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 64 

Abstract 65 

Beneficial interactions with microorganisms are pivotal for plant adaptation and fitness. Yet, the adaptive 66 
trajectories and genetic mechanisms underlying plant-microbiome interactions remain elusive. Here, 67 
we surveyed the root and rhizosphere microbiome of 129 accessions of Zea mays, sourced from diverse 68 
habitats and grown under control and different stress conditions. We demonstrate the impact of 69 
domestication and local adaptation on heritable variation in microbiome assembly. Plant genotype and 70 
native environment were predictive of the microbiome composition, and the microbiome itself was 71 
correlated with plant fitness. Combining microbiome and environmental properties identified host 72 
genetic variants linked to rhizosphere microbiome variation with respect to their native habitats. We 73 
functionally characterized a gene that controls lateral root formation and mediates association with a 74 
keystone microbe, linked to growth promotion and biomass heterosis. We conclude that genetic 75 
variation in traditional crop varieties contributes to optimizing the adaptation of the microbiome to local 76 
constraints, which bears implications for breeding resilient cultivars.  77 
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Main 78 

Microorganisms that colonize the rhizosphere surrounding plant roots, root surfaces and internal tissues 79 
play a pivotal role in regulating plant health and fitness under biotic and abiotic stresses1,2. Nevertheless, 80 
the genetic basis of how host plants control the composition of their root microbiome under optimal or 81 
stress conditions remains poorly understood. This critical gap of knowledge remains for two reasons. 82 
First, we do not understand the degree to which plants can establish and maintain key microbiomes to 83 
ensure plant fitness under particular stress conditions. For example, legumes can develop specified 84 
root structures in association with rhizobia to support keystone microbiomes. Yet, whether cereal crops 85 
developed strategies to accommodate less well-known microbes with a similar impact on plant 86 
performance and resilience remains virtually unknown. Second, we lack comprehensive studies 87 
investigating the influence of heritable root traits in driving crop microbiomes. The reason is that the 88 
influence of crop species on microbiomes is often exclusively investigated in isolation for a particular 89 
crop variety without considering the vast immensity of trait variation across crop varieties and 90 
domestication status. Optimization of the crop microbiome has been proposed as a long-term route to 91 
promoting food security, while supporting a healthy environment3,4. Domesticated plants, in particular 92 
locally adapted traditional varieties (“landraces”), provide a powerful resource to investigate the 93 
contribution of crop microbiomes to local adaptation across diverse, and often challenging 94 
environments5-8. During domestication plants have developed resilience to environmental constraints, 95 
but may have also lost beneficial microbiome-associated traits compared with their wild relatives9,10. 96 
Maize (Zea mays. L) is an excellent model for investigating the genetic basis of environmental 97 
adaptation due to the extensive climatic variation across its original habitats11,12. Understanding the 98 
genetic basis of how host plants control the composition of their microbiome is critical to reduce the 99 
chemical footprint of agriculture and to promote crop resilience to various abiotic stresses that are likely 100 
to increase in future climate scenarios. 101 

Heritable variation is detected in the maize microbiome under abiotic stresses 102 

We used 16S rRNA gene and ITS gene sequencing to characterize the root and rhizosphere 103 
microbiome of 129 Zea accessions, across a wide range of maize and teosinte varieties of distinct 104 
domestication status, aiming at investigating the impact of plant genotype and local adaptation on crop-105 
microbiome associations and their capacity to influence plant fitness under common stress conditions. 106 
These analyses included 11 teosinte, 97 landrace, 11 maize inbred line and 10 maize hybrid accessions 107 
(Supplementary Fig. 1) grown in control-, low phosphorous-, low nitrogen-, and drought-exposed soils 108 
to simulate different levels of nutrient and water stress (Supplementary Fig. 2). We sampled root and 109 
rhizosphere compartments from 1st shoot-borne crown roots (Supplementary Fig. 3), in addition to 110 
collecting bulk soil. Microbial community composition differed across samples for both bacteria and 111 
fungi, with compartment explaining the largest proportion of the variation followed by stress treatment 112 
(Fig. 1a). Although plant genotype was less important than either compartment or treatment, there was 113 
still significant heritable variation associated with both bacterial and fungal microbiomes (Fig. 1b). In the 114 
rhizosphere and roots, we observed significantly lower bacterial diversity under drought stress and 115 
nitrogen deficiency compared to control conditions (Supplementary Fig. 4a). In contrast, no significant 116 
differences in bacterial community diversity were observed between phosphorus deficient and control 117 
conditions (Supplementary Fig. 4a). For fungal diversity, the only significant treatment difference was 118 
observed between nitrogen deficiency and control conditions in both the rhizosphere and the root 119 
(Supplementary Fig. 4b). These results illustrate greater sensitivity under abiotic stresses of maize-120 
associated bacterial than of fungal communities, while the variation of plant genotype has a small but 121 
significant heritable impact on microbiome assemblage13-15, more so under abiotic stresses. 122 

Keystone genera define the major differences in the microbiome 123 

Keystone microbial taxa are defined as the drivers of microbiome structure and function16. We identified 124 
putative keystone microbes among the highly abundant amplicon sequence variants (ASVs) using co-125 
occurrence network analysis (Supplementary Datasets 1-4). Overall, the number of associations and 126 
accumulative weights of ASVs were largely positive within the bacterial or fungal networks, but negative 127 
in the inter-kingdom network (Supplementary Fig. 5; Supplementary Dataset 5). This is consistent with 128 
previous reports that inter-kingdom interactions determine the overall assembly, stability, and fitness of 129 
the root microbiome in Arabidopsis17. We also observed that a high proportion of the negative inter-130 
kingdom associations were conserved across the stress treatments (Supplementary Fig. 5c; 131 
Supplementary Dataset 6). For example, keystone taxa in the bacterial genera Massilia, Sphingobium 132 
and Streptomyces were conserved across the stress treatments (Supplementary Fig. 6). Functional 133 
prediction indicates that these bacterial genera are involved in ureolysis (Massilia) and aerobic 134 
chemoheterotrophy (Sphingobium and Streptomyces) (Supplementary Dataset 7). Keystone fungal 135 
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taxa were mainly decomposers and pathogens (Supplementary Dataset 8). Overall, our co-occurrence 136 
network analyses revealed strong negative correlations between bacterial and fungal ASVs in roots, 137 
while keystone bacterial members are important in microbiome assemblage and stability regardless of 138 
abiotic stress treatment. Thus, bringing back keystone and microbiome related traits from wild relatives 139 
as well as broader crop diversity may contribute to adaptation of crops to future challenges of climate 140 
change.  141 

The impact of plant genotype on the rhizosphere bacterial community increases under stress 142 

To estimate the influence of the plant genotype on microbiome composition, we estimated the 143 
correlation between the plant genetic distance matrix and the microbiome distance matrix, for both root 144 
and rhizosphere. There was a significant correlation between the bacterial communities and plant 145 
genotypes in both compartments. In contrast, fungi displayed a significant correlation with the plant 146 
genotype only in the rhizosphere (Supplementary Fig. 7). We estimated the broad-sense heritability (H2) 147 
for the microbiome at different taxonomic levels and for individual ASVs across the experiment and then 148 
separately for each compartment and treatment combination (Supplementary Dataset 9; see methods). 149 
Plant genotype explained a small but significant proportion of variation in the microbiome compared 150 
with compartment or treatment (Supplementary Fig. 8). Across treatments, H2 was higher for the 151 
rhizosphere than the root at the level of families (Fig. 1b), genera (Supplementary Fig. 9a) or ASVs 152 
(Supplementary Fig. 9b). Nutrient stress increased H2 for the bacterial microbiome, but not of the fungal 153 
microbiome. In particular, the bacterial taxon Oxalobacteraceae under nitrogen limitation showed the 154 
highest H2 among all families in our experiment (Supplementary Fig. 10). Oxalobacteraceae have been 155 
previously proposed to play an important role in maize resilience when grown in nitrogen-deficient 156 
soils18. To identify plant genetic loci affecting microbiome composition, we performed genome-wide 157 
association (GWA) analysis for all heritable (H2 > 0.1) microbial traits (Supplementary Dataset 10). We 158 
did not recover significant markers in association with overall measures of microbial alpha-diversity 159 
(Shannon index). We did, however, identify significant associations with individual ASVs 160 
(Supplementary Dataset 11). The number of significant associations increased 1.5-3 times from the 161 
rhizosphere to the root microbiome (Supplementary Fig. 11), consistent with overall estimates of H2. 162 
Our genetic and environmental analyses support the hypothesis that the genetic constitution of the host 163 
shapes microbiome assembly in crops19-23. Furthermore, our work highlights the importance of 164 
ecological and genetic factors driving plant-microbe interactions in favour of local adaptation. 165 
Collectively, these data indicate an increasing impact of the plant genotype on microbiome composition, 166 
especially the composition of the rhizosphere bacterial community under stress, consistent with a role 167 
of the microbiome in plant adaptation to local environmental constraints.  168 

