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Abstract

Stimulation to local areas remarkably affects brain activity patterns, which can be
exploited to investigate neural bases of cognitive function and modify pathological brain
statuses. There has been growing interest in exploring the fundamental action
mechanisms of local stimulation. Nevertheless, how noise amplitude, an essential
element in neural dynamics, influences stimulation-induced brain states remains
unknown. Here, we systematically examine the effects of local stimulation by using a
large-scale biophysical model under different combinations of noise amplitudes and
stimulation sites. We demonstrate that noise amplitude nonlinearly and heterogeneously
tunes the stimulation effects from both regional and network perspectives. Furthermore,
by incorporating the role of the anatomical network, we show that the peak frequencies
of unstimulated areas at different stimulation sites averaged across noise amplitudes are
highly positively related to structural connectivity. Crucially, the association between
the overall changes in functional connectivity as well as the alterations in the
constraints imposed by structural connectivity with the structural degree of stimulation
sites is nonmonotonically influenced by the noise amplitude, with the association
increasing in specific noise amplitude ranges. Moreover, the impacts of local stimulation
of cognitive systems depend on the complex interplay between the noise amplitude and
average structural degree. Overall, this work provides theoretical insights into how noise
amplitude and network structure jointly modulate brain dynamics during stimulation
and introduces possibilities for better predicting and controlling stimulation outcomes.

January 9, 2023 1/31

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.10.523529doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523529
http://creativecommons.org/licenses/by/4.0/


Author summary

Despite the extensive application of local stimulation in cognition research and disease
treatments, how regional perturbations alter brain-wide dynamics has not yet been fully
understood. Given that noninvasive stimulation is associated with changes in the
signal-noise relationship, we assume that noise amplitude is one of the plausible factors
modulating the stimulation effects. Using a whole-brain biophysical model under
different stimulation sites and noise amplitudes, we explore the influence of noise
amplitude on stimulation effects and, more importantly, the interplay between noise
amplitude and network structure. From a regional perspective, noise amplitude reduces
the peak frequencies in unstimulated areas during stimulation. Moreover, we find a high
similarity between the noise-averaged peak frequency matrix and the structural network.
From a network perspective, we show that the changes in functional connectivity are
decreased by noise amplitude, while the alterations in structural constraints display
nonmonotonic trends. Intriguingly, increasing the noise amplitude in specific ranges can
improve the association between network-level effects and structural degree, promoting
better predicting and controlling therapeutic performance. Finally, the behaviors of
cognitive systems quantified by network-level effects are jointly modulated by the noise
amplitude and average structural degree.

Introduction 1

Complex interactions among brain areas elicit the rich spatiotemporal profiles of neural 2

activity that underlie human cognition and behaviors [1, 2]. Because the brain is an 3

open system, typical brain activity patterns are highly influenced by local perturbations, 4

yielding various dynamical states [3]. For example, sensory inputs can be viewed as 5

local stimulation, which may lead to neural activity changes in primary areas and affect 6

the associative cortex through neural circuits, thus supporting sophisticated cognitive 7

processes such as learning, decision-making and memory [4–6]. In addition, aberrant 8

statuses caused by certain brain disorders are associated with local perturbations. 9

Specifically, some generalized epileptic seizures are caused by stimulus-induced 10

abnormal activity in focal areas spreading throughout the brain [7, 8]. Despite the 11

critical role of local perturbations, how regional stimulation modulates the underlying 12

neural processes has not yet been fully established [9]. 13

Since their inception, artificial stimulation techniques have served as efficient tools 14

that allow researchers to directly investigate responses to experimentally altered local 15

neural activity. These methods have been widely used to explore the causal relationship 16

between select brain regions and cognitive processes or task behaviors [10]. Importantly, 17

they are also promising in clinical applications for the treatment of psychiatric and 18

neurological disorders. For example, deep brain stimulation (DBS) is commonly used for 19

patients with Parkinson’s disease, Alzheimer’s disease and dementia [11–13]. Moreover, 20

transcranial magnetic stimulation (TMS) is often employed for treating epilepsy, autism 21

and schizophrenia [14–16]. Revealing the effects of local stimulation may improve our 22

understanding of the neurodynamic bases of human cognition and behaviors and 23

facilitate the development and utilization of stimulation techniques. 24

It has been widely accepted that local perturbations not only induce regional 25

modifications near stimulation sites but also provoke broad system-level 26

impacts [10,17,18]. Since neural activity propagates along white matter bundles, 27

researchers have explored how anatomical connectivity constrains global stimulation 28

effects, highlighting the critical contribution of macroscale structural properties such as 29

degree and modularity [19,20]. Moreover, recent studies have demonstrated that 30

stimulation effects rely on physiological and cognitive states [21,22]. Compared to the 31

January 9, 2023 2/31

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.10.523529doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523529
http://creativecommons.org/licenses/by/4.0/


resting state, sleep or working memory states generate specific neural activity patterns 32

that alter the transmission of local stimulation [23,24], leading to differences in the 33

regional power spectra, interregional functional coupling, and behavioral performance. 34

Despite these advances, our poor understanding of the high variability of stimulation 35

outcomes across subjects suggests that the fundamental mechanisms that explain how 36

regional activity changes alter brain-wide dynamics need to be studied further [25,26]. 37

The activity patterns elicited by stimulation should be jointly modulated by multiple 38

neurophysiological factors. For example, recent research showed that the response to 39

local perturbations depends on both the stimulation sites and oscillatory states of brain 40

network activity [27]. Nevertheless, most studies have tended to examine the impact of 41

single elements, thus overlooking other factors that may have vital influences on 42

network communication and ignoring the essential interplay among these factors. 43

Neural noise, including multiple sources such as sensory, cellular and electrical noise, 44

affects all aspects of the behaviors of the nervous system [28]. On the one hand, neural 45

noise is thought to hinder information processing and transmission. On the other hand, 46

neural noise has been found to help maintain and promote brain function, including 47

shaping resting-state functional networks [29,30], enhancing neural 48

synchronization [31,32] and affecting task performance [33,34]. In addition, previous 49

research have indicated that the brain, as a noisy dynamical system, manifests 50

subject-specific parameters at various scales, thus producing diverse outputs [28,35]. 51

Moreover, a recent study related local stimulation to noise amplitude by showing that 52

the impact of noninvasive brain stimulation could be viewed as a neural activity 53

modification that alters the signal-noise relationship [36]. Based on this evidence, we 54

assume that neural noise is a crucial factor that influences stimulation-induced brain 55

states. However, how the noise amplitude is related to the global consequences of local 56

stimulation remains unknown. In particular, despite the previously discovered 57

significant contribution of network structure, the interplay between noise amplitude and 58

network structure remains unexplored. 59

Experimentally examining the effects of local stimulation across different parameters 60

is impractical, time-consuming and potentially detrimental to participants; however, 61

model-based numerical simulation offers a powerful approach to investigating these 62

unknown situations [27,37–41]. Thus, in the present work, we utilize a whole-brain 63

biophysical model composed of Wilson-Cowan neural masses to systematically explore 64

dynamic brain states at different stimulation sites under various noise amplitudes. We 65

first choose the appropriate global coupling strength, which is independent of the noise 66

amplitude, before stimulation and then evaluate the stimulation effects by examining 67

the frequencies associated with the maximum values in the regional power spectrum 68

(peak frequencies), the changes in the functional configurations (functional effects) and 69

the alterations in the structural constraints on function (structural effects) [37]. 70

From the regional perspective, we show that the noise amplitude influences the peak 71

frequencies of unstimulated brain areas, shifting the frequencies from higher to lower 72

values. Moreover, we find a high positive association between the peak frequencies of 73

unstimulated areas at different stimulation sites averaged across noise amplitudes and 74

the corresponding structural connectivity, underlining the antagonistic effects of the 75

direct connection strength and noise amplitude. From the network perspective, we show 76

that functional effects are nonlinearly weakened by noise amplitude, while structural 77

effects exhibit nonmonotonic trends. Importantly, due to the heterogeneous role of noise 78

amplitude on stimulation sites, increasing the noise amplitude in specific ranges can 79

enhance both the Pearson correlation coefficient and the adjusted coefficient of 80

determination between the functional or structural effects and the structural degree of 81

stimulation sites, potentially improving prediction and control in clinical intervention 82

approaches. The changes in the noise amplitude can even turn the correlation of 83
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structural effects from negative to positive. Finally, we show that the noise amplitude 84

and system-level average degree jointly modulate the performance of cognitive systems 85

in terms of functional and structural effects. The subcortical system with a high average 86

degree exhibits distinct behaviors under various noise amplitudes from the sensory and 87

association system with a low average degree. In summary, our study highlights the 88

importance of the coupling between noise amplitude and network structure in 89

influencing the effects of regional stimulation, thereby providing further insights into the 90

fundamental principles of brain dynamics and contributing to the development of 91

personalized stimulation techniques and the optimization of therapeutic performance. 92

