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Abstract 26 

The major barrier to an HIV cure is the persistence of infected cells that evade host immune 27 

surveillance despite effective antiretroviral therapy (ART). Most prior host genetic HIV studies 28 

have focused on identifying DNA polymorphisms (e.g., CCR5∆32, MHC class I alleles) associated 29 

with viral load among untreated “elite controllers” (~1% of HIV+ individuals who are able to control 30 

virus without ART). However, there have been few studies evaluating host genetic predictors of 31 

viral control for the majority of people living with HIV (PLWH) on ART. We performed host RNA 32 

sequencing and HIV reservoir quantification (total DNA, unspliced RNA, intact DNA) from 33 

peripheral CD4+ T cells from 191 HIV+ ART-suppressed non-controllers. Multivariate models 34 

included covariates for timing of ART initiation, nadir CD4+ count, age, sex, and ancestry. Lower 35 

HIV total DNA (an estimate of the total reservoir) was associated with upregulation of tumor 36 

suppressor genes NBL1 (q=0.012) and P3H3 (q=0.012). Higher HIV unspliced RNA (an estimate 37 

of residual HIV transcription) was associated with downregulation of several host genes involving 38 

inflammasome (IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9, CXCL3, CXCL10) and innate 39 

immune (TLR7) signaling, as well as novel associations with potassium (KCNJ2) and gap junction 40 

(GJB2) channels, all q<0.05. Gene set enrichment analyses identified significant associations with 41 

TLR4/microbial translocation (q=0.006), IL-1/NRLP3 inflammasome (q=0.008), and IL-10 42 

(q=0.037) signaling. HIV intact DNA (an estimate of the “replication-competent” reservoir) 43 

demonstrated trends with thrombin degradation (PLGLB1) and glucose metabolism (AGL) genes, 44 

but data were (HIV intact DNA detected in only 42% of participants). Our findings demonstrate 45 

that among treated PLWH, that inflammation, innate immune responses, bacterial translocation, 46 

and tumor suppression/cell proliferation host signaling play a key role in the maintenance of the 47 

HIV reservoir during ART.  Further data are needed to validate these findings, including functional 48 

genomic studies, and expanded epidemiologic studies in female, non-European cohorts. 49 
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Short Title (max 70 characters: 43): Host gene expression and HIV reservoir size 52 

Keywords: HIV reservoir, host genetics, RNA sequencing, epidemiology 53 

Author Summary (max word count 150-200): 154 54 

Although lifelong HIV antiretroviral therapy (ART) suppresses virus, the major barrier to an HIV 55 

cure is the persistence of infected cells that evade host immune surveillance despite effective 56 

ART, “the HIV reservoir.” HIV eradication strategies have focused on eliminating residual virus to 57 

allow for HIV remission, but HIV cure trials to date have thus far failed to show a clinically 58 

meaningful reduction in the HIV reservoir. There is an urgent need for a better understanding of 59 

the host-viral dynamics during ART suppression to identify potential novel therapeutic targets for 60 

HIV cure. This is the first epidemiologic host gene expression study to demonstrate a significant 61 

link between HIV reservoir size and several well-known immunologic pathways (e.g., IL-1, TLR7, 62 

TNF- signaling pathways), as well as novel associations with potassium and gap junction 63 

channels (Kir2.1, connexin 26). Further data are needed to validate these findings, including 64 

functional genomic studies and expanded epidemiologic studies in female, non-European 65 

cohorts. 66 

 67 

CONFLICTS: The authors do not have a commercial or other association that might pose a 68 

conflict of interest. 69 

 70 

FUNDING: This work was supported in part by the National Institutes of Health: K23GM112526 71 

(SAL), the DARE Collaboratory (U19 AI096109; SGD), the Division of Intramural Research of the 72 

National Institutes (MC), UM1 AI126623 (KRJ), and NIH/NIAID R01A141003 (TJH). This work 73 

was also supported by the amfAR Research Consortium on HIV Eradication a.k.a. ARCHE 74 

(108072-50-RGRL; SGD) and a Collaboration for AIDS Vaccine Discovery (CAVD) grant from the 75 

Bill & Melinda Gates Foundation (INV-008500), the Reservoir Assay Validation and Evaluation 76 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.10.523535doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523535


 

 4 

Network (RAVEN) Study Group. The funders had no role in the study design, data collection and 77 

analysis, decision to publish, or preparation of the manuscript.   78 

Reprints: Reprint requests can be directed to Dr. Sulggi Lee, the corresponding author (contact 79 

information above). 80 

 81 

Acknowledgements: 82 

The authors wish to acknowledge the participation of all the study participants who contributed to 83 

this work as well as the clinical research staff of the SCOPE and Options who made this research 84 

possible. All funders had no role in study design, data collection and analysis, decision to publish, 85 

or preparation of the manuscript. All authors provided critical feedback in finalizing the report. SAL 86 

and DAS conceived and designed the study with critical feedback from SGD, TJH, and DAS. 87 

SGD, JM, FH, CP, RH, and SAL coordinated the collection, management, and quality control 88 

processes for the cohort clinical data and SGD, JM, FH, CP, MPB, MS provided biospecimens. 89 

SAL, CT, JM, KB, TP, EAG performed participant sample processing, SAL performed the RNA 90 

sequencing assays, and AKD performed quality control analyses and the association analyses 91 

for the study under the guidance of SAL and DAS. SAL, CT, and KH performed the qPCR HIV 92 

reservoir assays (total DNA, unspliced RNA) in the lab of TH.  CNL and MLH performed the 93 

ddPCR HIV reservoir assay (intact DNA) in the labs of FH, KRJ, and HPK.  AKD, PR, DAS, TJH, 94 

and SAL analyzed these HIV reservoir data in relation to host transcriptomic and clinical 95 

phenotype data. AKD, SAL, and DAS wrote the report. All authors provided critical feedback in 96 

finalizing the manuscript. 97 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.10.523535doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523535


 

 5 

Introduction 98 

Despite several unique cases of possible HIV remission [1-3], there is still no HIV vaccine 99 

or cure. The major barrier to a cure is the persistence of infected cells that evade host immune 100 

surveillance despite effective antiretroviral therapy (ART). Modern antiretroviral therapy (ART) 101 

has transformed HIV disease into a treatable chronic disease for individuals who have access to, 102 

and are able to maintain, viral suppression [4].  However, ART alone does not eliminate persistent 103 

virus in most individuals [5, 6]. HIV cure trials aimed at reactivating and eliminating the HIV 104 

reservoir have thus far failed to show a clinically meaningful reduction in the HIV reservoir [7-12]. 105 