Plant source habitats predict the root and rhizosphere microbiome 169 

To further address the hypothesis that plant control of soil microbes plays a role in local adaptation, we 170 
assessed the potential of the environment at the point of collection of local varieties to predict the 171 
microbiome in our standardized growth chamber experiments. For each plant accession, we compiled 172 
soil and climatic descriptors from public databases (see methods) corresponding to the point of 173 
collection (Supplementary Fig. 1; Supplementary Dataset 12). To reduce the complexity of the 174 
microbiome data, we applied Spearman correlation analysis and defined four microbial assemblies 175 
corresponding to the respective dominant ASVs (Supplementary Figure 12). We then sought evidence 176 
of covariation among microbial assemblies and environmental descriptors (Supplementary Figure 13). 177 
We used structural equation modeling to quantify the cumulative effects of source environment, plant 178 
genetic diversity, stress treatment, domestication status and biomass on the four microbial assemblies. 179 
These analyses demonstrated the impact of plant genotype and source environment on specific 180 
assemblies of microbial communities. Low nitrogen treatment, source mean annual temperature, 181 
source precipitation and plant genotype strongly impacted the microbiome assemblage (Supplementary 182 
Figure 14), one notable example being the abundance of the genus Massilia, which belongs to the 183 
previously mentioned Oxalobacteraceae (Supplementary Figure 15). We then investigated the potential 184 
of plant genotype and environmental descriptors to predict microbiome composition. Overall, prediction 185 
was better for bacterial data than for fungal data, and better for rhizosphere than root (Fig. 2a; 186 
Supplementary Fig. 16). Interestingly, microbiome composition could be predicted more accurately with 187 
environmental descriptors or a combination of these with plant genetic markers than with genetic 188 
markers alone (Fig. 2a; Supplementary Fig. 17−19). Our combined ecological modelling and prediction 189 
analyses indicate that genetic differentiation across plant source environments impacts the microbiome, 190 
notably the composition of rhizosphere bacterial communities, consistent with local adaptation of maize 191 
to key climate and soil properties. Therefore, plant-microbe associations depend on the match between 192 
partner genotypes and bacterial adaptation to their local host24,25, thus supporting the notion that the 193 
impact of the genotype on microbial hubs contributes to host fitness across environments26. 194 
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Consideration of the rhizosphere bacterial community improves prediction of plant fitness traits 195 

Although environmental conditions were dominant drivers of the crop microbiome, we also found certain 196 
microbial taxa that were consistently influenced by genetic variability in maize, and whose abundance 197 
correlated with plant fitness. To assess the importance of the microbiome for plant performance, we 198 
used a two-step strategy combining genomic prediction and Random Forest models based on 199 
environmental descriptors. First, we evaluated the H2 of fitness-related phenotypes including biomass, 200 
leaf area, leaf chlorophyll content (measured by SPAD) and nitrogen and phosphorus concentration 201 
(Supplementary Figure 20). The average H2 of all nutrient traits was 0.45 under control conditions rising 202 
to a maximum of 0.53 for the low nitrogen treatment (Supplementary Dataset 13). Despite moderately 203 
high H2 values, the only associations we obtained in GWA analysis for our fitness traits were for 204 
biomass (Supplementary Datasets 14 and 15). Next, we explored the ability to predict fitness-related 205 
phenotypes using microbiome ASVs abundance data alone or in combination with plant genotype. The 206 
combination of plant genotype and rhizosphere bacterial community composition provided the highest 207 
average prediction ability and the largest prediction coverage across all fitness traits (Fig. 2b; 208 
Supplementary Datasets 16 and 17). We confirmed this result employing an alternative approach to fit 209 
a ridge regression mixed model, observing greater prediction accuracy when using both genetic and 210 
microbiome data (Supplementary Figure 21). As has been previously seen in foxtail millet23, we showed 211 
a conserved pattern that the rhizosphere microbiome combined with genotype data increased the 212 
prediction accuracy of agronomic traits compared to genetic markers alone (Supplementary Figure 22). 213 
We then explored relationships among source environments, genetic differentiation and specific 214 
microbial taxa. As a measure for the pattern of similarity among samples, we calculated matrices of 215 
pairwise distance using the observed microbiome ASVs in different treatments, and two source 216 
environmental descriptors (elevation and geographical distance). Mantel tests were used to study the 217 
correlations between different distance matrices. We observed that the correlation between the 218 
rhizosphere microbiome and source environment was higher than that between the root microbiome 219 
and environment. On average, the correlations of inter-treatment and treatment-environment similarity 220 
patterns as characterized by bacterial communities were higher than by fungal communities 221 
(Supplementary Fig. 23). To reduce dimensionality, we extracted the first five principal components 222 
(PCs) from the microbiome ASV data. We then used a Random Forest (RF) approach to predict these 223 
PCs using different environmental descriptors as explanatory variables (Supplementary Dataset 12). 224 
We observed the highest accuracy for the rhizosphere bacteria PC2 (Supplementary Fig. 24a) using 225 
environmental predictors including photosynthetically active radiation and potential evapotranspiration 226 
(Supplementary Fig. 24b). Prediction of individual ASVs was less successful (Supplementary Fig. 25), 227 
although significant predictors were identified for specific examples belonging to the Oxalobacteraceae, 228 
including Massilia (Supplementary Fig. 26). These results suggest that plant genetic variation linked to 229 
source environment drives variation in the microbiome composition with an impact of plant fitness. 230 
Rhizosphere microbiome variation explains microbial diversity along a broad range of temperatures and 231 
water availabilities, supporting the increasing functional importance of the rhizosphere under harsh 232 
environments27 and as a heritable trait across environments28. We report here a significant advantage 233 
for plant trait prediction when combining rhizosphere microbiome with plant genetic data, which 234 
highlights the potential utility of the rhizosphere microbiome in breeding stress-resilient crops.  235 

A candidate gene linked to the source environment associates with Oxalobacteraceae and root 236 
branching  237 

To identify loci associated with variation in the microbiome and differences in source environment, we 238 
used our RF models to predict microbiome ASVs for 1781 genotyped traditional varieties on the basis 239 
of associated source environmental descriptors and subsequently implemented GWA analyses (Fig. 240 
3a). One of the best predictions (RF model R2 = 0.28) was for root abundance of ASV37, belonging to 241 
the genus Massilia, in the low nitrogen treatment, consistent with our previous estimates of H2. 242 
Collectively, GWA hits from environmental predictions of AS37 abundance for the 1781 panel 243 
overlapped more than expected by chance with the hits from the observed ASV37 data in the smaller 244 
129 panel (Supplementary Fig. 27). The top GWA hit for predicted ASV37 root abundance under low 245 
nitrogen (SNP S4_10445603) fell within the gene Zm00001d048945 on chromosome 4 (Fig. 3a and b; 246 
Supplementary Dataset 18). Across the 1781 panel, the minor allele at SNP S4_10445603 was more 247 
abundant at higher predicted ASV37 abundance but lower source soil nitrogen content (Fig. 3c). These 248 
findings are consistent with a specific gene contributing to the geographical adaptation to nitrogen-poor 249 
soil by facilitating enhanced association with Massilia18 (Supplementary Fig. 28). The gene 250 
Zm00001d048945 is most strongly expressed in the root cortex (Fig. 3d; 251 
https://www.maizegdb.org/gene_center/gene/Zm00001d048945) and is predicted to encode a TPX2 252 
domain containing protein related to the WAVE-DAMPENED2 microtubule binding protein that functions 253 
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in Arabidopsis root development29 and lateral root initiation30. Using root architectural data available for 254 
the 126 panel, we found a positive correlation between lateral root density and ASV37 abundance (r = 255 
0.2, P = 0.03; Fig. 3e). To test the hypothesis that variation in Zm00001d048945 contributes to a root-256 
architecture-related effect on ASV37, we identified transposon insertional mutants in two different 257 
genetic backgrounds (B73 and F7; Supplementary Fig. 29). Plants homozygous for transposon 258 
insertions in Zm00001d048945 showed a significant reduction in lateral root density (Fig. 3f and g). 259 
During maize domestication and improvement, the root system expanded its functionality and 260 
complexity31,32. We interpret these results as evidence that variation at Zm00001d048945 contributes 261 
to local adaption by optimizing root traits and recruitment of specific microbes in low nitrogen soils. 262 
Notably, we found that potentially environment-adaptive alleles may explain microbiome-driven nitrogen 263 
deficiency tolerance and root trait differentiation. These results provide strong support for a genetic 264 
basis for variation in the abundance of the bacterial taxon Massilia (Oxalobacteraceae) under nitrogen 265 
deficiency, illustrating the importance of specific bacteria for root development33, nitrogen acquisition34 266 
and reciprocal interaction18. We conclude that plants have evolved to overcome abiotic stresses by 267 
interacting with specific microbial taxa and adjusting their rhizosphere microbiome to nitrogen 268 
availability. 269 