Results 93

We utilize a three-step investigation procedure that consists of Input data, 94

Computational model, and Analysis scheme (Fig. 1); the details of this approach are 95

provided in the Materials and methods. Specifically, we first present the structural 96

network, distance network, and stimulation protocol as the main inputs of the 97

procedure. The group-level structural connectivity matrix (Fig. 1A) is estimated 98

according to the diffusion-weighted MRI of 30 healthy subjects, combined with a 99

parcellation of 82 regions (including subcortical areas) following the atlas [42]. The 100

matrix elements are fixed as the number of fibers between brain regions normalized by 101

the geometric mean of their volumes and capture the strength of interactions between 102

brain areas to some extent. The group-representative distance matrix (Fig. 1B) is 103

derived as the mean Euclidean distance between the centers of brain areas across 104

subjects. This matrix is used to estimate the time delays associated with interareal 105

communication. External stimulation with an intensity of 1.25 is applied to the brain 106

during the third second but is absent for the first two seconds (Fig. 1C). 107

A single trial involving local perturbation to the brain network is illustrated in 108

Fig. 1D. The stimulation, which is indicated by the yellow lightning bolt, is applied to a 109

single area. The stimulated area and one of its neighboring areas are surrounded by a 110

gray dotted line, and their dynamics are shown in Fig. 1E. A Wilson-Cowan neural 111

mass composed of coupled excitatory and inhibitory populations is inserted into each 112

region [43]. Both neural populations are disturbed by noise with a specific amplitude. 113

The local perturbation is assumed to act on the excitatory population in the stimulated 114

region. Interareal communication is achieved through long-range structural connections 115

linking excitatory populations in different regions [27, 37, 44]. To systematically explore 116

the role of noise amplitude in modifying the stimulation outcomes, we perform 117

simulations under different combinations of noise amplitudes and stimulation sites 118

(Fig. 1F), each with 30 realizations. 119

After the simulations, we extract the firing rates of all excitatory populations during 120

1-2 s and 2-3 s as time series before and during stimulation to evaluate the impacts of 121

the perturbations (Fig. 1G). First, from a regional perspective, one crucial effect of local 122

stimulation is altering the oscillations in different brain areas, which are commonly 123

related to brain functions and behaviors [45,46]. Therefore, we used the characteristics 124

of the power spectrum during stimulation, such as the frequency corresponding to the 125

maximum power (peak frequency) to reflect the effects of stimulation propagation 126

(Fig. 1H). Second, the dynamic information of the brain is stored not only in individual 127

regions but also in interactions between areas. Thus, we examined the network-level 128

stimulation effects based on the functional connectivity matrix (Fig. 1I) by quantifying 129

the average changes in functional networks (functional effects) and the alterations in the 130

similarity between structural and functional connectivity (structural effects) [37]. The 131

calculation details and a summary of the measures used in this work are presented in 132

the Materials and methods. 133
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Fig 1. Workflow consisting of Input data, Computational model and
Analysis scheme. (A) Group-level structural connectivity matrix based on 82-node
brain parcellation. (B) Group-averaged distance matrix characterized by the same
parcellation. (C) External stimulation protocol, with an intensity of 0 for the first two
seconds and an intensity of 1.25 for the third second. (D) An example of local
stimulation in the structural brain network. The purple dots and blue lines represent
the centers of the brain regions and the strongest 20% of connections between them.
The line darkness is positively related to the connection weight. The stimulated brain
region indicated by the yellow lightning bolt and its unstimulated neighbor are circled
to demonstrate the dynamics. (E) Schematic of two brain regions with Wilson-Cowan
dynamics linked by excitatory connections. Each region includes coupled excitatory and
inhibitory populations disturbed by noise with amplitude σ. An external perturbation
Pi is applied to region i to increase the excitatory input. (F) Simulation experimental
design. Different brain regions are stimulated under various noise amplitudes. (G) Time
series of excitatory activity for each brain region generated by the computational model.
(H) Power spectrum estimation to quantify the stimulation outcomes from a regional
perspective. (I) Functional connectivity matrix used to evaluate network-level effects.
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The effects of the noise amplitude and global coupling strength 134

on brain states without stimulation 135

To select the optimal global coupling strength c and provide prior knowledge about the 136

brain state under different noise amplitudes σ, we perform 2-second simulations without 137

stimulation and investigate system behaviors under various combinations of σ and c. 138

We change σ from 10−9 to 10−2 and c from 0.01 to 0.3. 139

In Fig. 2A, we present the time-averaged excitatory activity E (t) as a function of 140

the global coupling strength at a single noise amplitude (σ = 10−5). The results show 141

that there exists a threshold of c, above which the E (t) values in most regions change 142

sharply. Fig. 2B shows how the time- and network-averaged activity 〈E (t)〉 varies with 143

the noise amplitude and global coupling strength. The threshold remains constant and 144

is unrelated to the noise amplitude. We next examine the network-averaged peak 145

frequency and peak power (〈fpeak〉and〈ppeak〉). We find the same threshold in Fig. 2C 146

and Fig. 2D. Below this threshold, the results show that 〈fpeak〉 is less than 10 HZ and 147

〈ppeak〉 is relatively low. Note that a larger noise amplitude leads to a larger 〈ppeak〉. 148

Moreover, slightly above the threshold, 〈fpeak〉 and 〈ppeak〉 are both considerably 149

enhanced. These results are consistent with those in previous studies, indicating that 150

crossing the threshold causes most nodes in the system to undergo bifurcations from 151

low-activity steady states with fluctuations mainly driven by noise to high-amplitude 152

oscillatory states [27,37,41]. 153

Fig 2. The effects of noise amplitude and the global coupling strength on
brain states before stimulation. (A) Time-averaged excitatory activity (E (t)) in
each brain region under different global coupling strengths when σ = 10−5. (B) Time-

and network-averaged excitatory activity (
〈
E (t)

〉
) under different combinations of

global coupling strengths and noise amplitudes. (C) Network-averaged peak frequency
of the excitatory activity (〈fpeak〉) under different combinations of global coupling
strengths and noise amplitudes. (D) Network-averaged peak power of the excitatory
activity (〈ppeak〉) under different combinations of global coupling strengths and noise
amplitudes.

Overall, Fig. 2B-D reveals that a noise-independent threshold separates the two 154

dynamical regimes. According to previous research [37,41], we thus choose the value 155
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just below the threshold as the optimal global coupling strength (c = 0.1). This 156

approach is consistent with the widely accepted assumption that empirical brain 157

function is best captured by the fluctuation regime, which provides maximal flexibility 158

in information processing [38,47,48]. At the chosen value, σ has little effect on 〈E (t)〉 159

and 〈fpeak〉, except for 〈ppeak〉. This result indicates that the noise amplitude does not 160

produce qualitative changes in brain states, providing a relatively uniform baseline. 161

Note that there are several high 〈fpeak〉 values at large σ when c = 0.1 in Fig. 2C. This 162

is because large noise amplitudes combined with the initial values of simulations may 163

result in oscillations in some regions with a limited number of realizations, which has 164

little impact on the following analyses. We also show the distributions of 〈fpeak〉 and 165