There is an urgent need to bridge drug discovery with a deeper understanding of host-viral 106 

dynamics. Although several host factors have been shown to influence the size of the “HIV 107 

reservoir”, such as the timing of ART initiation after initial HIV infection [13-16], maximum pre-108 

ART viral load [17], ethnicity [17], and sex [17-20], there are few published human genomic and 109 

transcriptomic epidemiologic studies describing potential host factors influencing HIV persistence 110 

during treated infection.  111 

Prior host genome wide association studies (GWAS) have focused on predictors of viral 112 

control (during untreated HIV disease), identifying key mutations in the C-C chemokine receptor 113 

type 5 gene (CCR5∆32) and the human Major Histocompatibility Complex (MHC) human 114 

leukocyte antigen (HLA)-B and -C regions, that influence viral setpoint [21-24]. Recently our group 115 

reported these mutations (CCR5∆32 and HLA -B*57:01) are associated with smaller HIV reservoir 116 

size [25]. However, mRNA expression of DNA variation is complex; the basal and/or the 117 

conditional expression of these genes in multicellular organisms are influenced by external 118 

controls (alternative splicing, polyadenylation, regulatory enhancers, etc.) which may differ by cell 119 

type and tissue [26-28]. The limited number of host gene expression studies during HIV infection 120 

(e.g., RNA sequencing) have compared gene expression between distinct clinical HIV groups. 121 

For example, one prior study compared gene expression among HIV “controllers” (individuals 122 

able to control virus in the absence of therapy) versus “non-controllers” [29]. Another study 123 
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compared HIV non-controllers initiating ART “early” (<6 months from HIV infection) versus “later” 124 

(6 months after infection) [30]. However, no epidemiologic study has examined quantitative 125 

measures of the HIV reservoir size in relation to differences in host gene expression. 126 

Here, we performed a cross-sectional study of 191 ART-suppressed HIV+ non-controllers 127 

to identify differentially expressed host genes in relation to three measures of the peripheral CD4+ 128 

T cell reservoir: HIV cell-associated “intact” DNA (an estimate of the frequency of potentially 129 

“replication-competent” virus with intact HIV genomes) [31], as well as total DNA (approximates 130 

intact + defective HIV DNA) and unspliced (full length transcript prior to alternative splicing) RNA. 131 

Increased expression of two putative tumor suppressor genes, NBL1 and P3H3, was associated 132 

with smaller total HIV reservoir size (tDNA). Higher HIV usRNA was associated with 133 

downregulation of 17 host genes, including genes involved in pathogen pattern recognition 134 

(TLR7), inflammasome cytokine activation (IL1A, CSF3, TNFAIP65, TNFAIP6, TNFAIP9), and 135 

chemokine production (CXCL3, CXCL10). Higher usRNA also demonstrated a novel association 136 

with KCNJ2, a gene encoding for an inwardly rectifying potassium (Kir2.1) channel which has 137 

been shown to enhance HIV entry and release into host cells [32], as well as with GJB2, which 138 

encodes for a gap junction channel which facilitates cell-cell signaling (e.g., K+, Ca+, ATP) that 139 

has been implicated in cell-cell HIV transfer [33, 34]. These data add to the limited literature on 140 

host genetic predictors of the HIV reservoir and suggest that checks on cell proliferation might 141 

limit the total HIV reservoir size while a more “active” reservoir may stimulate host innate immune 142 

responses and inflammation during treated HIV disease. Further data are needed to validate 143 

these findings, including functional genomic studies using CRISPR-cas9 editing and longitudinal 144 

samples allowing causal inferences, as well as expanded studies in female, non-European 145 

cohorts.  146 

 147 

Results 148 

Study population 149 
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HIV+ ART-suppressed non-controllers were sampled from the UCSF SCOPE and Options 150 

cohorts (Supplemental Fig 1). The final 191 study participants were mostly male (96%) with a 151 

median age of 47 years and included individuals treated during early (within 6 months) or more 152 

chronic (>6 months after) HIV infection (Table 1). At the time of biospecimen collection, 153 

participants were ART-suppressed for a median of 5.1 years with a median nadir CD4+ T cell 154 

count of 352 cells/mm3 and maximum pre-ART HIV RNA of 5.1 log10copies/mL. As expected, our 155 

U.S.-based study population was diverse (Fig 1). Thus, all results are shown for the total study 156 

population (adjusted for ancestry using principal components [35]), as well as restricted to the 157 

largest homogenous ancestral subgroup (Europeans), in order to enhance the ability to detect 158 

statistically significant genetic associations.  159 

 160 

Measures of the HIV reservoir size were correlated with each other  161 

Most of the HIV reservoir consists of cells harboring defective virus – i.e., cells that harbor 162 

HIV that is unable to go on to produce virions [36, 37], and yet the “replication-competent” 163 

reservoir is a major target of HIV eradication strategies [31, 38, 39]. Thus, there is currently no 164 

“gold standard” for measuring the HIV reservoir [40, 41]. Here, we performed three measures of 165 

the HIV reservoir from peripheral CD4+ T cells: total DNA (tDNA), unspliced RNA (usRNA), and 166 

HIV intact DNA. To estimate the frequency of the “replication-competent” reservoir, we performed 167 

a multiplexed droplet digital PCR (ddPCR) assay to quantify the frequency of cells with “intact” 168 

HIV sequences (i.e., likely to generate transcripts leading to virion production) [31, 40, 42]. HIV 169 

“total” (i.e., defective+intact ) DNA and “unspliced” RNA (full-length HIV RNA) were also quantified 170 

using a separate, in-house quantitative polymerase chain reaction (qPCR) TaqMan assay [43]. 171 

HIV usRNA was statistically significantly correlated with tDNA (R=0.58, P=4.8x10-19) and intact 172 

DNA (R=0.24, P=1.9x10-3). However, HIV intact DNA was undetectable in 48% of our measured 173 

samples while total DNA was measurable in 95% of samples, which may have influenced the lack 174 

of association between tDNA and intact DNA in our study population (Fig 2). 175 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.10.523535doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523535


 

 8 

 176 

Earlier ART initiation and nadir CD4+ T cell count were associated with HIV reservoir size 177 