The bacterial keystone taxon Oxalobacteraceae contributes to maize biomass heterosis 270 

To explore further the effect of root-microbe interactions on maize tolerance to low nitrogen, we focused 271 
more broadly on the Oxalobacteraceae, which contains the genus Massilia and have previously been 272 
characterized to be important under nitrogen limitation18 (Fig. 3). GWA analyses demonstrated that the 273 
abundance of Massilia ASVs ASV37 and ASV49 can be explained at high probability by marker-trait 274 
associations (Sum R2 = 0.52 and 0.28, respectively), while significant associations were also identified 275 
in presence/absence GWA analysis for ASV49 (Fig. 4a; Supplementary Dataset 19). Recent studies 276 
highlighted that recruitment of the maize rhizosphere microbial community has been substantially 277 
impacted by both domestication35,36 and modern hybrid breeding37,38. Modern breeding is accompanied 278 
by progressive habitat changes with the use of pesticides and fertilizers to promote high yields and to 279 
protect domesticated crops from biotic and abiotic stress factors despite the risk of adverse effects on 280 
the establishment of beneficial microbial associations39. To this end, we explored the genetic potential 281 
of microbiome optimization in crop breeding based on the heterosis for microbiome traits (Fig. 4b), 282 
finding that soil microbes differentially impact the early growth of inbred and hybrid maize40. We tested 283 
mid-parent heterosis of individual ASVs using FDR-corrected t-tests of their variance-stabilized 284 
abundances. Here the heterosis of individual ASVs was defined with respect to mid-parent values. In 285 
most crossing triplets, the majority of the rhizosphere bacterial ASVs showed some evidence of mid-286 
parent heterosis, however the prevalence of ASV heterosis varied among hybrids for different taxa (Fig. 287 
4b; Supplementary Dataset 20). Specifically, Oxalobacteraceae abundance showed heterosis in the 288 
rhizosphere of B73 × H99, B73 × H84, B73 × A554 and B73 × Mo17 (Fig. 4b). To characterize the 289 
relationship between growth heterosis and abundance of Oxalobacteraceae or the specific Massilia 290 
ASV37, we performed root inoculation experiments. We inoculated with ASV37 alone, with a 17-291 
member synthetic bacterial community (SynCom) of Oxalobacteraceae that did not include ASV37 292 
(Duganella, Pseudoduganella, Collimonas and Janthinobacterium), or with an 18-member SynCom 293 
including the 17-members with the addition of ASV37. We quantified root and shoot growth in inbred 294 
lines and hybrids in both nitrogen-rich and nitrogen-poor soil. We found that Oxalobacteraceae were 295 
important to maintain the growth of hybrids irrespective of soil nitrogen levels, but only necessary for 296 
growth of inbred lines under nitrogen-poor soil (Supplementary Figure 30). Moreover, when we 297 
compared the degree of mid-parent heterosis for shoot dry biomass, absence of Oxalobacteraceae 298 
were important to promote heterosis in nitrogen-poor soil (Fig. 4c), thus suggesting that growth of inbred 299 
parents might depend more on Oxalobacteraceae than hybrids. Furthermore, we verified that different 300 
SynComs or single ASV inoculation of Massilia ASV37 can significantly induce lateral root formation in 301 
both inbred lines and hybrids under nitrogen-poor conditions (Supplementary Figure 31). In particular, 302 
we found that heterosis for lateral root density correlated tightly with that in shoot biomass under 303 
nitrogen-poor conditions (Fig. 4d). Significantly, the microbial hub taxon Massilia alone can contribute 304 
to heterosis for lateral roots and biomass of maize, indicating the potential value of root trait interactions 305 
with keystone microbial taxa when breeding for crop resilience.  306 

Conclusions 307 

Our study advances the current understanding of plant-microbiome-environment interactions by 308 
demonstrating that local adaptation and domestication can govern assembly, dynamics and stability of 309 
bacterial hub members and functional capabilities of the maize microbiome in diverse environmental 310 
habitats. Beneficial associations between maize and the local soil microbiome could have played a role 311 
in plant survival and reproduction during historical expansion to new environments. Understanding how 312 
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plants modulate the microbiome to help them to adapt to local environments and how this is encoded 313 
in the genetic program provides novel insights into establishment of beneficial host–microbiome 314 
associations. This knowledge is crucial to harnessing the crop microbiome to support food production 315 
and will facilitate the identification of environment-tailored cultivars recruiting favourable microbial 316 
consortia for increasing agricultural productivity, resilience to climate change and sustainability.  317 
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Online Methods 318 

Plant material, soil collection and growth conditions 319 

The germplasm used in this study was selected to represent a broad diversity ranging from the maize 320 
progenitor teosinte to local open pollinating landraces and modern inbred lines and hybrids 321 
(Supplementary Dataset 21; Supplementary Fig. 1). We obtained the 11 geographically diverse teosinte 322 
accessions from the North Central Regional Plant Introduction Station (NCRPIS) and the International 323 
Maize and Wheat Improvement Center (CIMMYT). Moreover, we received the 97 landrace accessions 324 
from NCRPIS and these accessions were derived from the ten American countries which cover the 325 
major domestication areas of maize (Supplementary Fig. 1a). The modern breeding germplasm 326 
includes seven genetically diverse inbred lines41 covering the major heterotic groups stiff-stalk and non-327 
stiff stalk and four additional tropical inbred lines (Supplementary Fig. 1b). We have produced the ten 328 
hybrids by crossing the ten inbred lines with the reference inbred line B73 as the common mother plant 329 
(Supplementary Fig. 1c). Soil used for phytochamber pot experiments was dug from the Dikopshof long-330 
term fertilizer field experiment established in 1904 near Cologne, Germany (50˚48′21′′N, 6˚59′9′′E) 331 
(Supplementary Fig. 2a). In this study, we collected soil subjected to three different fertilization 332 
managements including control soil fertilized with all nutrients, low nitrogen soil fertilized without 333 
nitrogen and low phosphorus soil fertilized without phosphorus as defined accordingly42. The general 334 
soil type is classified as a Haplic Luvisol derived from loess above sand. Approximately the first 0-20 335 
cm of the soil were collected and placed in a clean plastic bag. Subsequently, collected soil was dried 336 
at room temperature in clean plastic trays for about one week and sieved with a 4 mm analytical sieve 337 
(Retsch, Haan, Germany) to remove stones and vegetative debris. The sieved soil for the whole 338 
experiment was then homogenized with a MIX125 concrete mixer (Scheppach, Ichenhausen, Germany) 339 
(Supplementary Fig. 2a). The air-dried soil was ground into powder for the analysis of carbon, nitrogen, 340 
phosphorus and five metal elements (K, Fe, Mn, Cu, Zn). Soil pH was measured in deionized water 341 
(soil: solution ratio, 1:2.5 w/v) using a pH-meter 766 (Knick, Berlin, Germany). The basic physical and 342 
chemical properties of these soils are provided in Supplementary Table 1. 343 

Local landraces are open-pollinated varieties and can vary largely on seed traits. Therefore, we covered 344 
a broad geographic area but also confirmed the homogeneity of the 97 landraces concerning seed size, 345 
seed color, and seed quality prior our phytochamber experiments (Supplementary Fig. 2b). Seeds were 346 
surface-sterilized with 6% NaClO for 10 min, and rinsed 3 times with sterile deionized water to eliminate 347 
any seed-borne microbes on the seed surface. The sterilized seeds were pre-germinated for 3 days in 348 
a paper roll system using germination paper (Anchor Paper Co., St. Paul, MN, USA) with sterile 349 
deionized water. Then seedlings with primary roots of ca. 1–2 cm length were transferred to soil-filled 350 
pots (7 × 7 × 20 cm3) in a 16/8-h light/dark, 26/18 °C cycle and were grown for 4 weeks in a walk-in 351 
phytochamber. A detailed sowing and transfer plan is provided in Supplementary Fig. 2c. No additional 352 
fertilizer was added.  353 