〈ppeak〉 in all brain regions under the chosen c and different σ in S1 Fig and S2 Fig to 166

provide additional information. 167

The regional peak frequency during stimulation depends on the 168

interplay between the noise amplitude and structural 169

connectivity strength 170

In this section, we explore the peak frequency in both stimulated and unstimulated 171

brain regions at a global coupling strength of 0.1. We mainly focus on the following 172

problems: How does noise amplitude affect the regional peak frequency during 173

stimulation? Moreover, given the important role of the anatomical network in shaping 174

neural dynamics [49], how do the noise amplitude and structural properties jointly 175

modulate the regional peak frequency? 176

Fig. 3A presents the peak frequencies in stimulated brain areas (fpeaksti ) as a function 177

of the noise amplitude and stimulation site. The external perturbation drives the 178

stimulated region to an oscillatory state, leading to higher fpeaksti values than the case 179

without stimulation. The results show that fpeaksti is related to the stimulation site but is 180

rarely affected by the noise amplitude. Note that different stimulation sites influence 181

the transmission pathways for the altered neural activity and are assumed to reflect 182

properties of the structural brain network. 183

We then consider the peak frequency in unstimulated brain regions (fpeakunsti). Unlike 184

stimulated areas that directly receive external perturbations, these regions are indirectly 185

affected through interactions with other regions. Fig. 3B shows the impact of the noise 186

amplitude at a fixed stimulation site (R-Precentral). When σ is low, most regions 187

exhibit high fpeakunsti, indicating that these regions effectively received the activity from 188

the stimulated area. As σ increases, more regions exhibit low fpeakunsti values, which 189

implies that activity transmission is hindered. The behaviors of some other stimulation 190

sites are provided in S3 Fig to validate the robustness of our results. Fig. 3C shows the 191

average peak frequency of 81 unstimulated brain regions (〈fpeakunsti〉) under different 192

combinations of stimulation sites and noise amplitudes. The results show that σ induces 193

a disturbance effect, reducing 〈fpeaksti 〉 at all stimulation sites. Note that the effects of 194

the noise amplitude differ at various stimulation sites. Some regions are more 195

susceptible to noise and exhibit decreased 〈fpeaksti 〉 at relatively low σ. However, some 196

other regions show the opposite behavior, indicating the complex interplay between the 197

noise amplitude and network structure. Additionally, several large values at high σ can 198

be observed in Fig. 3B, C because the system is already in an oscillatory state before 199

stimulation, as shown in Fig. 2C. 200

To further elucidate the behaviors of unstimulated brain areas, we investigate the 201

time series and power spectra of the R-Precuneus when stimulating the R-Lateral 202

Orbitofrontal under different noise amplitudes as typical examples (Fig. 3D, E, F). We 203

find that as the noise amplitude increases, the regional activity becomes increasingly 204

irregular. Moreover, the power spectrum before stimulation increases and constrains 205
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Fig 3. The effects of noise amplitude and the stimulation site on the
regional peak frequency during stimulation. (A) Peak frequency of stimulated

brain regions (fpeaksti ) under different combinations of noise amplitudes and stimulation

sites. (B) Peak frequency of unstimulated brain regions (fpeakunsti) as a function of the
noise amplitude when stimulating R-Precentral. (C) Average peak frequency of 81

unstimulated regions (
〈
fpeakunsti

〉
) under different combinations of noise amplitude and

stimulation sites. (D) (E) (F) Time series (upper panels) and power spectra (lower
panels) of an unstimulated region (R-Precuneus) when stimulating the R-Lateral
Orbitofrontal under different noise amplitudes (10−7, 10−5, 10−3). The blue and orange
lines in the lower panels indicate the power spectrum before and during stimulation,
respectively.
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that during stimulation as a lower bound. For robustness, we also show the behaviors of 206

other unstimulated brain regions in S4 Fig. 207

We further explore the relationship between the noise amplitude and the network 208

structure by investigating how oscillatory activity propagates from stimulated to 209

unstimulated regions. In Fig. 4A, B, C, we show three typical examples of fpeakunsti 210

matrices under fixed noise amplitudes (σ = 10−7, 10−5, 10−3). Each element in the 211

matrices represents the peak frequency of an unstimulated brain region (y-axis) under a 212

specific stimulated area (x-axis). We observe that the fpeakunsti values heterogeneously 213

decrease as σ increases. Thus, we are interested in which node pairs are more vulnerable 214

to noise and how this behavior relates to structural properties. Fig. 4D presents the 215

matrix of fpeakunsti values averaged across noise amplitudes (
〈
fpeakunsti

〉
σ
). Intriguingly, this 216

matrix is remarkably similar to the structural connectivity matrix, with a Spearman 217

correlation coefficient of r = 0.93, p < 0.01 (Fig. 4E). Node pairs with strong direct 218

connections tend to exhibit high fpeakunsti values in a large range of σ, indicating strong 219

activity transmission capability. This result reveals that the antagonistic effects of the 220

structural connection strength and noise amplitude shape activity propagation in terms 221

of the peak frequency between stimulated and unstimulated areas to some extent. Note 222

that this result also illustrates the rather small contribution of multistep paths due to 223

the greater noise disturbance along the path. Oscillations before stimulation have little 224

impact on this result ( S5 Fig). 225

Fig 4. The high similarity between the peak frequency of unstimulated areas
averaged across noise amplitudes and the structural connectivity. (A) (B) (C) The

peak frequency (fpeakunsti) of unstimulated brain regions (y-axis) under various stimulated regions
(x-axis) at different noise amplitudes (10−7, 10−5, 10−3 ). The diagonal elements are set to 0.
(D) Peak frequency of unstimulated regions (y-axis) under different stimulation sites (x-axis)

averaged across all noise amplitudes (
〈
fpeakunsti

〉
σ
), with the diagonal elements set to 0. (E) The

positive Spearman correlation (r = 0.93, p < 0.01) between the matrix in (C) and the structural
connectivity network.
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The heterogeneous impact of noise amplitude on structural 226

degree alters network-level stimulation effects 227

In this section, we comprehensively investigate the network-level effects of stimulation 228

(functional and structural effects) based on the functional connectivity matrix. Our goal 229

is to explore how noise amplitude affects these network-level effects. Many previous 230

studies have suggested that the structural degree of the stimulated region is an 231

important feature for predicting and controlling stimulation effects [19,37,50]. How 232

does noise amplitude influence the role of the structural degree? In particular, how does 233

noise amplitude affect the relationship between the structural degree and functional or 234

structural effects? 235

Fig. 5 shows the difference in functional networks before and during stimulation 236

under three noise amplitudes (σ = 10−8, 10−5, 10−2) at three stimulation sites with 237

various degrees (L-Pars Orbitalis, R-Precentral, and L-Caudate). We observe that as 238

the noise amplitude increases, the changes in the functional networks decrease. When 239

σ = 10−8, most node pairs in the networks exhibit large alternations. When σ = 10−2, 240

the edge changes are small. Moreover, stimulating different regions leads to similar 241

results in these two situations. When σ = 10−5, only some node pairs are influenced. 242

The larger the degree of the stimulated region, the larger the range of alterations in the 243

functional network. These results provide an intuitive illustration of how noise 244

amplitude and structural degree collectively affect network-level effects. We also provide 245

examples of brain stimulation in the oscillatory state, as shown in S6 Fig. 246

In Fig. 6, we use the functional effects to quantitatively investigate how functional 247

brain networks are affected by external perturbations. We calculate the mean of the 248

absolute values of the upper triangular elements in the functional connectivity difference 249

matrices induced by local stimulation. Fig. 6A shows the functional effects under 250

different combinations of noise amplitudes and stimulation sites. The impact of the noise 251

amplitude can be separated into three distinct regimes. In the first regime (σ < 10−8), 252

large functional effects are independent of the noise amplitude, and the local stimulation 253

alters the system into a state that differs considerably from the prestimulation situation. 254

In the second regime (10−8 < σ < 10−3), the functional effects gradually decrease as σ 255

increases, showing disturbance effects. In the third regime (σ > 10−3), the functional 256

effects are approximately 0, and the local stimulation has little impact on the brain. 257

Moreover, there is obvious heterogeneity among stimulation sites under specific noise 258

amplitudes, especially in the second regime, indicating the effect of brain structure. 259

Additionally, note that the stimulation sites exhibit different levels of resistance to noise. 260

To understand the role of the structural degree and its interaction with the noise 261

amplitude, we exhibit the functional effects versus the noise amplitude separately for all 262

stimulation sites and color the effects according to the corresponding degree, as shown 263

in Fig. 6B. We found that the larger the degree of the stimulation site, the larger the 264

functional effects under a fixed noise amplitude and the stronger the noise amplitude 265

required to reduce functional effects. This result demonstrates the heterogeneous effect 266

of noise on the degree, i.e., regions with large degrees not only have a high capacity to 267

influence brain dynamics but also show strong resistance to noise. 268

In Fig. 6C, the Pearson correlation coefficient r between the functional effects and 269

structural degree as well as the adjusted coefficient of determination R2 estimated via 270

an ordinary least squares method are presented as functions of the noise amplitude. 271