Consistent with prior work [17, 37, 41], our study found that clinical factors previously 178 

shown to influence the size of the HIV reservoir were significantly associated with HIV reservoir 179 

measures quantified in our cohort. Earlier timing of ART initiation (<6 months from infection) was 180 

statistically significantly associated with lower levels of HIV intact DNA (R=0.21; p=6.5x10-3), 181 

tDNA (R=0.26; p=3.3x10-4), and usRNA (R=0.29; p=7.0x10-5) (Fig 3). Nadir CD4+ T cell count 182 

was associated with larger total HIV DNA reservoir size (R=-0.28; P=6.9x10-5), as well as higher 183 

levels of HIV usRNA (R=-0.28; p=9.6x10-5) and HIV intact DNA (R=-0.23; p=0.002). We did not 184 

observe a statistically significant association between HIV reservoir measures and other clinical 185 

factors: duration of ART suppression, age, or pre-ART HIV viral load, and we were unable to 186 

evaluate differences by sex/gender given low frequencies of female and transgender participants 187 

in our study.  188 

 189 

Increased expression of tumor suppressor genes was associated with total HIV DNA 190 

reservoir size while higher HIV usRNA was associated with downregulation of host 191 

inflammatory and innate immune genes 192 

A total of 19,912 genes out of 60,719 were included for downstream differential gene 193 

expression analyses. In multivariate models adjusted for age, sex, nadir CD4+ T cell count, timing 194 

of ART initiation, ancestry (PCs), and residual variability (probabilistic estimation of expression 195 

residuals, PEERs), larger total HIV DNA reservoir size was statistically significantly associated 196 

with downregulation of two host tumor suppressor genes while higher HIV usRNA levels were 197 

associated decreased expression of 17 host genes involved in inflammation and innate immunity. 198 

We observed that upregulation of tumor suppressor genes, NBL1 and P3H3, was 199 

associated with smaller total HIV DNA reservoir size (Supplemental Table 1). For each fold-200 

increase in gene expression of NBL1 or P3H3, there was a statistically significant decrease in 201 
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HIV total DNA (NBL1: -1.8%, q=0.012; P3H3: -1.6%, q=0.012). However, we observed the 202 

strongest associations between HIV reservoir size and host gene expression were with HIV 203 

unspliced RNA, largely reflecting the “transcriptionally active” HIV reservoir [44, 45]. A total of 17 204 

host genes were inversely associated with HIV usRNA, including KCNJ2 (-9.7%, q=0.003) which 205 

encodes for an inwardly rectifying potassium channel that has been shown to regulate HIV-1 entry 206 

and release [32], as well as GJB2 (-7.1%, q=0.012), which encodes for a gap junction protein that 207 

facilitate cell-cell communication, potentially also cell-cell HIV transfer [46, 47]. In addition to these 208 

novel associations, HIV usRNA was also associated with several host genes involved in 209 

proinflammatory cytokine signaling and inflammasome activation (IL1A: -9.6%, q=0.012, CSF3: -210 

7.5%, q=0.013; TNFAIP6: -7.6%, q=0.016, TNFAIP9: -6.9%, q=0.031, TNFAIP5: -5.9%, q=0.043), 211 

innate immune responses (TLR7: -7.1%, q=0.016), and chemokine production (CXCL3: -7.2%, 212 

q=0.043; CXCL10: -9.2%, q=0.049) (Table 2, Supplement Table 2). Given the large number of 213 

gene hits for HIV usRNA, we also performed network analyses to better visualize immunologic 214 

pathways identified from the differential gene expression analysis (q<0.25). We applied the 215 

ClueGo network analysis application, which clustered the large number of genes into biologically 216 

relevant, interpretable clusters [48]. These analyses highlighted several key pathways involving 217 

inflammasome activation [49-52] and bacterial translocation [53-55] – e.g., genes involved in 218 

NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome activation, IL-1β, toll-219 

like receptor 4, lipopolysaccharide (LPS), and IL-17 signaling (Fig 4). Using unbiased gene set 220 

enrichment analyses (GSEA), all genes in the transcriptome were rank-ordered by p-value to 221 

identify gene sets enriched for each HIV reservoir measurement. These analyses demonstrated 222 

that HIV total DNA was associated with complement activation and humoral immune response 223 

pathways, but these associations were only observed in the subgroup with the largest sample 224 

size, individuals of European ancestry (Supplement Table 3). HIV usRNA was again strongly 225 

associated with gene sets involving proinflammatory signaling and microbial translocation 226 

(“Response to Bacterium”, q=7.5x10-5; “Cellular Response to Lipopolysaccharide”, q=0.006), IL-227 
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1 signaling (“Interleukin-1 beta production”, q=0.008; “Regulation of Interleukin-1 Production”, 228 

q=0.008), and cytokine production (“Tumor Necrosis Factor Production”, q=0.006; “Tumor 229 

Necrosis Factor Superfamily Cytokine Production”, q=0.006; “Regulation of Tumor Necrosis 230 

Factor Production”, q=0.008). In addition, several gene sets related to IL-10 signaling (“regulation 231 

of interleukin-10 production”, q=0.037, “Interleukin-10 production”, q=0.041) – an anti-232 

inflammatory pathway associated HIV immune dysregulation and persistence [56-58] – were also 233 

significantly associated with HIV usRNA (q=0.04) (Fig 5, Supplement Table 4).  234 

 235 

HIV intact DNA was undetectable in over half of the samples but was significantly 236 

associated with gene sets involving neutrophil activation in the European subgroup  237 

HIV intact DNA was undetectable in over half of our measured samples while total DNA 238 

was measurable in 95% of samples (Fig 2). Hence, the statistical power to detect differential gene 239 

expression (DGE) associations was much lower for this assay compared to the other reservoir 240 

measures. By performing GSEA (a method that aggregates several genes into immunologically 241 

relevant “gene sets” to test for an association with HIV reservoir size), we were able to enhance 242 

the ability to detect potential associations with HIV intact DNA. In the differential gene expression 243 

analysis, among the European ancestry subgroup, we observed a positive trend (q<0.25) 244 

between HIV intact DNA and two genes, PLGLB1 (+6.0%, q=0.23), which encodes for a protein 245 

that inhibits thrombus degradation, and AGL (+0.9%, q=0.23), encoding for an enzyme involved 246 

in glycogen degradation (Supplemental Table 5). GSEA demonstrated that gene sets involving 247 

neutrophil activation (“Neutrophil Degranulation”, q=0.046; “Neutrophil Activation Involved in 248 