Experimental design and treatments 354 

The experiment was performed in a split plot design with three replications comprising four stress 355 
treatments on the main plots (trays) (Supplementary Fig. 32), e.g. fully fertilized control (CK) soil, no 356 
nitrogen fertilized low nitrogen (LN) soil, no phosphorus fertilized low phosphate (LP) and CK soil with 357 
drought (D) treatment. As controls, we used six pots without plants as ‘bulk soil’ samples (B), which 358 
were distributed across the main plots. Each tray contained a similar number of pots (subplots) with the 359 
different genotypes and bulk soil. The three replicates were performed at three different periods in the 360 
same growth chamber (Supplementary Fig. 32). For each stress treatment, we generated an alpha 361 
design for the genotypes and controls with three replicates and four incomplete blocks per replicate. 362 
The incomplete blocks were assigned to trays and replicates corresponded to the three replications of 363 
the experiment in time. To facilitate watering, pots subjected to the same treatment were allocated on 364 
the same tray. These trays were further randomized in the chamber. Distribution of all pots in each tray 365 
were randomized using a true random generator (excel function “RAND”), and trays were reshuffled 366 
every week in the growth chamber without paying attention to the pot labels. Since soil water availability 367 
will significantly affect the harvest of the rhizosphere and initiation of crown roots, we have performed 368 
a preliminary experiment with different water regimes (i.e. 33%, 22%, 17% water holding capacity) to 369 
ensure the establishment of suitable drought conditions and to facilitate rhizosphere harvesting and the 370 
optimal formation of the different whorls of crown roots (Supplementary Fig. 2c and 33). In brief, different 371 
volumes of sterilized water e.g. 60 ml, 40 ml, 30 ml were mixed with 500 g dry soil by spraying water 372 
and were then homogenized with a 4 mm sieve (Retsch). Each water regime was maintained by 373 
spraying water to the soil surface according to the weight loss of water during the 4-week culture. Plant 374 
height, total leaf area, shoot and root fresh biomass from the representative genotypes B73 and Mo17 375 
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were recorded. Moreover, the multifunctional device COMBI 5000 (STEP Systems, Nuremberg, 376 
Germany) was used to measure soil variables e.g. soil moisture and electronic conductivity directly in 377 
each soil pot during each experimental run. The covariates including sample harvest time, ID of person 378 
performing DNA extraction together with the determined soil variables were collected and used for 379 
downstream data analysis (Supplementary Dataset 22). 380 

Characterization of native collection sites of maize landraces  381 

Geographical coordinates and elevation information of the collection sites for maize landraces were 382 
retrieved from the public database of the U.S. National Plant Germplasm System (https://www.grin-383 
global.org/) and provided in Supplementary Dataset 21. Most of the landraces were received in the 384 
years 1980-1994 and were maintained by NCRPIS. To get the climate and soil variables based on the 385 
geographical coordinates for each site, we first compiled climatic and soil descriptors representative of 386 
the long-term averages of their point of origin, following methods accordingly43. All used databases are 387 
publicly available and have global coverage. Data was collected from WorldClim44, the NCEP/NCAR 388 
reanalysis project (https://psl.noaa.gov/data/reanalysis/reanalysis.shtml)45, NASA SRB 389 
(https://asdc.larc.nasa.gov/project/SRB), Climate Research Unit (CRU)46,  SoilGrids47 and the Global 390 
Soil Dataset (GSD)48. All 156 bioclimatic and soil variables were merged with the maize germplasm 391 
identity into the Supplementary Dataset 12. The related information of total soil nitrogen, available 392 
phosphorus, and annual precipitation are provided in the Supplementary Fig. 34. 393 

Determination of shoot phenotypic traits and ionome profile 394 

Aboveground phenotypic traits were determined for all 129 genotypes on the day of harvest in the 395 
phytochamber. The leaf area and chlorophyll index as measured by SPAD were determined as 396 
described accordingly18 and are provided in Supplementary Dataset 23. The complete aboveground 397 
part of maize plants excluding the seed was harvested and heat treated at 105 °C for 30 min, dried at 398 
70 °C to constant weight, weighed as the shoot dry biomass and then ground into powder. 399 
Approximately 6 mg of ground material was used to determine total nitrogen concentration in an 400 
elemental analyzer (Euro-EA, HEKAtech). Data were then calculated into peak areas by the software 401 
Callidus, providing quantitative results using reference material as a calibration standard. The same 402 
plant material was used to determine the concentrations of 13 additional mineral nutrients. In brief, 403 
approximately 200 mg of same ground material was weighed into polytetrafluoroethylene digestion 404 
tubes, and concentrated nitric acid (5 ml, 67–69%; Bernd Kraft) was added to each tube. After 4 h of 405 
incubation, samples were digested under pressure using a high-performance microwave reactor 406 
(Ultraclave 4, MLS). Digested samples were transferred to Greiner centrifuge tubes and diluted with 407 
deionized (Milli-Q) water to a final volume of 8 ml. Element analysis was carried out by Inductively 408 
Coupled Plasma-Optical Emission Spectroscopy (iCAP 7400 duo; Thermo Fisher Scientific). For 409 
sample introduction a SC-4 DX autosampler with prepFAST Auto-Dilution System (ESI, Elemental 410 
Scientific) was used. A three-point external calibration curve was set from a certified multiple-standards 411 
solution (Custom Multi-Element Standard_PlasmaCAL, S-prep GmbH). The element Yttrium (ICP 412 
Standard Certipur®, Merck) was infused online and used as internal standard for matrix correction. All 413 
ionome data including concentrations and contents of all mineral nutrients are provided in the 414 
Supplementary Dataset 24. 415 

Root and rhizosphere samples harvest for microbiome analysis 416 

The root and rhizosphere samples collection were performed from 4-week-old maize plants as 417 
previously described18. In brief, whole root systems were carefully taken out from each pot and 418 
vigorously shaken to remove all soil not firmly attached to the roots. During this stage, most genotypes 419 
have consistently started to form the 2nd whorl of shoot-borne crown roots with a length of 3-10 cm. To 420 
synchronize the harvest for precise comparisons among genotypes, we collected the fully developed 421 
1st whorl of shoot-borne crown roots initiated from the coleoptilar node for all maize genotypes 422 
(Supplementary Fig. 6a). Two dissected crown roots with tightly attached soil were placed into a 15 ml 423 
Falcon (Sarstedt) tube and immediately frozen in liquid nitrogen and stored at -80 °C before extraction 424 
of rhizosphere soil. The rhizosphere samples were defined and extracted into PowerBead tubes (Mo 425 
Bio Laboratories) as described previously18. The root samples were harvested from another crown root 426 
from the same plant that immediately washed by tap water and rinsed with three times of sterilized 427 
water followed by tissue drying and placed in PowerBead tubes (Supplementary Fig. 6b). Sample 428 
processing steps for root and rhizosphere have been performed by a designated person to avoid 429 
systematic errors. The bulk soil samples were also collected from the unplanted pots. DNA extractions 430 
were performed soon after root and rhizosphere samples were harvested, following the PowerSoil DNA 431 
isolation kit (Mo Bio Laboratories) protocol.  432 
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Amplicon library preparation and sequencing 433 

Amplicon library construction was processed with a similar workflow as previously described18 434 
(Supplementary Fig. 6c). In brief, for bacterial 16S rRNA gene libraries, the V4 region was amplified 435 
using the universal primers F515 (5′ GTGCCAGCMGCCGCGGTAA 3′) and R806 (5′ 436 
GGACTACHVGGGTWTCTAAT 3′)49. For fungal amplicon sequencing, the ITS1 gene was amplified by 437 
the primer pair F (5′ CTTGGTCATTTAGAGGAAGTAA 3′) and R (5′ GCTGCGTTCTTCATCGATGC 3′). 438 
PCR reactions were performed with Phusion High-Fidelity PCR Master Mix (New England Biolabs) 439 
according to the manufacturer’s instructions. Subsequently, only PCR products with the brightest bands 440 
at 400-450 base pairs (bp) were chosen for library preparation. Equal density ratios of the PCR products 441 
were mixed and purified with the Qiagen Gel Extraction Kit. Sequencing libraries were generated using 442 
the NEBNext Ultra DNA Library Pre Kit for Illumina, following the manufacturer’s recommendations and 443 
with the addition of sequence indices. The library quality was checked on a Qubit 2.0 Fluorometer 444 
(Thermo Scientific) and Agilent Bioanalyzer 2100 system. Finally, the qualified libraries were sequenced 445 
by 250-bp paired-end reads on a MiSeq platform (Illumina). 446 