High absolute values of r and R2 indicate that the functional effects are highly linearly 272

correlated with and well fitted by the corresponding degree. Initially, r shows 273

intermediate values and remains approximately constant (first regime); then, r 274

decreases to a local minimum and increases to a global maximum (second regime) and 275

finally rapidly declines to 0 (third regime). R2 shows a similar trend. We also provide 276

typical snapshots of the functional effects under different noise amplitudes in Fig. 6D-G 277
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Fig 5. Examples of functional connectivity changes induced by stimulating
different regions under various noise amplitudes. The brain regions L-Pars
Orbitalis, R-Precentral, and L-Caudate with low, moderate and high structural degrees,
respectively, are stimulated at low (10−8), moderate (10−5), and high (10−2) noise
amplitudes. The matrices represent the differences in functional connectivity networks
before and during local stimulation for one realization.
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(σ = 10−9, 10−7, 10−5, 10−3), and snapshots under other noise amplitudes are shown 278

in S7 Fig. These results show that noise amplitude nonmonotonically modulates the 279

relationship between functional effects and structural degree. When σ = 10−5, we 280

observe a high positive association for functional effects, which is consistent with a 281

previous study [37]. However, only a moderate level of correlation was observed when 282

the noise had little impact on brain dynamics (Fig. 6D), highlighting its nontrivial role. 283

Furthermore, increasing the noise amplitude in the second regime could progressively 284

enhance the correlation and the predictability of functional effects. 285

Fig 6. Noise amplitude and structural degree jointly affect the functional effects of
stimulation. (A) Functional effects under different combinations of stimulation sites and noise
amplitudes. (B) Functional effects as a function of noise amplitude for all stimulation sites, ranked by
structural degree. Note that the values in (A) and (B) represent the ensemble averages of 30 realizations
of the corresponding measures. (C) Pearson correlation coefficient (r) and adjusted coefficient of
determination (R2) between functional effects and structural degree as a function of noise amplitude. The
solid lines and shaded areas describe the ensemble averages and standard deviations of 30 realizations of
the corresponding measures. (D) (E) (F) (G) Snapshots of the functional effects under different noise
amplitudes for one realization. (D) Noise amplitude = 10−9, Pearson’s r = 0.7, p < 0.01. (E) Noise
amplitude = 10−7, Pearson’s r = 0.61, p < 0.01. (F) Noise amplitude = 10−5, Pearson’s r = 0.89,
p < 0.01. (G) Noise amplitude = 10−3, Pearson’s r = 0.93, p < 0.01. The gray lines represent the linear
fits of data points estimated by ordinary least squares.

To better understand these behaviors, we provide further explanations from the 286

perspective of the underlying dynamical mechanisms. In general, functional effects 287

depend on the interplay between network structure and noise amplitude. Under the 288

small noise amplitude which has little impact on neural activity (Fig. 6D), the intrinsic 289

network structure plays a major role. Stimulation sites with larger degrees tend to have 290

more neighbors with higher connection weights and shorter transmission delays than 291

regions with smaller degrees [51], thereby facilitating more effective information 292

transmission. Therefore, although the functional effects are all quite high, they are 293

moderately correlated with the structural degree. Following previous analyses, 294

stimulation sites with small degrees limit information transmission, causing the 295

propagation of downstream activity sensitive to the increased noise amplitude. When 296
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the noise amplitude is slightly larger (Fig. 6E), the functional effects induced by 297

stimulation to small-degree regions are reduced, while the functional effects are 298

essentially unchanged for regions with large degrees. This relationship becomes 299

nonlinear and the linearity diminishes. As the noise amplitude gradually increases 300

(Fig. 6F, G), the downstream activity transmission is significantly hindered. However, 301

neighboring areas are less affected due to their direct connections with stimulated 302

regions. This analysis indicates that the structural degree plays a progressively 303

important role in predicting the response to stimulation, leading to the linearity 304

increasing, although the functional effects decrease. 305

An important feature of the brain is that a relatively static network structure 306

supports complex dynamic functions. Therefore, the structure-function coupling can 307

reflect the network-level state. In Fig. 7, we study the alterations in the extent to which 308

brain function is limited by the network structure through structural effects. We 309

calculate the difference in the Pearson correlation coefficient between the structural and 310

functional connectivity matrices before and during stimulation. Fig. 7A exhibits the 311

structural effects as a function of the noise amplitude and stimulation site. We evaluate 312

the structural effects according to the three regimes shown in Fig. 6. In the first regime, 313

the structural effects show moderate values and are independent of the noise amplitude. 314

Local stimulation causes a temperate increase in the similarity between the structural 315

and functional connectivity. In the second regime, the structural effects of each region 316

increase to their peak values under large noise amplitudes, indicating that function 317

connectivity is more constrained by the network structure. In the third regime, all 318

structural effects decrease to small values near 0. Moreover, we observe heterogeneous 319

behaviors among stimulation sites, especially in the second regime, indicating the 320

crucial role of the interaction between noise amplitude and network structure. Following 321

previous analyses, we present the structural effects as a function of the noise amplitude 322

separately for all stimulation sites and color the results according to the corresponding 323

degree, as shown in Fig. 7B. We find that the structural degree is not only related to 324

the structural effects under a fixed noise amplitude but also positively correlated with 325

the noise amplitude required to achieve the peak values in the second regime. This 326

result indicates that the noise amplitude has a diverse influence on the degree, leading 327

to the different performance of the structural constraints across the stimulated regions. 328

Analogous to Fig. 6C, we show the Pearson correlation coefficient r and the adjusted 329

coefficient of determination R2 for the structural effects in Fig. 7C. In the first regime, 330

r and R2 exhibit moderate values with opposite signs. In the second regime, r remains 331

negative and then rapidly increases to a positive value near 1. R2 shows similar 332

behavior but with positive values. In the third regime, these metrics decrease rapidly to 333

low values. Typical snapshots of the structural effects under different noise amplitudes 334

are shown in Fig. 7D-G (σ = 10−9, 10−7, 10−5, 10−3). Snapshots under other noise 335

amplitudes are illustrated in S8 Fig. These results show that the relationship between 336

the structural effects and structural degree is nonmonotonically affected by the noise 337

amplitude. When σ = 10−5, we find a weak negative association for the structural 338

effects, which is consistent with a previous study showing poor predictability [37]. 339

Nevertheless, our results indicate that when the noise amplitude is larger, the structural 340

effects are highly correlated with and well predicted by the structural degree. 341

Specifically, increasing the noise amplitude in the second regime can enhance the 342

structural effect correlations and even change its sign from negative to positive. 343

To better understand these nonmonotonic changes, we present interpretations based 344

on fundamental dynamical mechanisms. The structural effects reflect the similarity 345

between structural and functional connectivity, which is modulated by the stimulation 346

site and noise amplitude. Under relatively low noise amplitudes (Fig. 7D-F), stimulating 347

regions with large degrees produces high functional connectivity in most node pairs, 348
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Fig 7. Noise amplitude and structural degree jointly influence the structural effects of
stimulation. (A) Structural effects under different combinations of stimulation sites and noise
amplitudes. (B) Structural effects as a function of noise amplitude for all stimulation sites, ranked by
structural degree. Note that the values in (A) and (B) represent the ensemble averages of 30 realizations
of corresponding measures. (C) Pearson correlation coefficient (r) and adjusted coefficient of
determination (R2) between structural effects and structural degree as a function of the noise amplitude.
The solid lines and shaded areas describe the ensemble averages and standard deviations of 30 realizations
of corresponding measures. (D) (E) (F) (G) Snapshots of structural effects under different noise
amplitudes for one realization. (D) Noise amplitude = 10−9, Pearson’s r = −0.53, p < 0.01. (E) Noise
amplitude = 10−7, Pearson’s r = −0.35, p < 0.01. (F) Noise amplitude = 10−5, Pearson’s r = −0.3,
p < 0.01. (G) Noise amplitude = 10−3, Pearson’s r = 0.9, p < 0.01. The gray lines represent the linear
fits of data points estimated by ordinary least squares.
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indicating the low correspondence between the structural and functional connectivity 349

and the reduced structural effects. In contrast, stimulating regions with small degrees 350

leads to more node pairs showing low functional connectivity. As the structural 351

connection weights reflect the information transmission ability to some extent, the low 352

functional connectivity is more likely to be found at node pairs with low connection 353

weights, therefore inducing higher structural constraints. Consequently, the structural 354

effects are negatively correlated with the structural degree. As the noise amplitude 355

increases (Fig. 7G), disturbance effects are enhanced. Most functional connectivity 356

shows values near 0 when stimulating small-degree areas, indicating the low 357

correspondence between the structural and functional connectivity and reduced 358

structural effects. For large-degree stimulation sites, more functional connectivity shows 359

high values, which is more likely to be found at node pairs with high structural 360

connection weights, resulting in high structural constraints. Hence, the structural effects 361

are positively correlated with the structural degree. 362

Behaviors of cognitive systems in the structure–function 363

landscape are jointly modulated by noise amplitude and the 364

average system degree 365

In this section, we categorize brain regions into cognitive systems, stimulate areas in 366

single systems, and study system behaviors based on local stimulation effects. We 367

employ a coarse-grained classification with four cognitive systems: the sensory and 368

association (SA) system, higher-order cognitive (HOC) system, medial default mode 369