Immune Response”, q=0.046; “Leukocyte Activation”; q=0.046) were significantly associated with 249 

HIV intact DNA, while gene sets reflecting myeloid-mediated immunity (“Myeloid Leukocyte 250 

Mediated Immunity”; q=0.058; “Myeloid Cell Activation Involved in Immune Response”; q=0.060)  251 

demonstrated a slight trend among European ancestry individuals (Supplement Table 6).  252 

 253 
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Discussion  254 

In the largest population-based transcriptomic HIV reservoir study to date, among HIV+ 255 

ART-suppressed non-controllers, we identified host genetic predictors (e.g., tumor suppressor 256 

genes) might act as “checks” on cell proliferation, potentially limiting the total HIV reservoir size. 257 

We also observed several associations with host genes indicating that a more “transcriptionally 258 

active” HIV reservoir [44, 45] may promote downregulation of potentially harmful host innate 259 

immune and proinflammatory responses. Given our cross-sectional study design, further 260 

functional and longitudinal epidemiologic studies are needed to determine potential causal 261 

relationships between host gene expression and HIV reservoir size. Nonetheless, these findings 262 

suggest that even during suppressive ART, ongoing host-pathogen dynamics maintain a delicate 263 

balance between a healthy host immune system and a persistent viral reservoir.  264 

Differential gene expression analyses demonstrated that increased expression of tumor 265 

suppressor genes NBL1 and P3H3 was associated with a smaller total HIV DNA reservoir size. 266 

We observed statistically significant associations between two tumor suppressor genes, NBL1 267 

and P3H3, and HIV total DNA. Given the known function of these genes, these findings may 268 

suggest that increased expression of these host genes might impact the total HIV reservoir size, 269 

possibly by restricting cellular proliferation (Supplemental Fig 2). Alternatively, the association 270 

of these two tumor suppressor genes with total HIV reservoir size might suggest that cells 271 

harboring provirus integrated in genes promoting cell survival are selected for over time during 272 

ART suppression, as shown in HIV integration studies [59, 60]. NBL1, also known as 273 

neuroblastoma suppressor of tumorigenicity 1, is a transcription factor that belongs to the DAN 274 

(differential screening-selected gene aberrant in neuroblastoma) family of proteins [61, 62] and is 275 

involved in the negative regulation of cell cycle (G1/S transition) [63-66]. Interestingly, NBL1 was 276 

differentially expressed in an RNA-seq ex vivo analysis of CD4+ T cells from rhesus macaques 277 

(after HIV-1 Env immunization and antibody co-administration) among groups that were treated 278 

with immune checkpoint modulators (CTLA-4, PD-1, and CTLA-4 + PD-1 Ab-treated), suggesting 279 
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that NBL1 may be a potential pathway by which the cell cycle might be disrupted to enhance HIV-280 

1 Env antibody responses [67]. P3H3 encodes for Prolyl 3-Hydroxylase 3, which functions as a 281 

collagen prolyl hydroxylase (vital for collagen biosynthesis) that affects properties of the 282 

extracellular matrix and alters cellular behavior [68-71]. Prior studies suggest that P3H3 plays a 283 

role as a tumor suppressor in breast, lymphoid, and other cancers [72-74]. Additional genes 284 

identified from the gene set enrichment analysis suggest that ongoing humoral immunity [75] and 285 

complement activation [76] may further contribute to maintaining the total HIV reservoir size 286 

during ART suppression (Supplemental Table 3).  287 

HIV unspliced RNA was strongly associated with differential expression of several host 288 

genes previously associated with HIV disease, including genes involving inflammasome 289 

activation and inflammatory cytokine signaling (IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9, IL10), 290 

chemokine signaling (CXCL3, CXCL10), and innate immune response pathogen pattern 291 

recognition (TLR7, TLR4) (Table 2, Supplemental Table 2, Figure 5, Supplement Table 5). 292 

Given the known function of these genes and pathways, these findings might reflect that a more 293 

“transcriptionally active” HIV reservoir leads to host downregulation of potentially harmful 294 

proinflammatory signaling pathways during chronic treated HIV disease (Supplemental Fig 3a). 295 

This would be consistent with prior data demonstrating that excessive inflammation and immune 296 

activation predicts increased morbidity and mortality in HIV+ individuals despite effective ART [44, 297 

45, 77-80].  298 

Interleukin (IL)-1 is a potent proinflammatory cytokine that regulates inflammation, 299 

triggering a cascade of inflammatory mediators via the NOD-like receptor family pyrin domain 300 

containing 3 (NRLP3) inflammasome activation pathway [81, 82]. IL-1 is an “upstream” pro-301 

inflammatory inducer of IL-6 [83], which is the strongest biomarker predicting serious non-AIDS 302 

morbidity (e.g., myocardial infarction, stroke, malignancy) [84-87] and mortality [80, 86-89] among 303 

HIV-infected ART-suppressed individuals. In our analysis, higher HIV usRNA was associated with 304 

decreased expression of IL6 (-7.4%, q=0.062), IL1A (-9.6%, q=0.012), and CSF3 (-7.5%, 305 
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q=0.013) (Table 2, Supplemental Table 2); the latter encodes for granulocyte colony stimulating 306 

factor 3, G-CSF, a member of the IL-6 superfamily of cytokines [90] that modulates cytokine 307 

production, differentiation, and induction of Treg cells [91]. Our pathway-based analyses 308 

demonstrated a strong association between HIV usRNA and several genes in the IL-1/NRLP3 309 

inflammasome pathway (Fig 4), demonstrating for the first time, a link between this key 310 

immunologic pathway and the HIV reservoir.  311 

Additional cytokines that were statistically significantly associated with HIV usRNA were 312 

several genes in the tumor necrosis (TNF)-α family: TNFAIP5, TNFAIP6 and TNFAIP9. These 313 

genes encode for proteins regulating pro- and anti-inflammatory cellular signal transduction, 314 

differentiation, and apoptosis [92-95]. TNFIAP5 encodes for a pattern recognition receptor that is 315 

induced in response to TNF-α, but also in response to toll-like receptor engagement and IL-1β 316 

signaling [96, 97], signals that are modulated through the NF-κB pathway [98]. TNFAIP6 encodes 317 

for another TNF-α protein which functions as an anti-inflammatory protein [99, 100], is induced by 318 