16S rRNA gene and ITS gene sequence processing 447 

Raw sequencing reads were processed following a similar workflow as previously described18. Briefly, 448 
paired-end 16S rRNA amplicon sequencing reads were assigned to samples based on their unique 449 
barcode and truncated by cutting off the barcode and primer sequence. Paired-end reads were merged 450 
using FLASH (v1.2.7)50 and the splicing sequences were called raw tags. Sequence analyses were 451 
performed by QIIME 2 software (v2020.6)51. Raw sequence data were demultiplexed and quality filtered 452 
using the q2‐demux plugin followed by denoising with DADA252 (via q2‐dada2). Sequences were 453 
truncated at position 250 and each unique sequence was assigned to a different ASV. Taxonomy was 454 
assigned to ASVs using the q2‐feature‐classifier53 and the classify‐sklearn naïve Bayes taxonomy 455 
classifier against the SSUrRNA SILVA 99% OTUs reference sequences (v138)54 at each taxonomic 456 
rank (kingdom, phylum, class, order, family, genus, species). Mitochondria- and chloroplast-assigned 457 
ASVs were eliminated. Out of the remaining sequences (only features with >10 reads in ≥2 samples) 458 
were kept to build an ASV table. In order to study phylogenetic relationships of different ASVs, multiple 459 
sequence alignments were conducted using mafft (via q2‐alignment)55 and the phylogenetic tree was 460 
built using fasttree2 (via q2‐phylogeny)56 in QIIME 2. Those sequences that did not align were removed. 461 
ITS amplicon data were processed the same as 16S amplicon data except that used the UNITE 99% 462 
ASVs reference sequences (v10.05.2021)57 to annotate the taxonomy.  463 

Statistical analyses for microbial community assembly 464 

In consideration of experimental design, here we treated the trays as the main plots for different 465 
treatments as a random effect. There were four trays per period/replicate, and a replicate effect was 466 
considered to account for differences between the three replicates. All downstream analyses were 467 
performed in R (v4.1.0)58. Briefly, ASV tables were filtered with ≥10 reads in ≥2samples. For α-diversity 468 
indices, Shannon index was calculated using ASV tables rarefied to 1,000 reads. For all the following 469 
analyses ASVs which express ≤0.05% relative abundance within ≤5% samples were filtered. After 470 
filtering taxa, the samples with ≤1000 reads were also removed. Bray–Curtis distances between 471 
samples were calculated using ASV tables that were normalized using 472 
‘varianceStabilizingTransformation’ function from DESeq2 (v1.34.0) package59 in R. Constrained 473 
ordination analyses were performed using the ‘capscale’ function in R package vegan (v2.5-7)60. To 474 
test the effects of compartment, treatment and genotype on the microbial composition community, 475 
variance partitioning was performed using Bray–Curtis distance matrix between pairs of samples with 476 
a permutation-based PERMANOVA test using ‘adonis’ function in R package vegan60.  477 

Inter-kingdom associations by network analysis 478 

The method SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference) 479 
implemented in SpiecEasi (v1.1.2) R package was used to construct the inter-kingdom microbial 480 
associations61 and network was visualized by Cytoscape (v3.9.1). For this network inference, only ASVs 481 
with relative abundance >0.05% in ≥10% samples were used. The filtered bacterial and fungal ASV 482 
table were combined as the input followed by the default centered log-ratio (CLR) transformation. The 483 
neighborhood selection measured by the Meinshausen and Bühlmann (MB) method62 was selected as 484 
the inference approach. The number of subsamples for the Stability Approach to Regularization 485 
Selection (StARS) was set to 99.   486 

Genotyping of 129 maize genotypes 487 
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Genomic DNA was extracted from leaves of bulked maize seedlings subjected to different treatments 488 
for each genotype (Supplementary Fig. 6). The genetic variation across the maize genotypes was 489 
characterized using a GenoBaits Maize40K chip containing 40 K SNP markers, which was developed 490 
using a genotyping by target sequencing (GBTS) platform in maize63. In brief, DNA fragmentation, end-491 
repair and adding A-tail, adapter ligation and probe hybridization were performed. After ligation of the 492 
adapters and clean up, fragment size selection was done with Beckman AMPureBeads and a PCR step 493 
to enrich the library. Quantity and quality of the libraries were determined via Qubit™ 4 Fluorometer 494 
(Invitrogen) and Agilent 2100 Bioanalyzer, respectively. In total, 129 qualified and enriched libraries 495 
were sequenced as 250-400 bp on an MGISEQ-2000 (MGI, Shenzhen, China). The quality of raw 496 
sequencing reads was assessed and filtered by fastp (version0.20.0, 497 
www.bioinformatics.babraham.ac.uk/projects/fastqc/) with the parameters (-n 10 -q 20 -u 40). The clean 498 
reads were then aligned to the maize B73 reference genome v4 using the Burrows-Wheeler Aligner 499 
(BWA) (v0.7.13, bio-bwa.sourceforge.net) with the MEM alignment algorithm. The SNPs were then 500 
called using the UnifiedGenotyper tool from Genome Analysis Toolkit (GATK, v3.5-0-g36282e4, 501 
software.broadinstitute.org/gatk) SNP caller. The genetic distance matrix was calculated based on 502 
pairwise Rogers’ distance64. A principal component analysis (PCA) was performed based on the filtered 503 
SNPs by GCTA software65. A phylogenetic tree (Supplementary Fig. 35) was generated using the 504 
neighbour-joining method as implemented in Mega 10.0.4 with 1,000 bootstraps using MEGA-X66. 505 

Analyses of phenotypic data 506 

For the three fitness phenotypes (SPAD, leaf area and biomass), we first performed the outlier test 507 
using the following model for a given stress treatment: 508 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝛽𝑡(𝑖) + 𝑔𝑖 + 𝑟𝑗 + 𝑏𝑗𝑘 + 𝑒𝑖𝑗𝑘 , (1) 509 

where 𝑦𝑖𝑗𝑘 is the observation of the i-th genotype in the k-th block of the j-th complete replicate. 𝜇 is the 510 
general mean, 𝛽𝑡(𝑖) is the effect of the t(i)-th subpopulation (t(i) indicates the subpopulation that the i-th 511 
genotype belongs to. There are four subpopulations: teosinte, landraces, inbred lines and hybrids.), 𝑔𝑖 512 
is the effect of the i-th genotype, 𝑟𝑗 is the effect of the j-th replicate, 𝑏𝑗𝑘 is the effect of the k-th block 513 
nested within the j-th replicate and 𝑒𝑖𝑗𝑘 is the residual term. All effects except the general mean were 514 
assumed to be random and follow an independent normal distribution. 515 

After fitting the model, the residuals were standardized by the rescaled median of absolute deviation 516 
from the median (MAD) and then a Bonferroni-Holm test was applied to flag the outliers67. 517 

For all traits including fitness phenotypes and microbial traits, we estimated the broad-sense heritability 518 
(also referred as repeatability in this case) in each treatment. The following model was used to estimate 519 
the heritability: 520 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝑔𝑖 + 𝑟𝑗 + 𝑏𝑗𝑘 + 𝑒𝑖𝑗𝑘 , (2) 521 

where all notations were the same as in (1).  522 

The heritability was calculated using the following formula:                                  523 

𝐻2 =
𝜎𝑔

2

𝜎𝑔
2 + 𝜎𝑒

2 𝑅⁄
, (3) 524 

where 𝜎𝑔
2 and 𝜎𝑒

2 are the estimated genotypic and residual variance, R is the number of replications. 525 

The best linear unbiased estimations (BLUEs) of all genotypes for each trait in each treatment were 526 
obtained by fitting Model (2) once more, assuming the general mean and genotypic effects are fixed 527 
and all other effects are random. All linear mixed models were fitted using the software ASReml-R 4.068. 528 

Statistical framework for GWAS 529 

Prior to GWAS, we first performed quality control for the genotypic data. In brief, the missing genotypic 530 
values were imputed using the software Beagle 5.269. After imputation, we removed the markers with 531 
minor allele frequency (MAF) <0.05. As heterozygous loci were very common in our data set, we also 532 
removed markers whose maximum genotype frequency is >0.95. In total, 157,785 SNP markers were 533 
used for GWAS. For all traits, GWAS was performed separately for each treatment (i.e., using the 534 
BLUEs within the treatment as the response variable). For microbiome ASVs and alpha-diversity traits, 535 
only those with a heritability >0.1 were used for GWAS. 536 

A standard “Q+K” linear mixed model70 was used in GWAS. More precisely, the model is of the following 537 
form: 538 
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𝒚 = 𝑿𝜷 + 𝒎𝑎 + 𝒈 + 𝒆, (4) 539 

where 𝒚 is the n-dimensional vector of phenotypic records (i.e. BLUEs within a certain treatment, n is 540 
the number of genotypes), 𝜷 is the k-dimensional vector of fixed covariates including the common 541 
intercept and the subpopulation effects. 𝑿 is the corresponding n × k design matrix allocating each 542 
genotype to the subpopulation it belongs to. 𝑎 is the additive effect of the marker being tested, 𝒎 is the 543 
n-dimensional vector of marker profiles for all individuals. The elements in 𝒎 are coded as 0, 1 or 2, 544 
which is the number of minor alleles at the SNP. 𝒈 is an n-dimensional random vector representing the 545 
genetic background effects. We assume that 𝒈~𝑁(0, 𝑮𝜎𝑔