(MDM) system, and subcortical system [52]. The stimulation effects are evaluated 370

according to the functional and structural effects. Previous research has shown that the 371

cognitive functions of brain systems are related to their stimulation effects [37,53]. Here, 372

we focus on the following questions: How does noise amplitude influence the stimulation 373

effects of different cognitive systems? What is the association between noise-induced 374

impacts and the system-level network structure? 375

In Fig. 8A, B, we present the mean and standard deviation of the functional effects 376

induced by stimulating regions in single cognitive systems (〈fe〉 and std (fe)) as a 377

function of the noise amplitude. Fig. 8A shows that 〈fe〉 of each system nonlinearly 378

decreases as the noise amplitude increases. The subcortical system shows the highest 379

noise amplitude required to reduce 〈fe〉, followed by the MDM, HOC, and SA systems. 380

Moreover, the 〈fe〉 values of different cognitive systems follow the same order at various 381

noise amplitudes, indicating a relatively consistent pattern in terms of the impacts on 382

the functional configuration. According to Fig. 8B, as the noise amplitude increases, 383

std (fe) first increases to a global maximum and then decreases to 0. The SA system is 384

the first to reach its peak value, followed by the HOC and MDM systems, and finally, 385

the subcortical system, indicating the different levels of flexibility of functional effects in 386

distinct systems at various noise amplitudes. 387

Fig. 8C, D shows the mean and standard deviation of the structural effects in each 388

cognitive system (〈se〉 and std (se)). Fig. 8C presents that as the noise amplitude 389

increases, 〈se〉 initially shows a moderate value, then increases to a maximum and 390

finally decreases. The noise amplitude corresponding to the peak value of 〈se〉 in the 391

subcortical system is larger than that in the SA and HOC systems, while the MDM 392

system shows a moderate value. The 〈se〉 values of the different systems follow the same 393

order under large noise amplitudes. Nevertheless, the situation shows the opposite trend 394

under small noise amplitudes, with the SA and HOC systems showing the largest 〈se〉 395

values, indicating the altered profiles of cognitive systems at various noise amplitudes in 396

terms of structural constraints. The std (se) also shows nonmonotonic trends with 397

global peaks, as presented in Fig. 8D. The SA and HOC systems reach their global 398
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Fig 8. The associations between behaviors of cognitive systems and noise amplitude and the average
system degree. (A) Mean of the functional effects induced by stimulating regions in a single system (〈fe〉) versus the
noise amplitude. (B) Standard deviation of the functional effects induced by stimulating regions in a single system
(std (fe)) versus the noise amplitude. (C) Mean of the structural effects induced by stimulating regions in a single system
(〈se〉) versus the noise amplitude. (D) Standard deviation of the structural effects induced by stimulating regions in a
single system (std (se)) versus the noise amplitude. (E) (F) (G) Structural effects versus functional effects of cognitive
systems at various noise amplitudes (10−9, 10−6, 10−3). Note that the brain regions are grouped into 4 cognitive systems,
as indicated by the different colors. The colored areas represent the convex hulls of data points in the systems. The lines
and points reflect the measures averaged over 30 realizations. (H) Structural properties of each cognitive system. The
colored bars indicate the maximum and minimum structural degree of regions in the systems. The gray dots and error
bars represent the mean and standard deviation of the structural degree in the systems.
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maximums at lower noise amplitudes than the MDM and subcortical systems, leading to 399

different expressions of the variability of structural constraints across noise amplitudes. 400

Fig. 8E-G presents the locations of cognitive systems in the structure–function 401

landscape under different noise amplitudes (σ = 10−9, 10−6, 10−3). According to 402

Fig. 8E, the functional effects are negatively related to the structural effects. In contrast 403

to the other systems, regions in the SA and HOC systems have smaller impacts on 404

functional configurations and are more constrained by the structural network, while 405

stimulating subcortical areas shows the opposite behavior. Fig. 8F shows the nonlinear 406

relationship between functional and structural effects, which is comparable to the 407

inverted U-shaped curve discussed in previous research [37]. Stimulating regions in the 408

SA and HOC systems results in high variability of functional effects which are highly 409

constrained by the structural network. In contrast, regions in the MDM and subcortical 410

systems exhibit large functional effects and small structural effects. Fig. 8G shows a 411

positive association between these two measures. Stimulating subcortical areas are more 412

structurally constrained than the SA and HOC systems. Overall, these results indicate 413

that the noise amplitude not only alters the stimulation effects of different cognitive 414

systems but also their relations with each other. The locations of different cognitive 415

systems under other noise amplitudes are shown in S9 Fig. 416

Finally, we present the properties of the structural degree of each cognitive system in 417

Fig. 8H. We observe that the subcortical system has the highest average degree, 418

followed by the MDM, HOC and SA systems. This order is consistent with many 419

cognitive system ranks of noise-related stimulation effects, such as values and resistance 420

to noise in Fig. 8A, the values in Fig. 8C, and the noise amplitude corresponding to the 421

peak values in Fig. 8B-D. These results highlight the mechanism of the mean structural 422

degree as an intrinsic property of cognitive systems in modulating noise-induced effects 423

and indicates that the normal function of cognitive systems is jointly dependent on the 424

noise amplitude and network structure. 425

Discussion 426

Understanding the effects of local stimulation is essential for revealing the causal 427

relationship between neural activity and cognition and promoting clinical applications 428

for regulating or restoring brain function [10–16]. Although many efforts have been 429

made in exploring fundamental principles, the global response to stimulation is not fully 430

understood. Given the evidence that noise contributes to the variability across subjects 431

and that the modulation of neural activity induced by noninvasive stimulation may alter 432

the signal-noise relationship [35,36], we hypothesize that noise amplitude is a crucial 433

factor affecting neural activity patterns during stimulation. 434

Inspired by the past theoretical work [27,37,38,40], we simulated a whole-brain 435

biophysical model under different combinations of noise amplitudes and stimulation 436

sites to elucidate the associations between noise amplitude and the impacts of local 437

stimulation and, more importantly, the interplay between noise amplitude and network 438

structure. We first determined an optimal value for the global coupling strength before 439

stimulation and then assessed the effects of regional perturbations. From a regional 440

perspective, local perturbations increased the peak frequency of neural activity, similar 441

to previous findings in natural and experimental stimulation studies [36,54]. We 442

observed that noise amplitude has little impact on the peak frequency of stimulated 443

brain regions but reduced that of unstimulated areas. In addition, we found a high 444

similarity between the peak frequency matrix for unstimulated areas averaged across 445

various noise amplitudes and the structural network. From a network perspective, we 446

quantified the effects of stimulation by examining the overall changes in functional 447

connectivity (functional effects) and the variations in structure–function coupling 448
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(structural effects). We observed that noise amplitude nonlinearly decreased functional 449

effects and nonmonotonically modulated structural effects. Crucially, we found that 450

noise amplitude nonmonotonically altered both the Pearson correlation coefficient and 451

adjusted coefficient of determination between the structural degree and functional and 452

structural effects, which has potential utility in better predicting and controlling 453

therapeutic performance. Finally, we showed that the behaviors of different cognitive 454

systems in the landscape of functional and structural effects depended on the interplay 455

between the noise amplitude and system-level average structural degree. 456

We first provide a discussion on the impacts of noise amplitude. Noise is inevitable 457

and common in the brain and shows both detrimental effects and potential 458

benefits [28,55]. We showed that under a small noise amplitude, the neural activity 459

patterns altered by perturbations easily spread throughout the network, resulting in 460

