fold-change. We run GSEA against the GO:BP (Gene Ontology Biological 
Process) and the CP:KEGG (Canonical Pathways KEGG) gene set databases at version 
7.5.1. 
 
Cancer cell signature scoring 
We visualized the spatial distribution of tumor cells in LUAD-9 expressing different levels of 
specific signatures. Signatures were constructed by taking the most significant GO:BP and 
CP:KEGG gene sets obtained from the differential expression analysis between clusters C0 
and C12. Additionally, we included signatures of 41 meta-programs determined from scRNA-
seq data spanning over 24 tumor types58 (Suppl. Table 3) and we constructed the signature 
“cell proliferation” by merging the 4 cell cycle-related signatures. Given a gene set, we 
computed its score for each cell using scanpy’s tl.score_genes function73 (v1.9.1). Given the 
960 genes measured by the CosMx technology, signatures had a relatively small size (Suppl. 
Table 3). To overcome the noise caused by the small size of the signatures, we smoothed the 
signature score of each cell by taking the average over the 50 nearest cancer cell neighbors. 
 
Cancer cell signature score dependence on neutrophil distance 
We assessed the level of the hypoxia signature score of tumor cells at increasing distance 
from the neutrophils. To achieve that, we computed the 𝐿-hop neighbors of all neutrophils of 
patients LUAD-9 and LUAD-12, with 𝐿 from 2 to 40. For each 𝐿-hop adjacency matrix, we 
selected only the links between neutrophils and tumor cells and used CellCharter’s 
neighborhood aggregation on the hypoxia score to obtain the mean hypoxia score of the tumor 
cells at distance 𝐿 from the neutrophils. We executed the procedure for all neutrophils, for the 
neutrophils in the spatial cluster C11, and for the neutrophils not in C11. 
 
Association between hypoxia and neutrophil infiltration 
Bulk gene expression datasets of lung adenocarcinoma primary tumors were downloaded 
from public repositories reported in the respective studies11,74–81. Neutrophil infiltration score 
was computed with ConsensusTME82 implemented in the corresponding R package 
(v0.0.1.9000, parameters: cancer = “LUAD”, statMethod = “ssgsea”). The hypoxia signature 
score for these bulk samples was computed using singscore83 v1.14.0 with default 
parameters. 
 
DATA AVAILABILITY 
The raw datasets used are publicly available from their original authors5,34,41. The .h5ad files 
of the processed and dimensionality-reduced data are available at 
https://github.com/CSOgroup/cellcharter_analyses. 
 
CODE AVAILABILITY 
CellCharter is released as an open-source Python library on Github at 
https://github.com/CSOgroup/cellcharter. Code to reproduce the analyses is available at 
https://github.com/CSOgroup/cellcharter_analyses.  
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