2), where 𝜎𝑔
2 is the genetic variance component, 546 

𝑮 is the VanRaden genomic relationship matrix71. 𝒆 is the residual term and 𝑒~𝑁(0, 𝑰𝜎𝑒
2), where 𝜎𝑒

2 is 547 
the residual variance component and 𝑰 is the n × n identity matrix. After solving the linear mixed model, 548 
the marker effect was tested using the Wald test statistic 𝑊 = 𝑎̂2 var(𝑎̂)⁄ , which approximately follows 549 
a 𝜒2-distribution with one degree of freedom. 550 

Strictly, the model needs to be fitted once for each marker to get the precise test statistic for each 551 
marker. But to reduce the computational load, we implemented a commonly used approximate 552 
approach, namely the “population parameters previously determined” (P3D) method72. That is, we only 553 
fit the model once without any marker effect (the so-called “null model”), and then we fixed the estimated 554 
the variance parameters 𝜎𝑔

2 and 𝜎𝑒
2 throughout the testing procedure. Then, the test statistic for each 555 

marker can be efficiently calculated. GWAS was implemented using R codes developed by ourselves. 556 
The variance parameters were estimated by the Bayesian method using the package BGLR73.  557 

For microbial traits, the significant marker-trait association (MTA) was identified with a threshold of p 558 
<0.05 after Bonferroni-Holm correction for multiple test74. For fitness phenotypes and alpha-diversity, 559 
we used a more liberal threshold of p <0.1 after Benjamini-Hochberg correction75. For each trait, the 560 
proportion of phenotypic variance explained by each MTA (𝑅2 ) was calculated as follows: A liner 561 
regression model was fitted with all MTAs identified for the trait under consideration. Then, the sum of 562 
squares for each MTA as well as the total sum of squares was calculated by ANOVA. The 𝑅2 for each 563 
MTA was estimated as the sum of squares of the MTA divided by the total sum of squares. 564 

GWAS for the presence/absence mode 565 

For microbial traits, we performed in addition a GWAS based on the presence/absence mode (PA-566 
GWAS) in each treatment. Each ASV or taxonomy is considered as present if it is present in more than 567 
two replicates (including two). As in the GWAS for abundance, ASVs and taxa with repeatability below 568 
0.1 were filtered out. Those with a presence rate above 95% or below 5% were considered as non-569 
segregated and were also excluded from the analysis. The model for PA-GWAS is a logistic linear 570 
mixed model76. Briefly, the model can be described as follows. 571 

logit(𝝅) = 𝑿𝜷 + 𝒎𝑎 + 𝒈, (5) 572 

where 𝑿, 𝜷, 𝒎, 𝑎 and 𝒈 are the same as in (6). 𝝅 is the vector of conditional probabilities given the 573 
covariates, marker effects and the genetic background effects. More precisely, for the i-th individual, 574 
𝝅𝑖 = 𝑃(𝑦𝑖 = 1|𝑿𝑖 , 𝑚𝑖, 𝑔𝑖), where 𝑦𝑖  is the binary variable indicating the presence (𝑦𝑖  = 1) and absence 575 
(𝑦𝑖  = 0), 𝑿𝑖  is the i-th row of the matrix 𝑿, 𝑚𝑖  is the i-th entry of the vector 𝒎 and 𝑔𝑖  is the i-th component 576 
of the random vector 𝒈. The logit function is defined as logit(𝑥) = ln (𝑥/(1 − 𝑥)). 577 

Similar to the P3D approach, a null logistic linear mixed model logit(𝝅0) = 𝑿𝜷 + 𝒈  was fitted using the 578 
penalized quasi-likelihood method77. The estimated variance components were then fixed throughout 579 
the test procedure. A score test was applied to assess the significance of the marker effects. 580 

The PA-GWAS was conducted using the R package GMMAT76. 581 

Prediction for microbial traits using the genomic data and environmental descriptors 582 

To see the host genetics and microbiome assemblage, Mantel test was first performed between Rogers’ 583 
genetic distance matrix and microbial composition distance matrix only for landraces. After removing 584 
the treatment effect using linear model for  585 
normalized microbial abundances, the mean value of the residual for each  586 
genotype was used to calculate the Euclidean distance. Spearman correlation  587 
method was used in mantel function in R. Permutations = 9999.  588 

Next, we investigated the prediction abilities for all microbial traits within each treatment using both the 589 
genomic data and the environmental characters. The following three models were implemented. To 590 
eliminate the noise of subpopulation effects, we only used the 97 landraces for this part of analysis. 591 
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Model 1 (genomic prediction). We applied the genomic best linear unbiased prediction (GBLUP)71 which 592 
is the most commonly used model in genomic prediction. The model can be described as follows. 593 

𝒚 = 𝑿𝜷 + 𝒈 + 𝒆, (6) 594 

where the notations are the same as in (4). Note that by the use of the VanRaden genomic relationship 595 
matrix as the covariance matrix of 𝒈, it implicitly modeled the additive effects of all markers. 596 

Model 2 (prediction purely based on the environmental characters). In this model, the genetic effects 597 
were replaced by the effects of the environmental characters, which were modeled in a similar way to 598 
the GBLUP. More precisely, the model has the following form: 599 

𝒚 = 𝑿𝜷 + 𝒍 + 𝒆, (7) 600 

where 𝒍 is the n-dimensional random vector representing the E-determined values for all individuals. 601 
We assume that 𝒍~𝑁(0, 𝜮𝜎𝑙

2) where 𝜎𝑙
2

 is the corresponding variance component, 𝜮 is a covariance 602 
matrix. Assuming that 𝑳 is the n × s matrix of standardized environmental character records (s is the 603 
number of environmental characters), we have 𝜮 = 𝑳𝑳′/𝑐 where 𝑐 is the mean of all diagonal elements 604 
in the matrix 𝑳𝑳′. 605 

Model 3 (prediction based on both genomics and environmental characters). In this approach, we 606 
combined the genomic data and the Es in a multi-kernel model, which is of the following form: 607 

𝒚 = 𝑿𝜷 + 𝒈 + 𝒍 + 𝒆, (8) 608 

where the notations were inherited from (6) and (7). 609 

The prediction abilities of the above three models were assessed in a leave-one-out cross-validation 610 
scenario. That is, each individual was predicted once using a training set consisting of all other 611 
individuals. Thus, for each trait the prediction model was fitted n times. After we obtained the predicted 612 
values of all individuals, the prediction ability was calculated as the correlation between the predicted 613 
and observed values. The standard error was estimated using the bootstrap approach78. 614 

All prediction models were implemented using the R package BGLR73 and rrBLUP79. 615 

Prediction for fitness phenotypes using the genomic and microbiome data 616 

We explored the possibility of predicting the three fitness phenotypes and ionome traits in each 617 
treatment using the genomic data and microbiomes. As in the last subsection, we focused on the 618 
subpopulation of 97 landraces. 619 

Scenario 1 (prediction based on microbiomes only). In this scenario, we considered 9 cases, in which 620 
the phenotypes were predicted using bacteria in the root sample (BA_RO), in the rhizosphere sample 621 
(BA_RH), fungi in the root sample (FU_RO), in the rhizosphere sample (FU_RH), bacteria in both 622 
samples (BA), fungi in both samples (FU), both types of microbiomes in the root sample (RO), in the 623 
rhizosphere sample (RH), and both types of microbiomes in both samples (ALL). The model can be 624 
uniformly described as follows: 625 

𝒚 = 𝟏𝑛𝜇 + ∑ 𝒎𝑖

𝑘

𝑖=1
+ 𝒆, (9) 626 

where 𝒎𝑖 is an n-dimensional trait values for all individuals determined by a certain type of microbiome 627 
in a specific sample, k can be 1 (BA_RO, BA_RH, FU_RO, FU_RH), 2 (BA, FU, RO, RH), or 4 (ALL), 628 
other notations are the same as in (8). We assume that 𝒎𝑖~𝑁(0, 𝑽𝑖𝜎𝑚𝑖

2 ), where 𝜎𝑚𝑖
2  is the corresponding 629 

variance component, 𝑽𝑖 is a covariance matrix derived from the microbiome ASVs. Assuming that 𝑴𝑖 630 
is the n × t matrix of standardized records of microbiome ASVs (t is the number of different ASVs), we 631 
have 𝑽𝑖 = 𝑴𝑖𝑴𝑖

′/𝑐𝑖 where 𝑐𝑖 is the mean of all diagonal elements in the matrix 𝑴𝑖𝑴𝑖
′. 632 

Scenario 2 (prediction based on both microbiomes and genomic data). In this scenario, the 9 cases in 633 
Scenario 1 were combined with genomic data (G_BA_RO, G_BA_RH, G_FU_RO, G_FU_RH, G_BA, 634 
G_FU, G_RO, G_RH, G_ALL). The models are of the following form: 635 