high peak frequencies in most brain areas and strong functional couplings as indicated 461

by functional effects. This behavior is an abnormal manifestation resembling the state 462

induced by generalized epilepsy, which is often associated with enhanced interregional 463

synchronization and is not conducive to effective information processing [56,57]. In 464

contrast, large noise amplitudes disrupted the transmission of neural activity; thus, 465

most peak frequencies and functional couplings could not be enhanced by local 466

stimulation. Previous research has shown that many brain disorders such as autism, 467

schizophrenia and cognitive dysfunction induced by aging or fibromyalgia are linked to 468

increased neural noise [58–62]. These decreased signal-to-noise ratios have been shown 469

to contribute to power spectrum density changes, decreased oscillatory coherence, and 470

network communication errors [63], which is similar to our findings. Furthermore, 471

stimulation with a moderate noise amplitude tends to elicit temperate effects, 472

influencing only part of the brain, which is consistent with a previous study, 473

emphasizing the importance of the partial synchronization state in cognition [53]. These 474

findings indicate that neural noise amplitude may be crucial in affecting widespread 475

changes in regional activity and functional interactions caused by stimulation. Our 476

results augment the literature on how noise affects neural communication dynamics 477

from the perspective of local stimulation and support the notion that an appropriate 478

noise amplitude is essential for maintaining brain functions such as receiving external 479

environmental stimuli, performing internal information processing and executing normal 480

cognitive functions [29–34,64,65]. 481

Our analyses also demonstrated that noise amplitude nonmonotonically modulates 482

the dependence of brain function on structure, i.e., structural effects. This finding is 483

reminiscent of a recent study showing that changes in neural noise in some brain regions 484

drive structure–function decoupling [66]. Intriguingly, increasing the noise amplitude in 485

a specific range of the second regime improved the similarity between structural and 486

functional connectivity, which reflects the complex behaviors associated with the 487

structure–function relationship and may be relevant to normative brain dynamics [67]. 488

Recent studies have suggested that ketamine anesthesia increases the randomness of 489

neural activity, likely associated with a decreased neural signal-to-noise ratio [68,69] and 490

has variable effects across brain regions [70,71], which leads to different stimulation 491

impacts. For example, stimulation to the ventral tegmental area under ketamine 492

anesthesia elicits smaller network activation than in the awake state [72]. In contrast, 493

stimulation to the parietal cortex shows similar distal effects in both states [73]. 494

Analogously, in this work, we found a heterogeneous effect of noise amplitude on 495

stimulation sites in terms of both regional and network-level stimulation effects. Here, 496

we conceptualize stimulation sites as structural network properties and then discuss the 497

interaction between the noise amplitude and network structure. 498

From a regional perspective, the positive correlation between the peak frequency of 499

unstimulated areas under different stimulation sites averaged across noise amplitudes 500
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and the structural connectivity implies an antagonistic effect between structural 501

connection strength and noise amplitude. The gradually increasing noise amplitude acts 502

as a high-pass filter on the structural brain network and is more likely to impede 503

communication between node pairs with weak weights. The relationship between brain 504

structure and function is one of the most important challenges in neuroscience [74]. 505

Many studies have focused on predicting brain function according to network 506

structure [75–77]. In this work, by leveraging noise amplitude and local perturbations, 507

we derive information about the structural network according to the functional data 508

obtained from numerical simulations, which improves our understanding of 509

structure–function associations in the brain. 510

It is of great interest to predict and control network-level responses to 511

stimulation [10,78], and many studies have proposed the structural degree as an 512

important property [19,50]. We observed that under a moderate noise amplitude (10−5), 513

the structural degree showed a strong positive correlation with functional effects and a 514

weak negative correlation with structural effects. This result is in accordance with a 515

previous study showing that the structural degree mainly controls functional effects and 516

that structural effects could not be easily predicted based on whether an area was a hub 517

or nonhub [37]. Furthermore, we found that the noise amplitude modulates the 518

association between the structural degree with functional and structural effects in a 519

nontrivial way. In particular, there was only a moderate level of correlation when the 520

noise amplitude had little impact on brain dynamics. Thus, the fact that the structural 521

degree could serve as a good predictor of functional effects is not only an intrinsic 522

property of the network structure but also attributed to the noise amplitude. This 523

result deepens our understanding of the structural degree and emphasizes the 524

significance of considering specific dynamical processes when investigating the role of 525

structure [79]. Our result also indicates that increasing the noise amplitude within 526

specific ranges of the second regime improves the association for functional and 527

structural effects and improves predictability and controllability, which shows important 528

potential applications in research experiments and disease treatments related to 529

stimulation. The growing noise amplitude even influences the sign of the correlation for 530

structural effects, changing it from negative to positive. These analyses highlight the 531

necessity of considering the coupling of multiple factors, including the brain structure 532

and noise amplitude, to comprehensively understand the global effects of stimulation. A 533

recent study also supports this notion by showing that both stimulation sites and brain 534

collective oscillatory states can affect the widespread impacts of focal stimulation [27]. 535

Previous research has shown that brain regions exhibit specific trade-offs between 536

functional and structural effects that are linked to their cognitive function [80, 81]. As a 537

result, cognitive systems, which are defined as subgraphs of the brain, occupy various 538

locations in the structure–function landscape [37,53]. At a moderate noise amplitude 539

(10−6), we observed that the nonlinear associations between the functional and 540

structural effects of different systems were consistent with the findings reported in [37]. 541

Moreover, our results showed that noise amplitude reduced the average functional effect 542

and nonmonotonically modulated the average structural effect, as well as the variability 543

of these two effects, therefore altering the positions of the systems in the 544

structure–function landscape, potentially implying a functional disorder. Previous 545

research has found abnormalities in functional connectivity and its variability in the 546

default mode and somatomotor networks in diseases characterized by aberrant neural 547

noise (such as schizophrenia and autism) [82–84], which may be associated with motor 548

and cognitive dysfunction. Furthermore, we observed that cognitive systems express 549

specific organizing principles at various noise amplitudes. Taking the average functional 550

effect as an example, the subcortical system showed the highest functional effects and 551

the strongest resistance to noise, while the sensory and association system exhibited the 552
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opposite trend. This result may be explained by the fact that the subcortical system 553

tends to play a global role in network dynamics, facilitating communication between 554

brain areas, whereas the sensory and association system tends to play a specialized role, 555

working in segregation and activating only a small part of the brain [85,86]. These 556

heterogeneous behaviors at various noise amplitudes were largely attributed to the 557

system-level mean structural degree, which again emphasizes the important role of both 558

noise amplitude and network structure in shaping brain dynamics during stimulation. 559

We next discuss several potential clinical applications about the combined effects of 560

noise amplitude and network structure. Due to the individual differences in noise 561

amplitude, our results contribute to understanding the highly variable consequences of 562

stimulation and facilitating the development of personalized healthcare 563

approaches [25,26]. In particular, for patients with brain disorders characterized by 564

abnormal neural noise such as autism and schizophrenia [58–60], therapists need to 565

carefully consider the role of noise amplitude when treating with local stimulation. In 566

addition, appropriately adjusting the noise amplitude could increase the correlations 567

between the structural degree and network effects, which supports the use of linear 568

control theory and may improve outcome predictions [87,88]. Note that there is a 569

trade-off between functional effects and their predictability. The maximum r and R2
570

values are achieved at the expense of functional effects, and stimulation induces only a 571

small fraction of changes in functional networks, regardless of the stimulation site. In 572

contrast, at lower noise amplitudes, local perturbations produce broad changes in 573

functional connectivity. However, the r and R2 values are reduced to some extent. This 574

result suggests that researchers should carefully tune the noise amplitude according to 575

practical needs to balance the range of impact and the predictability. 576

Finally, we provide several limitations of the present study and prospects for future 577

work. Following previous studies [27], we used a structural brain network consisting of 578