IL-1 (upon LPS-stimulation) [101, 102], and interacts with TNFAIP5 [103, 104]. TNFAIP9, also 319 

known as STEAP4 (six transmembrane epithelial antigen of prostate 4), has been shown to 320 

negatively regulate NF-κB, STAT-3 signaling, and IL-6 production [105, 106]. Several chemokines 321 

were also inversely associated with HIV usRNA, again suggesting that a more “transcriptionally 322 

active” HIV reservoir might promote downregulation of host proinflammatory responses during 323 

long-term ART suppression. CXCL3 and CXCL10, which encode for critical chemokines involved 324 

in the recruitment of neutrophils [107] and activated Th1 lymphocytes [108] to sites of 325 

inflammation respectively, were associated with a 7.2% and 9.2% decrease in gene expression 326 

per two-fold increase in HIV usRNA. CXCL3 regulates monocyte migration [109, 110], neutrophils 327 

chemoattraction [111-113], and angiogenesis [114], and is induced by proinflammatory IL-17 328 

[115, 116]. CXCL10 encodes for IP-10 (interferon gamma-induced protein 10) which recruits 329 

activated Th1 lymphocytes to sites of infection [117-119] and in HIV, signals through TLR7/9-330 

dependent pathways [119], predicts HIV disease progression [120, 121], correlates with acute 331 
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HIV seroconversion [122], and promotes HIV latency [123, 124]. Finally, in the gene set 332 

enrichment analysis, we also observed a statistically significant association between IL-10 333 

signaling and HIV usRNA (Fig 5, Supplement Table 4). IL-10 is an immunosuppressive cytokine 334 

that plays an essential role in limiting the host immune response to pathogens and regulating the 335 

magnitude and duration of inflammation to prevent damage to the host [125]. IL-10 is broadly 336 

expressed by many immune cells, but cell type-specific signals also exist; IL-10 production is 337 

tightly regulated by changes in the chromatin structure, IL10 gene transcription, and post-338 

transcriptional regulatory mechanisms [126]. IL-10 has been associated with HIV immune 339 

dysregulation, e.g., impaired CD4+ T cell activation [58], and more recently, IL-10 has been shown 340 

to play a critical role in the maintenance of viral persistence [56, 57]. Among ART-suppressed 341 

PLWH, higher levels of IL-10 measured in blood and lymph nodes were significantly associated 342 

with HIV reservoir size (HIV integrated DNA) [57]. In SIV infected macaques, plasma IL-10 and 343 

IL-10 gene expression was associated with viral reservoir size (SIV DNA) in blood and lymph 344 

nodes, and in vivo neutralization of soluble IL-10 was shown to reduce B cell follicle maintenance 345 

[56].  346 

There was also a statistically significant inverse association between HIV usRNA and 347 

genes associated with the host innate immune response (e.g., TLR7), while gene set enrichment 348 

also identified TLR4, associated with microbial translocation, to be significantly associated with 349 

HIV usRNA. These findings support the idea that HIV reservoir may not be entirely “quiescent” 350 

during ART and that ongoing residual viral transcription contributes to harmful persistent host 351 

immune activation even during ART suppression. TLR7 encodes for a member of toll-like receptor 352 

family of genes which plays critical role in pathogen recognition, activation of the innate immune 353 

response, and functions as a bridge between innate and adaptive immunity [127]. TLR7 is a 354 

pattern recognition receptor that can sense HIV single-stranded RNA (ssRNA) [128, 129]. TLR7 355 

agonist administration has been associated with delayed viral rebound [130] and reduced viral 356 

reservoirs in non-human primate studies [131]. A human clinical trial of the TLR7 agonist GS-357 
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9620 recently demonstrated a delay in viral rebound in HIV controllers after cessation of ART 358 

(NCT05281510) [132]. Interestingly, given that TLR7 is located on the X chromosome, host TLR7 359 

transcriptional activity has been linked to acute viremia in HIV+ women (linked to type I interferon 360 

production) [133] as well as with enhanced innate immune function (i.e., plasmacytoid dendritic 361 

cell IFN- and TNF- production) [134]. Validation of our findings in female HIV+ cohorts will be 362 

critical for determining whether the host-viral dynamics described in our predominantly male study 363 

population are more pronounced in women, exhibiting a TLR7 signaling “dose-response” effect 364 

due to differential X inactivation in females [133]. Finally, another host innate pattern recognition 365 

receptor statistically significantly associated with HIV usRNA was TLR4, which was demonstrated 366 

in the pathway-based analyses linking TLR4 to several gene sets involved in LPS-mediated 367 

signaling and IL-17 production (Fig 4). Our data add to prior studies linking bacterial gut 368 

translocation, systemic inflammation, immune activation, and HIV persistence [135-140].  369 

The most statistically significant association with HIV usRNA was a novel association with 370 

KCNJ2, a gene that encodes for an inwardly rectifying potassium channel, Kir2.1. These 371 

potassium ion channels have been shown in prior lab studies to regulate HIV-1 entry and release 372 

[32]. In our analyses, a two-fold increase in HIV transcription (q=0.003) was associated with a 373 

9.7% decrease in KCNJ2 expression, as well as an 8.4% decrease in KCNJ2-AS1 (encodes for 374 

KCNJ2 antisense RNA 1) expression (q=0.012). Potassium channels, including inwardly rectifying 375 

K+ channels, have been shown to regulate the life cycle of various viruses (e.g., Ebola [141], SIV 376 

[142]). Tight regulation of potassium ion concentrations have been shown to play a critical role in 377 

HIV-1 virus production in CD4+ T cells in cell culture models [143]. HIV Nef protein has been 378 

shown to increase K+ concentrations in cells [144], and in turn, changes in K+ concentration have 379 

been shown to regulate the HIV life cycle (e.g., viral entry, replication, and release) [32]. A small 380 

molecule inhibitor against Kir 2.1 has been recently identified [145]. The observed association 381 

between HIV usRNA and KCNJ2, as well with its antisense RNA, KCNJ2-AS1, might then suggest 382 
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a potential novel mechanism – targeting specific types of potassium channels – to reduce the HIV 383 

reservoir size. 384 

We also observed a novel association with GJB2, which encodes for gap junction beta 2 385 

protein (also known as CX26, encoding for connexin 26). Gap junction proteins act as cell-cell 386 

communication channels to transport signaling molecules (e.g., K+, Ca+,  ATP) [33, 34], and  387 