𝒚 = 𝟏𝑛𝜇 + 𝒈 + ∑ 𝒎𝑖

𝑘

𝑖=1
+ 𝒆, (10) 636 

where the notations were adopted from (8) and (11). 637 

As in the last subsection, the prediction abilities were evaluated in a leave-one-out cross-validation 638 
scenario. Prediction models were implemented using the R package BGLR. 639 
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Effects of source environmental factors on specific microbial assemblies 640 

To explore the environmental legacy of native habitats in relation to specific microbial variations among 641 
landraces, we performed network analyses of rhizosphere and root microbial indicators. We then aimed 642 
to understand the connections between bacterial and fungal taxa intimately associated with the 643 
microbiome of roots and rhizospheres. To this end, we used the function “multipatt” in the R package 644 
indicspecies80 to identify those microbial phylotypes that were significant indicators of microbial zASVs 645 
roots and rhizosphere (i.e., roots, rhizosphere or roots + rhizosphere) compared with bulk soil. We then 646 
conducted a correlation network conformed by taxa associated with the root and rhizosphere 647 
microbiomes. We calculated all pairwise Spearman correlation coefficients among these microbial taxa 648 
and kept all positive correlations. We further identified microbial modules (clusters of taxa highly 649 
correlated with each other) using Gephi (https://gephi.org/). We determined the proportion of modules 650 
by calculating the standardized (0-1) average of all taxa within each module, so that all taxa equally 651 
contribute to each module. This information was then correlated (Spearman) with environmental 652 
conditions. Mean annual temperature and precipitation were obtained from the WorldClim database 653 
(https://www.worldclim.org/). Other environmental descriptors were determined as explained above. 654 
Structural equation modelling (SEM) was conducted to provide a system-level understanding on the 655 
direct and indirect associations between environmental factors, the proportion of modules and that of 656 
selected taxa from above-explained analyses. Because some of the variables introduced were not 657 
normally distributed, we used bootstrap tests in these SEMs. We evaluated the fit of these models using 658 
the model χ2-test, the root mean squared error of approximation and the Bollen–Stine bootstrap test. 659 

Environmentally adaptive loci and microbiome relatedness across abiotic stresses 660 

To determine if the environmentally associated loci are contributing to microbiome adaptation to abiotic 661 
stresses, we used a representative set of natural varieties e.g. 97 landraces accessions covering typical 662 
geographical range. Prior to analysis, PCA was conducted based on the BLUEs for each treatment and 663 
compartment to extract major sources of variance from bacterial and fungal microbial community data. 664 
The first five PCs were obtained for downstream analyses. PCA was performed using the prcomp 665 
function in R. In addition, we selected 18 individual ASVs belonging to Oxalobacteraceae to be 666 
predicted by Random Forest models. To improve model accuracy, feature selection was conducted 667 
prior to model building to eliminate unimportant or redundant environmental variables by identifying 668 
those with significant associations to an outcome variable. The feature selection method Boruta was 669 
employed to identify environmental aspects that describe significant variation in the PCs and ASVs 670 
using Boruta::boruta() (v7.0.0)81.  671 

The subset of boruta-identified environmental variables (Supplementary Dataset 12) for each ASV were 672 
used for Random Forest model construction. This model works under the expectation that a response 673 
variable can be described by several explanatory variables through the construction of decision trees. 674 
Thus, each Random Forest model is representative of the non-linear, unique combination of explanatory 675 
variables that describe variation in a response variable. Random Forest models were built using 676 
RandomForest::randomForest() function under default parameters, 5000 trees were built and one third 677 
of the number of explanatory variables were tried at each split82. Random Forest models were trained 678 
with 80% of the data and validated with the remaining 20% test set. Model success was evaluated with 679 
percent error explained, Nash-Sutcliffe efficiency (NSE), mean absolute error (MAE), and mean 680 
squared error (MSE). Using constructed Random Forest models, ASVs were predicted for 1,781 681 
genotyped landraces in Mexico. These landraces were genotyped as a part of the Seeds of Discovery 682 
project (SeeD).   683 

We conducted genome wide association studies (GWAS) to measure the associations between SNPs 684 
of landrace genotypes and predicted microbial traits, as well as the associations between SNPs and 685 
the environmental variables used to predict the microbial traits. SNPs were filtered for minor allele 686 
frequency >1%. We applied the method as previously described83, using a linear model to fit the 687 
genotypic data and each microbial trait and environmental variable for Mexican landrace accessions. 688 
The first five eigenvectors of the genetic relationship matrix were included in the model to control for 689 
population structure. To control for the number of false positive tests, we re-calibrated the p-values 690 
using the false discovery rate (FDR) control algorithm84 and selected significant SNPs based on the 691 
calibrated results. To test if GWA hits based on the prediction is significantly better in capturing top 692 
GWA hits of observed data than random, we conducted a permutation test and compared the median 693 
p-value of GWA hits of observed data that are around 200kb of the top 100 prediction-based GWA hits 694 
and the median p-value of random selected GWA hits based on 10000 permutations.    695 

Association of adaptive alleles with soil nitrogen and co-adapted microbial taxa 696 
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To identify whether the microbiome has been locally adapted with environment and maize phenotypes, 697 
we performed allelic variation analysis of Zm00001d048945 using an SNP dataset of CIMMYT 698 
landraces accessions obtained from a previous study12. We extracted the genotypic information of top 699 
SNPs of the target gene Zm00001d048945 for all tested landraces. We divided maize landraces into 700 
20 groups based on the total soil nitrogen content (%) of their sampling sites48. We calculated the mean 701 
total nitrogen, the minor allele frequencies (MAF) of the target SNPs, and the mean predicted ASV 702 
abundance for each group of landraces. Pearson correlation was conducted to test the correlations 703 
between MAF and total nitrogen content, and between MAF and ASV abundance.    704 

Candidate gene validation by independent transposon insertion alleles 705 

Gene expression for Zm00001d048945 was explored in qTeller (https://qteller.maizegdb.org/), which 706 
allows to compare gene expression across different tissues from multiple data sources. Gene 707 
expression data was extracted from different organs (seed, root, tassel/silk, internodes and leaf) and 708 
specific tissues such as the root meristematic zone, elongation zone, stele and cortex. The gene 709 
encoded protein annotation was inferred from UniProt database (https://www.uniprot.org/). We next 710 
identified potential loss-of-function mutations by exploring the sequence indexed collection BonnMu85. 711 
Induced maize mutants of the BonnMu resource derive from Mutator-tagged F2-families in various 712 
genetic backgrounds, such as B73 and F7. We identified two insertion lines, BonnMu-8-D-0170 (B73) 713 
and BonnMu-F7-2-F-0598 (F7), harboring insertions 1,264 bp upstream of the start codon ATG and in 714 
the second exon of Zm00001d048945, respectively. These two families were phenotyped in paper-roll 715 
culture18 and the seedling plants were scanned using the scanner Expression 12000XL (Epson, Suwa, 716 
Japan). Lateral roots were counted and the density was normalized with the measure number of lateral 717 
roots per cm length of primary root. Statistical analyses were performed by pair-wise Students t test 718 
with F statistics. 719 

Association of relative abundance of Massilia with lateral root density 720 

To understand the relationship between Massilia and the formation of lateral roots, root system 721 
architecture and morphology of 129 maize genotypes was scanned with an Epson Expression 12000XL 722 
scanner. Lateral root density was determined by manual calculation as the number of emerged lateral 723 
roots per length (cm) of the main root. The linear correlation was plotted between lateral root density 724 
and relative abundance data of Massilia ASVs using R (v4.1.0). 725 

Functionally adapted microbial inheritance from inbred lines to hybrids 726 

Patterns of heterosis were tested for variance-stabilized counts of highly abundant and prevalent ASVs 727 
(>0.05% relative abundance ≥20% samples) for 11 maize inbred lines and 10 hybrids that were crossed 728 
with one common mother inbred line B73 according to established protocols37. A linear mixed model 729 
was employed to test these ASVs features using lmer function from the lme4 (v1.1.27.1)86 package in 730 
R. In the model, blocks were set as random effects while treatments were set as fixed effects to remove 731 
noise. The resulted residuals were then used to test for patterns of heterosis. In brief, the mean values 732 
of these residuals in the inbred lines and expected mid-parent values (assuming additive genetic 733 
variance) for each hybrid were calculated for each ASV feature. Two-sided statistical t-tests were 734 
conducted for the null hypothesis that each hybrid’s microbiome trait value was equivalent to its 735 
respective “mid-parent heterosis”. Moreover, “better-parent heterosis” was tested using one-sided t-736 
tests to assess whether the hybrid value fell outside the parental range. Significance of both tests were 737 
adjusted according to the Benjamini-Hochberg method (adjusted p values <0.05)75. 738 