82 areas based on a low-resolution atlas. Although the relatively small number of nodes 579

and connections is beneficial for computationally dense simulations of key variables, this 580

approach may ignore important structural information at finer scales. Moreover, the 581

group-representative connectome precludes the exploration of network differences across 582

individuals. In addition, the main goal of this work is to demonstrate from a general 583

perspective how noise amplitude influences the effects of local stimulation. We chose the 584

canonical Wilson-Cowan neural mass for brain dynamics, including a constant 585

excitation as regional perturbations, and configured the global coupling strength such 586

that the neural activity lies just before the high-activity oscillatory state, which is 587

assumed to support empirical brain functions and provides maximal flexibility to 588

perturbations [38,47,48]. However, this computational model is a simplification of the 589

empirical situation and thus cannot perfectly describe the patterns of neural 590

activity [89]. Future work could consider more realistic improvements, such as 591

incorporating complex stimulation protocols [90], additional regional 592

heterogeneity [91–93], and synaptic plasticity [94]. Importantly, these results should be 593

tested experimentally using local stimulation under different noise levels to ensure the 594

validity of the biological insights provided by the model. For example, future research 595

may cautiously use psychedelics such as ketamine and LSD to enhance entropy in brain 596

areas, thereby leading to more disordered states, which are associated with changes in 597

neural noise [95]. Moreover, our study could be viewed as an extension of the 598

state-dependent stimulation, with noise amplitude reflecting brain states. In the future, 599

the intrinsic activity of other states, such as sleep and working memory, can be 600

considered to investigate how these states affect the stimulation outcomes. 601
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Materials and methods 602

Empirical data 603

We utilize a group-level anatomical brain network mentioned in a previous study [27], 604

which is derived by implementing deterministic tractography algorithms for 605

diffusion-weighted MRI of 30 healthy subjects [96,97]. This weighted and undirected 606

structural connectome contains 68 cortical areas and 14 subcortical areas, which are 607

defined according to a relatively coarse-grained atlas [42]. The connection weights are 608

calculated as the number of white matter streamlines between regions and are 609

normalized by the geometric mean of their volumes. The group-representative distance 610

matrix, in which elements represent the Euclidean distance between the centers of brain 611

regions averaged over all subjects, is obtained from the same dataset. More information 612

about the participant demographics and the acquisition and processing procedures of 613

neuroimaging data is presented in [27]. 614

Network model of brain dynamics 615

To simulate brain activity, we employ a nonlinear neural mass model, which has been 616

widely used to investigate brain functions [98,99]. Each brain region is composed of 617

both excitatory and inhibitory neural populations and is governed by the Wilson-Cowan 618

dynamics [43]. Brain areas are coupled through the structural connectivity described 619

above, with distance-dependent time delays. In accordance with previous 620

works [27,37,44], anatomical connections link only excitatory populations in different 621

brain areas. 622

The activity of the ith brain region is controlled by the following equations: 623

τ
dEi(t)

dt
=− Ei(t) + [SEmax − Ei(t)]SE [cEEEi(t)− cIEIi(t)

+ c
∑
j

AijEj(t− τij) + Pi(t)] + σwi(t)
(1)

624

τ
dIi(t)

dt
= −Ii(t) + [SImax − Ii(t)]SI [cEIEi(t)− cIIIi(t)] + σvi(t) (2)

where Ei(t) and Ii(t) represent the mean firing rate of excitatory and inhibitory pools 625

in brain region i, and τ is a time constant for both populations. The sigmoidal transfer 626

functions SE and SI of the excitatory and inhibitory populations are described by 627

SE(x) =
1

1 + e(−aE(x−θE))
− 1

1 + eaEθE
(3)

and 628

SI(x) =
1

1 + e(−aI(x−θI))
− 1

1 + eaIθI
. (4)

The fixed parameters aE and aI determine the maximal values of the slope, while θE 629

and θI represent the positions of the maximum slope of the activation functions for each 630

pool [43]. 631

In each brain region, the excitatory pool receives local excitation from itself with 632

strength cEE and local inhibition from the inhibitory pool in the same region with 633

strength cIE , as well as long-range excitation from excitatory pools in other regions 634

through anatomical connections Aij with global coupling strength c and external input 635

Pi(t). Due to the large distance between brain areas and the limited transmission speed, 636

we also consider the time delay between regions i and j as τij , which is given by
Dij

v . 637

Dij is an element in the group-representative distance matrix D, which indicates the 638
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mean Euclidean distance between regions i and j, and v is the velocity of signal 639

conduction. The inhibitory pool receives only local excitation from the excitatory pool 640

in the same region with strength cEI and local inhibition from itself with strength cII . 641

In addition, the excitatory and inhibitory populations are disturbed by random noise 642

wi(t) and vi(t) with amplitude σ. wi(t) and vi(t) both follow standard Gaussian 643

distributions. 644

The values of the model parameters used in this study are shown in Table 1 and are 645

consistent with those used in previous research [37]. The local perturbation is set as a 646

persistent excitation with intensity Pi = 1.25 for stimulated region i and an intensity of 647

0 for other areas. For an isolated brain area with the parameters shown in Table 1, 648

external stimulation with an intensity of 1.25 causes a transition from a fixed point to 649

the limit cycle regime [27, 37,53]. The frequency of rhythmic activity for the stimulated 650

region is approximately 20 Hz, which is essential in oscillatory neuronal dynamics [45,46]. 651

By tuning the strength of the excitatory input from other regions in the brain network, 652

the global coupling strength c affects the system state, as reflected in the sudden 653

increase in the mean firing rate in most regions, indicating the dynamic transition from 654

a low-activity steady state to a high-amplitude oscillatory state. Note that noise 655

amplitude σ is the parameter of interest. Therefore, we consider the global coupling 656

strength c ∈ [0.01, 0.3] in steps of 0.005 and the noise amplitude σ ∈ [10−9, 10−2] in a 657

log manner such as 10−9, 2× 10−9, · · · , 9× 10−9, 10−8, 2× 10−8, · · · . 658

Table 1. Values of model parameters.

Parameter Description Value
τ Time constant 8 ms
cEE Local excitatory-to-excitatory coupling strength 16
cIE Local inhibitory-to-excitatory coupling strength 12
cEI Local excitatory-to-inhibitory coupling strength 15
cII Local inhibitory-to-inhibitory coupling strength 3
aE Proportional to the excitatory maximum slope 1.3
aI Proportional to the inhibitory maximum slope 2
θE Position of the excitatory maximum slope 4
θI Position of the inhibitory maximum slope 3.7
SEmax Maximum of the excitatory activity function 0.9945
SImax Maximum of the inhibitory activity function 0.9994
c Global coupling strength 0.01-0.3
v Velocity of signal conduction 10 m/s
Pi External stimulation intensity 1.25
σ Noise amplitude 10−9 − 10−2

Simulation details 659

Due to the large range of σ, we integrate the set of stochastic differential equations 660

described above using the Euler-Maruyama scheme with a sufficiently small step 661

(dt = 5× 10−6s). We select a constant initial condition for all regions following previous 662

work [37,53]. The simulations are first performed for 2 seconds without stimulation 663

under different global coupling strengths and noise amplitudes to determine the 664

appropriate c (Fig. 2). Then, we rerun the simulations for 3 seconds under different 665

noise amplitudes and stimulation sites, with the local perturbation applied for 2-3 s and 666

a fixed global coupling strength. We perform each simulation 30 times and discard the 667

first second of neural activity due to the initial instability. We mainly focus on the 668

excitatory firing rate Ei (t) in each region [37,44,98,99] and downsample these time 669
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series to a resolution of 1×10−3 s. 670

Analyses metrics 671

The brain shows remarkably different dynamic performance in the before- (1-2 s) and 672

during-stimulation (2-3 s) periods. We first evaluate the brain state from a regional 673

perspective based on the properties of the frequency domain. We subtract the 674

corresponding mean value from each excitatory time series and apply Welch’s method 675

with a window length of 0.5 s with 50% overlap to estimate the power spectrum density 676

of each area. The peak frequency is given by 677

fpeak = arg max
f

P (f) , (5)