HIV-1 is thought to exploit these communication channels to disseminate infection as well as 388 

associated inflammation even in the absence of viral replication [46, 47]. As with KCNJ2, the 389 

observed association with GJB2, might suggest potential novel targets for limiting the HIV 390 

reservoir size. 391 

We did not observe statistically significant associations with HIV intact DNA and host 392 

genes in the total study population. However, HIV intact DNA was undetectable in 48% of our 393 

measured samples, while for example, total DNA was measurable in 95% of samples (Fig 2). 394 

With so many samples below the limit of detection for intact DNA, the statistical power to detect 395 

differential gene expression is much lower for this assay than for the other HIV reservoir assays 396 

included in our study [146, 147]. Thus, we performed additional analyses restricted to the largest 397 

homogenous ancestral population (European ancestry subgroup) and performed pathway 398 

analyses to aggregate individual genes into immunologically relevant “gene sets” to test for an 399 

association with HIV reservoir size. In this way, we were able to enhance the ability to detect 400 

trends with HIV intact DNA. Higher  HIV intact DNA was marginally associated with upregulation 401 

of AGL (involved in glycogen metabolism) [148-150] and PLGLB1 (involved in thrombin clot 402 

degradation) [151-153] in the European ancestry subgroup (Supplement Table 5). Glycogen 403 

degradation involves breaking down stored glucose for immediate release and availability, and it 404 

has also been shown to play a key role in regulating the inflammatory immune response [150]. 405 

Antibody glycosylation has also been associated with inflammation-associated disease [150, 406 

154], as well as time-to-viral rebound after ART interruption, a clinical definition of HIV reservoir 407 

size [148-150]. Besides its role in thrombolysis, PLGLB1 has previously been associated with a 408 
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replication-competent expanded HIV-1 clone described in a patient with squamous cell carcinoma 409 

(AMBI-1 integration) [155]; here it is associated with HIV intact DNA, which estimates the 410 

replication-competent HIV reservoir. Thus, the trends with AGL and PLGLB1, if further validated, 411 

might reflect that a larger “replication-competent” HIV reservoir contribute to vascular and 412 

metabolic complications that have been previously reported in HIV+ ART-suppressed individuals 413 

[44, 45, 77-80] (Supplemental Fig 4). 414 

The study has several limitations that deserve mention. First, although the HIV reservoir 415 

has been shown to be relatively stable over time [17, 156, 157], our cross-sectional design 416 

provides a “snapshot” of the HIV reservoir after a median of 5.1 years of ART suppression and 417 

makes interpretation of the gene associations challenging. However, based on the known 418 

functions of the top gene hits, we conclude that some of the host genes identified in our analyses 419 

might reflect potential drivers of the HIV reservoir size (Supplemental Fig 2), while other host 420 

genes represent the impact of persistent HIV (Supplemental Fig 3-4). Indeed, the true in vivo 421 

associations might involve more complex feedback pathways between the HIV reservoir and host 422 

responses. Second, as is characteristic of our San Francisco-based HIV+ population, our study 423 

included mostly males of European ancestry. We accounted for this using well-established 424 

methods to adjust for population stratification bias [35, 158], as well as the use of PEERs, which 425 

help account for residual variance that often hampers RNA-seq data [159]. Nonetheless, it is 426 

important that these results be replicated in larger studies, especially those including women and 427 

individuals from different ethnic backgrounds. Third, the majority of the HIV reservoir persists in 428 

lymphoid tissues, not in the periphery [160]. However, recent data suggests that the tissue 429 

compartment largely reflects (and is the likely source of) the peripheral compartment [161-163]. 430 

Thus, it will be important to determine whether the results from our study are generalizable to the 431 

tissue HIV reservoir in future studies. Finally, we specifically chose to exclude HIV "elite" 432 

controllers in our study, since most people living with HIV do not fall within the ~1% of the HIV+ 433 

population able to suppress virus in the absence of therapy. Instead, the focus of our study was 434 
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to determine other (uninvestigated) host gene expression associated with the HIV reservoir 435 

(signals that might be lost amidst a study population enriched for previously reported strong 436 

genetic effects, such as with HLA and/or CCR5∆32).   437 

Overall, our findings describe novel and immunologically relevant host genetic 438 

associations with the HIV+ reservoir. These include potential mechanisms inhibiting cell 439 

proliferation to limit the size of the overall HIV reservoir, as well as compensatory host 440 

downregulation of harmful persistent innate immune activation and inflammation (e.g., toll-like 441 

receptor, IL-1/NRLP3 inflammasome, microbial translocation, IL-10 signaling etc.). Finally, the 442 

strongest association with HIV transcription was with KCNJ2, a potential novel mechanism by 443 

which the host restricts residual HIV propagation via inwardly rectifying potassium channels. 444 

Additional studies are needed to validate these findings using approaches functionally and 445 

epidemiologically like CRISPR-Cas9 editing and expanding these studies to include more diverse 446 

patient populations, including female and non-European ancestry individuals, using longitudinal 447 

samples. 448 

 449 

Materials and Methods  450 

Study Participants 451 

HIV+ ART-suppressed non-controllers from the UCSF SCOPE and Options HIV+ cohorts 452 

were included in the study. Inclusion criteria were laboratory-confirmed HIV-1 infection, availability 453 

of cryopreserved peripheral blood mononuclear cells (PBMCs), and plasma HIV RNA levels below 454 

the limit of assay quantification for at least 24 months at the time of biospecimen collection. We 455 

excluded individuals HIV “elite controllers” to focus on genetic variants that drive HIV persistence 456 

among non-controllers during ART suppression but also analyzed previously reported strong 457 

genetic effects associated with HIV+ elite control [164-166]. The estimated date of detected 458 

infection (EDDI) was calculated for each study participant to determine recency of infection in 459 

relation to ART initiation using the Infection Dating Tool (https://tools.incidence-460 
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estimation.org/idt/) [167]. Additional exclusion criteria were potential factors that might influence 461 

HIV reservoir quantification, including recent hospitalization, infection requiring antibiotics, 462 

vaccination, or exposure to immunomodulatory drugs in the six months prior to sampling timepoint. 463 