Synthetic community, root bacterial inoculation and plant fitness assay 739 

To explore heterosis manifestation and effects of Oxalobacteraceae, a growth promotion assay by 740 
inoculation with a synthetic community of Oxalobacteraceae isolates (Supplementary Dataset 25) was 741 
performed on three maize inbred lines (H84, B73 and Mo17) and their reciprocal hybrids (B73 × H84, 742 
B73 × Mo17 and Mo17 × H84) in both nitrogen-rich and nitrogen-poor soil pots. The natural soil was 743 
dug from a natural field at Campus Klein-Altendorf (University of Bonn), then sieved, homogenized and 744 
mixed with 50% quartz sand (WF 33, Quarzwerke Weferlingen, Germany) to reduce the nitrogen 745 
content of the recipient soil. The soil mixtures were then sterilized and conditioned for one week prior 746 
to use. The seed sterilization, isolates preparation, root inoculation and growth assay were done 747 
according as previously reported18. Different genotypes were grown in the phytochamber (16/8 h 748 
light/dark and 26/18 °C) for 6 weeks and plants were harvested, and total root and shoot dry weight 749 
were determined. To understand the importance of Massilia strains for maize heterosis, we performed 750 
another inoculation experiment using the same maize inbred lines and hybrids with different synthetic 751 
communities e.g. all Oxalobacteraceae isolates, Oxalobacteraceae isolates excluding Massilia ASV37, 752 
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only Massilia ASV37 isolates under nitrogen-poor condition. All preparations and harvests were 753 
performed accordingly18.  754 

Data availability 755 

All raw maize genotyping data, bacterial 16S and fungal ITS data in this paper were deposited in the 756 
Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under the BioProject ID PRJNA889703. The 757 
SSUrRNA database from SILVA database (release 138, 2020, https://www.arb-silva.de/) and UNITE 758 
database (v8.3, 2021, https://unite.ut.ee/) were used for analysing the bacterial 16S and fungal ITS 759 
sequences, respectively. We deposited customized scripts about GWAS analysis in the following 760 
GitHub repository: https://github.com/Danning16/MaizeMicrobiome2022. All statistical data are 761 
provided with this paper.   762 
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Main figures 763 

764 
Figure 1. Overall assembly and heritability of microbiome among abiotic stresses. a, Constrained 765 
analysis of principle coordinate (CAP) ordination using Bray–Curtis dissimilarity with permutational 766 
analysis of variance (PERMANOVA) was applied to visualize significant microbiome differences across 767 
three compartments, four treatments and genotypes (n = 129). Datapoints for bacteria (n = 3138) and 768 
fungi (n = 3168) are color coded according to the four treatments. Compartments are shape coded. 769 
Only ASVs with reads >10 in ≥6 samples were included in the dataset. b, Heritability estimates of 770 
individual families under four treatments for both bacteria and fungi. The broad-sense heritability (H2) 771 
was calculated using highly abundant bacterial (n = 131) and fungal (n = 59) families across all samples. 772 
CK, control; D, drought; LN, low nitrogen; LP, low phosphorus. Significances are indicated among 773 
treatment groups for each compartment with Benjamini-Hochberg adjusted P < 0.05 (Kruskal-Wallis 774 
test, Dunn’s post-hoc test). Boxes span from the first to the third quartiles, centre lines represent the 775 
median values and whiskers show data lying within 1.5× interquartile range of the lower and upper 776 
quartiles. Data points at the ends of whiskers represent outliers. The pie charts indicate the proportional 777 
distributions of heritability frequencies.  778 
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Figure 2. Genomic, environmental and microbial prediction of host-microbe interactions and 780 
plant fitness. a, Microbiome traits prediction using genetic markers and environmental characters. 781 
Inner pie charts describe the proportion of ASVs with four different magnitudes of prediction accuracies 782 
from different treatments across compartments. Outer circles define the best prediction patterns 783 
observed by applying the genetic markers (G_best) alone, environmental characters (E_best) alone or 784 
combined genetic markers and environmental characters (G+E_best). The numbers denote the 785 
average prediction accuracies for microbial ASVs from different treatments across compartments. Only 786 
ASVs with heritability (H2) >0.1 were considered in prediction analysis. PA, prediction accuracy. Bar 787 
plots indicate the proportions of predictable (PA >0.1) and unpredictable (PA <0.1) ASVs from the total 788 
predictions. CK, control; D, drought; LN, low nitrogen; LP, low phosphorus. b, Plant fitness traits 789 
prediction using genetic markers and microbiome traits. A curved line describes the average prediction 790 
accuracy for plant fitness traits using microbiome data alone, genomic data alone or combined genomic 791 
and microbiome traits data. A heatmap illustrates the standardized prediction accuracy for fitness traits 792 
across different microbiome features combined with genetic markers. Shoot traits include the biomass, 793 
leaf area and chlorophyll measured by SPAD value. Nutrient uptake properties include the 794 
concentration and content of macronutrients, micronutrients and beneficial elements.  795 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 10, 2023. ; https://doi.org/10.1101/2023.01.10.523403doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523403


20 
 

 796 
Figure 3. Environmental selection facilitates microbiome-driven root phenotypic co-adaptation 797 
to local nitrogen availability. a, Manhattan plots showing environmental GWAS of adaptive of specific 798 
Massilia ASV37. b, Linkage disequilibrium (LD) plot for SNPs within 2.5kb of gene Zm00001d048945. 799 
Exons in the gene model are indicated by black bins. All significant SNPs are linked (red) to the LD plot 800 
(P < 1.0 × 10−7). Arrows indicate the positions of the peak SNPs. The colour key (grey to red) represents 801 
linkage disequilibrium values (r2). Blue triangles indicate the transposon insertion positions of the two 802 
mutant alleles D-0170 and F-0598. c, Pearson correlation coefficient analysis of allele frequency 803 
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(S4_10445603) with soil total nitrogen content (purple) and predicted relative abundance of 804 
ASV37_Root_LN (orange) across 1781 geographical locations worldwide. d, Tissue-specific 805 
expression of gene Zm00001d048945 according to the eFP Browser database. e, Pearson correlation 806 
coefficient analysis of lateral root density with relative abundance of ASV37_Root_LN (orange) among 807 
97 maize landraces. Scatter plots show best fit (solid line) and 95% confidence interval (colour shading) 808 
for linear regression. f and g, Root phenotypes and lateral root density of two independent Mu-809 
transposon insertion mutant alleles in comparison to the corresponding wild types (B73 and F7). 810 
Significances are indicated between wild type and mutant for different genetic backgrounds (two-tailed 811 
Student’s t-tests). Boxes span from the first to the third quartiles, centre lines represent the median 812 
values and whiskers show data lying within 1.5× interquartile range of the lower and upper quartiles. 813 
Data points at the ends of whiskers represent outliers. 814 
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 815 

 816 

Figure 4. Heterosis confers selective advantage of functional taxa and overall performance 817 
under nitrogen deficiency. a, Phylogenetic tree of dominant bacterial ASVs (n = 126) of roots grown 818 
under nitrogen-poor condition. Dot size corresponds to relative abundance. Inner heatmap from inside 819 
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to outside indicates heritability (H2 >0.1) at the family, genus and ASV level. Red bar plots describe the 820 
explained variance by GWAS. The outer heatmap indicates the predictions by genomic best linear 821 
unbiased prediction (GBLUP), or based on the environmental best linear unbiased prediction (EBLUP) 822 
or prediction based on both genomics and environment (EGBLUP). Triangles indicate significant 823 
associations with the presence/absence (P/A) GWAS. Color coded tree branches of ASVs are clustered 824 
at the family level. Box plot indicates significantly higher heritability of Oxalobacteraceae compared to 825 
other families. b, Heterosis pattern of microbial ASVs across different crossing triplets. BPH, better 826 
parent heterosis; MPH, mid-parent heterosis. Different color-coded dots correspond to the bacterial 827 
families described in panel a. c, MPH of shoot dry biomass in the presence/absence of synthetic 828 
Oxalobacteraceae communities (SynCom). Significances are indicated in response to 829 
presence/absence of SynCom (two-tailed Student’s t-tests). ns, not significant. LN, low nitrogen. d, 830 
Correlation between MPH of different root traits and MPH of shoot dry biomass after inoculation with 831 
independent soil-derived Oxalobacteraceae isolates in nitrogen-poor soil. Scatter plots show combined 832 
data from inoculation experiments with best fit (solid line) and 95% confidence interval (color shading) 833 
for linear regression.  834 
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