Thus, the frequency at which the regional power reaches its maximum value is the 678

measure of interest. In this work, due to the general low-peak frequency of brain areas 679

before the perturbation, the peak frequency of 2-3 s captures the impact of local 680

stimulation. 681

We also consider the brain state from a network viewpoint based on functional 682

connectivity, which is derived by calculating the maximum normalized 683

cross-correlation [100,101] between time series with a time window of 1 s and a 684

maximum lag of 250 ms. The stimulation effects are quantified as the difference in the 685

dynamic behaviors in the before- (1-2 s) and during-stimulation (2-3 s) periods, namely, 686

the functional and structural effects [37]. The functional effect (fe), which reflects the 687

influence of local brain regions on the interregional coupling configuration, is calculated 688

as 689

fe = |FCd − FCb|, (6)

where FCd and FCb are the functional connectivity matrices during and before 690

stimulation, respectively, and || represents the average of the absolute values of elements 691

in the upper triangle of the matrix. The structural effect (se), which reflects how local 692

changes in regional activity affect the structural constraints on brain dynamics, is given 693

by 694

se = FCd·SC − FCb·SC, (7)

where SC is the structural connectivity matrix and · indicates calculating the Pearson 695

correlation coefficient between two matrices. 696

In addition to these basic metrics, various integrated measures were used in this 697

study to characterize the performance of the brain. These measures are listed in Table 2 698

for ease of review. 699

Supporting information 700

S1 Fig. Distribution of the peak frequency of the excitatory activity in all 701

brain regions under different noise amplitudes given that c = 0.1. (A) Noise 702

amplitude = 10−7. (B) Noise amplitude = 10−5. (C) Noise amplitude = 10−3. (D) 703

Noise amplitude = 10−2. Panels (A-C) show similar behaviors, remarkably different 704

from that of panel (D). These results are comparable to Fig. 2C. 705

S2 Fig. Distribution of the peak power of the excitatory activity in all 706

brain regions under different noise amplitudes given that c = 0.1. (A) Noise 707

amplitude = 10−7. (B) Noise amplitude = 10−5. (C) Noise amplitude = 10−3. (D) 708

Noise amplitude = 10−2. Noise amplitude increases the peak power in all brain regions, 709

similar to results in Fig. 2D. 710
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Table 2. Summary of integrated measures.

Measure Description

E (t) Time-averaged excitatory activity〈
E (t)

〉
Time- and network-averaged excitatory activity

〈fpeak〉 Network-averaged peak frequency of the excitatory activity
〈ppeak〉 Network-averaged peak power of the excitatory activity

fpeaksti Peak frequency of stimulated brain regions

fpeakunsti Peak frequency of one unstimulated region〈
fpeakunsti

〉
Average peak frequency of 81 unstimulated regions〈

fpeakunsti

〉
σ

Peak frequency of one unstimulated region averaged over all noise amplitudes

〈fe〉 Mean of the functional effects induced by stimulating regions in a single cognitive system
std (fe) Standard deviation of the functional effects induced by stimulating regions in a single cognitive system
〈se〉 Mean of the structural effects induced by stimulating regions in a single cognitive system

std (se) Standard deviation of the structural effects induced by stimulating regions in a single cognitive system

S3 Fig. Robustness of the effect of noise amplitude (x-axis) on the peak 711

frequency of unstimulated brain regions fpeakunsti (y-axis) at various 712

stimulation sites. (A) L-Pars Orbitalis (small degree). (B) R-Superior Frontal 713

(moderate degree). (C) L-Caudate (large degree). 714

S4 Fig. Robustness of the impact of local perturbations on the time series 715

and power spectra of unstimulated brain regions. The upper panels indicate the 716

time series of two unstimulated brain regions at different noise amplitudes when 717

stimulating the R-Lateral Orbitofrontal region. The lower panels indicate the power 718

spectra before (blue) and after (orange) stimulation in the corresponding condition. (A) 719

L-Caudate, noise amplitude = 10−7. (B) L-Caudate, noise amplitude = 10−5. (C) 720

L-Caudate, noise amplitude = 10−3. (D) L-Pars Orbitalis, noise amplitude = 10−7. (E) 721

L-Pars Orbitalis, noise amplitude = 10−5. (F) L-Pars Orbitalis, noise amplitude = 10−3. 722

S5 Fig. Oscillations before stimulation have little impact on the similarity 723

between the peak frequency averaged across various noise amplitudes and 724

the structural connectivity. (A) The peak frequency (fpeakunsti) of unstimulated brain 725

regions (y-axis) under different stimulated brain regions (x-axis) at a large noise 726

amplitude (10−2, corresponding to oscillations before stimulation). The diagonal 727

elements are set to 0. (B) The peak frequency (
〈
fpeakunsti

〉
σ
) of unstimulated brain regions 728

(y-axis) under different stimulation sites (x-axis) averaged across various noise 729

amplitudes that do not induce oscillations before the perturbation. (C) The positive 730

Spearman correlation (r = 0.95, p < 0.01) between the matrix in (B) and the structural 731

network is similar to that in Fig. 4(e). 732

S6 Fig. Examples of functional connectivity changes caused by 733

stimulating different brain regions in oscillatory states before perturbation 734

under a large noise amplitude (10−2), showing similar results to Fig. 5. (A) 735

R-Lateral Orbitofrontal. (B) R-Hippocampus. (C) L-Accumbens. 736

S7 Fig. Snapshots of functional effects under other noise amplitudes for 737

one realization. (A) Noise amplitude = 10−8, Pearson’s r = 0.67, p < 0.01. (B) Noise 738

amplitude = 10−6, Pearson’s r = 0.79, p < 0.01. (C) Noise amplitude = 10−4, Pearson’s 739
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r = 0.94, p < 0.01. (D) Noise amplitude = 10−2, Pearson’s r = 0.16, p = 0.1447. The 740

gray lines represent the linear fits of data points estimated by ordinary least squares. 741

These results are in line with the trend shown in Fig. 6C. 742

S8 Fig. Snapshots of structural effects under other noise amplitudes for 743

one realization. (A) Noise amplitude = 10−8, Pearson’s r = −0.56, p < 0.01. (B) 744

Noise amplitude = 10−6, Pearson’s r = −0.39, p < 0.01. (C) Noise amplitude = 10−4, 745

Pearson’s r = 0.08, p < 0.4991. (D) Noise amplitude = 10−2, Pearson’s r = 0.32, 746

p < 0.01. The gray lines represent the linear fits of data points estimated by ordinary 747

least squares. These results are comparable to the trend shown in Fig. 7C. 748

S9 Fig. Locations of cognitive systems in terms of functional and 749

structural effects under other noise amplitudes. (A) Noise amplitude = 10−8. 750

(B) Noise amplitude = 10−7. (C) Noise amplitude = 10−5. (D) Noise amplitude = 10−4. 751

(E) Noise amplitude = 10−2. Note that stimulated brain regions are grouped into 4 752

cognitive systems with different colors. The colored areas represent the convex hulls of 753

data points in the systems. The points reflect the measures averaged over 30 754

realizations. 755
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91. Wang P, Kong R, Kong X, Liégeois R, Orban C, Deco G, et al. Inversion of a
large-scale circuit model reveals a cortical hierarchy in the dynamic resting
human brain. Science advances. 2019;5(1):eaat7854.

92. Wang XJ. Macroscopic gradients of synaptic excitation and inhibition in the
neocortex. Nature Reviews Neuroscience. 2020;21(3):169–178.

93. Kong X, Kong R, Orban C, Wang P, Zhang S, Anderson K, et al.
Sensory-motor cortices shape functional connectivity dynamics in the human
brain. Nature communications. 2021;12(1):1–15.

94. Shine JM, Müller EJ, Munn B, Cabral J, Moran RJ, Breakspear M.
Computational models link cellular mechanisms of neuromodulation to
large-scale neural dynamics. Nature neuroscience. 2021;24(6):765–776.

95. Carhart-Harris RL, Leech R, Hellyer PJ, Shanahan M, Feilding A, Tagliazucchi
E, et al. The entropic brain: a theory of conscious states informed by
neuroimaging research with psychedelic drugs. Frontiers in human neuroscience.
2014; p. 20.

96. Betzel RF, Bassett DS. Specificity and robustness of long-distance connections
in weighted, interareal connectomes. Proceedings of the National Academy of
Sciences. 2018;115(21):E4880–E4889.

97. Betzel RF, Medaglia JD, Bassett DS. Diversity of meso-scale architecture in
human and non-human connectomes. Nature communications. 2018;9(1):1–14.

98. Hlinka J, Coombes S. Using computational models to relate structural and
functional brain connectivity. European Journal of Neuroscience.
2012;36(2):2137–2145.

99. Murray JD, Demirtaş M, Anticevic A. Biophysical modeling of large-scale brain
dynamics and applications for computational psychiatry. Biological Psychiatry:
Cognitive Neuroscience and Neuroimaging. 2018;3(9):777–787.

100. Kramer MA, Eden UT, Cash SS, Kolaczyk ED. Network inference with
confidence from multivariate time series. Physical Review E. 2009;79(6):061916.

101. Feldt S, Osterhage H, Mormann F, Lehnertz K, Żochowski M. Internetwork and
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