The research was approved by the UCSF Committee on Human Research (CHR), and all 464 

participants provided written informed consent. 465 

 466 

HIV Reservoir Quantification 467 

Cryopreserved PBMCs were enriched for CD4+ T cells (StemCell, Vancouver, Canada), 468 

and DNA and RNA were extracted from CD4+ T cells using the AllPrep Universal Kit (Qiagen, 469 

Hilden, Germany). Cell-associated total HIV DNA and unspliced RNA were quantified by an in-470 

house quantitative polymerase chain reaction (qPCR) TaqMan assay using HIV-1 long terminal 471 

repeat (LTR)-specific primers as previously described [43]. Participant specimens were assayed 472 

with up to 800 ng of total cellular RNA or DNA in replicate reaction wells and copy number 473 

determined by extrapolation against a 7-point standard curve (1–10,000 copies/second) 474 

performed in triplicate. HIV intact DNA was quantified by targeting five regions on the HIV 475 

genome, including highly conserved regions and positions that are frequently deleted or 476 

hypermutated [31]. Optimized restriction enzyme digestion was used to prepare the genomic DNA 477 

for droplet formation while minimizing the amount of shearing within the viral genome. The 478 

protocol targeted 5 regions in the HIV genome across two droplet digital PCR (ddPCR) assays. 479 

Droplet generation and thermocycling were performed according to manufacturer instructions. 480 

This multiplex ddPCR assay allowed the analysis of potentially replication-competent (“intact”) 481 

proviral genomes by quantifying the number of droplets positive for 3 targets per assay. Two 482 

targets in a housekeeping gene (RPP30) were used to quantify all cells, and a target in the T cell 483 

receptor D gene (TRD) was used to normalize the HIV copy numbers per 1x106 CD4+ T cells. A 484 

DNA shearing index (DSI) was then calculated, and mathematically corrected for residual DNA 485 
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shearing as measured by RPP30 targets to calculate the estimated number of intact proviral 486 

genomes per million CD4+ T cells after correcting for shearing [42].  487 

 488 

Host RNA sequencing  489 

A separate aliquot of the extracted RNA from CD4+ T cells was then used to perform host 490 

RNA sequencing. HTStream pre-processing pipeline (s4hts.github.io/htstream/) was used for 491 

removing PCR duplicates, adapters, N characters, PolyA/T sequences, Phix contaminants, and 492 

poor-quality sequences (with quality score <20 with sliding window of 10 base pairs). The quality 493 

of raw reads was assessed using FastQC [168]. All samples had a per base quality score and 494 

sequence quality score >30. RNA-seq reads were then mapped to the human genome (GRCh38) 495 

[169] with a corresponding annotation file from the GENCODE project [170]. Alignment and gene 496 

quantification were performed using the STAR alignment tool and its quantification protocols [171-497 

173]. Gene expression was converted to counts per million (CPM). To normalize the distribution 498 

of expression values across the experiment, the trimmed mean of M-values (TMM) [174] was 499 

used for sample-specific adjustment. Low-expressed genes (<1 CPM for all samples) were 500 

removed. The mean-variance trend was estimated [175] to assign observational weights based 501 

on predicted variance on log2-counts per million (log-CPM) using the Limma-Voom pipeline [176].  502 

 503 

Differential Gene Expression Analysis  504 

Multivariate linear models were fit for each of the three measures of the HIV reservoir size 505 

using the Limma-Voom workflow [175, 176], a quantitative weighting method that utilizes variance 506 

modeling to accommodate for residual technical and/or biological heterogeneity [175]. For all 507 

analyses, in order to account for potential population stratification bias (i.e., systematic differences 508 

in results due to ancestry rather than association of genes with disease) we used well-established 509 

methods to account for this by (1) calculating and including the first five principal components 510 

(PCs) as covariates in the multivariate models [35] and (2) performing sensitivity analyses among 511 
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the largest subgroup, individuals of European ancestry. Eigenvalues were calculated to generate 512 

genetic principal components (PC) to adjust for ancestry [35]. Multivariate models also included 513 

covariates for sex, age, timing of ART initiation, and nadir CD4+ T cell count (duration of ART 514 

suppression and maximum pre-ART viral load did not significantly improve the fit of the models 515 

and were not included as covariates in the final models), as well as PEERs (probabilistic 516 

estimation of expression residuals) to control for additional systematic sources of bias [159]. 517 

Model fit was assessed using a lambda genomic coefficient close to 1 [177]. Statistical 518 

significance was determined using a false discovery rate (FDR) q-value threshold of <0.05.  519 

 520 

Gene Set Enrichment Analyses and Network Analyses 521 

For each of the three HIV reservoir measures, we also performed gene set enrichment analyses 522 

(GSEA) to more broadly evaluate whether specific immune pathways were linked to each HIV 523 

reservoir measurement. Genes from the entire transcriptome were first rank-ordered by q-values 524 

from the differential gene expression analysis for each HIV reservoir measure, and then the rank-525 

ordering was used to identify immunologic pathways that were enriched from our dataset, using 526 

the Gene Ontology Biological Processes (GO-BP) database [178]. For the HIV usRNA analyses, 527 

for which there were several statistically significant differentially expressed genes (even after 528 

multiple-testing), we performed network analyses to better cluster and visualize the statistically 529 

significant results. Using ClueGo, a network analysis application [48], only statistically significant 530 

and marginally significant genes (q<0.25) were included to calculate Kappa statistics that allowed 531 

more meaningful visualization of potential biologically relevant pathways (Fig 4).   532 
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FIGURE LEGENDS 533 

Figure 1. Principal component analysis (PCA) plot of the population structure. Principal 534 

component analysis (PCA) plot of the population structure of the full study cohort (a). Secondary 535 

PCA plot of the European ancestry subpopulation only (b) defined by the dashed box in the lower 536 

left of panel (a). Genetic PCs were calculated from genetic data from our whole exome analysis 537 

[25]. Most of the population was of European ancestry (bottom left of) (a) some continued 538 

variability. Some continued variability was observed in European ancestry subgroup (b). Self-539 

identified race/ethnicity shown in the legend. Frequencies for participants were recorded as:  540 

White/European American (62%), Black/African American (14%), Hispanic/Latino (11%), Mixed 541 

Ethnicity/Multiracial (6%), Asian (4%), Pacific Islander (2%), Native American (<1%), and Middle 542 

Eastern (<1%). 543 

 544 

Figure 2. Correlations between three measures of HIV reservoir size. HIV unspliced RNA 545 

(usRNA) was significantly correlated with (a) HIV Total DNA (tDNA) and (b) HIV intact DNA; (c) 546 

tDNA and intact DNA were not correlated with one another. 547 

 548 

Figure 3. Measures of the HIV reservoir from peripheral CD4+ T cells were associated with timing 549 

of ART initiation. Panels A-D correspond to HIV tDNA, HIV usRNA, RNA/DNA, and Intact DNA, 550 

respectively. Spearman correlation and corresponding p-value are shown in each case. Earlier 551 

timing of ART initiation (<6 months from infection) was statistically significantly associated with 552 

smaller HIV intact DNA, tDNA, and usRNA. 553 

 554 

Figure 4. Network analysis of the top differentially expressed genes (see Table 2 and 555 

Supplemental Table 2) associated with HIV unspliced RNA demonstrated that the top significant 556 

genes mapped to immunologic pathways involving bacterial translocation (e.g., TLR4 signaling, 557 

activated by bacterial lipopolysaccharide, LPS) and pro-inflammatory responses (e.g., IL-1β 558 
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signaling, NLRP3 inflammasome assembly, Th2 cell cytokine production). A Benjamini-Hochberg 559 

false discovery rate (FDR) of q<0.05 was used to generate nodes (circles) based on kappa scores 560 

≥0.4. The size of the nodes reflects the enrichment significance of the terms, and the differen t 561 

colors represent distinct functional groups.  562 

 563 

Figure 5. Network analysis of the top statistically significant gene sets associated with HIV 564 

unspliced RNA (see Supplement Table 4). Gene sets related to immunologic pathways involving 565 

bacterial translocation (e.g., response to bacterium, LPS-mediated signaling pathway), and 566 

inflammatory signaling (e.g., IL-1β, IL-6, IL-10, TNF-), were significantly associated with HIV 567 

usRNA. A Benjamini-Hochberg false discovery rate (FDR) of q<0.05 was used to generate nodes 568 

(circles) based on kappa scores ≥0.4. The size of the nodes reflects the enrichment significance 569 

of the terms, and the different colors represent distinct functional groups.  570 
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Table 1. Descriptive statistics for the study population of 191 HIV-infected ART-suppressed non-controllers. Median frequencies (with interquartile 

ranges) are shown below unless otherwise specified. 

 

Descriptive Characteristic Total 

(N=191) 

Early-Treateda 

(N=54) 

Later-Treateda 

(N=137) 

Male (%)b  183 (96%) 54 (100%) 129 (94%) 

Age (years) 47 (13) 44 (12) 47 (13) 

Nadir CD4+ T cell count (cells/mm3) 352 (251) 522 (346) 304 (190) 

Maximum pre-ART HIV RNA (log10copies/mL) 5.1 (0.9) 5.6 (0.7) 5.0 (0.8) 

Duration of ART suppression (years) 5.1 (4.2) 6.0 (4.3) 4.7 (4.2) 

Timing of ART initiation (years) 2.0 (4.6) 0.20 (0.19) 3.5 (4.3) 

HIV intact DNA (log10copies/106 CD4+ T cells) 1.3 (1.0) 1.3 (0.5) 1.9 (1.0) 

HIV total DNA (log10copies/106 CD4+ T cells) 1.0 (1.3) 0.4 (1.3) 1.2 (1.3) 

HIV unspliced RNA (log10copies/106 CD4+ T cells) 3.2 (0.8) 3.0 (0.8) 3.3 (0.7) 

HIV RNA/DNA 2.3 (1.0) 2.4 (1.0) 2.3 (0.9) 

 
a Early-treated = Individuals who initiated ART within 6 months of the date of detected HIV infection; later-treated = Individuals who initiated ART after 6 months of date of detected HIV infection. 
b Absolute frequencies (with percent)
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Figure 1. Principal component analysis (PCA) plot of the population structure. Principal component analysis (PCA) plot of the population structure of 

the full study cohort (a). Secondary PCA plot of the European ancestry subpopulation only (b) defined by the dashed box in the lower left of panel (a). 

Genetic PCs were calculated from genetic data from our whole exome analysis [25]. Most of the population was of European ancestry (bottom left of) 

(a) some continued variability. Some continued variability was observed in European ancestry subgroup (b). Self-identified race/ethnicity shown in 

the legend. Frequencies for participants were recorded as:  White/European American (62%), Black/African American (14%), Hispanic/Latino (11%), 

Mixed Ethnicity/Multiracial (6%), Asian (4%), Pacific Islander (2%), Native American (<1%), and Middle Eastern (<1%). 

 

a.                                                                                                                b.   
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Figure 2. Correlations between three measures of HIV reservoir size. HIV unspliced RNA (usRNA) was significantly correlated with (a) HIV Total DNA 

(tDNA) and (b) HIV intact DNA; (c) tDNA and intact DNA were not correlated with one another. 
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Figure 3. Measures of the HIV reservoir from peripheral CD4+ T cells were associated with timing of ART initiation. Panels A-D correspond to HIV 

tDNA, HIV usRNA, RNA/DNA, and Intact DNA, respectively. Spearman correlation and corresponding p-value are shown in each case. Earlier timing 

of ART initiation (<6 months from infection) was statistically significantly associated with smaller HIV intact DNA, tDNA, and usRNA. 

 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.10.523535doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523535


 
Table 2. Differentially expressed host genes in relation to log10copies of HIV unspliced RNA (usRNA) in the full cohort (top panel) and the European 

ancestry subpopulation (bottom panel), at a Benjamini-Hochberg false discovery rate (FDR) of q<0.05. HIV usRNA was significantly associated with 

downregulation of 17 host genes, including KCNJ2, a novel association with a gene encoding for an inwardly rectifying potassium (Kir2.1) channel 

(which may enhance HIV entry and release into host cells [32]), gap junction (GJB2) as well as genes involved in pathogen pattern recognition (TLR7), 

inflammasome cytokine activation (IL1A, CSF3, TNFAIP5, TNFAIP9, TNFAIP9), and chemokine production (CXCL3, CXCL10). An additional list of 

host genes associated with HIV usRNA at an FDR q<0.25 is shown in Supplemental Table 2. 

HIV Unspliced RNA 

Gene  Gene Name pa qb FCc % Changed Description 

Full Cohort 

KCNJ2 Potassium Inwardly 

Rectifying Channel Subfamily 

J Member 2, kir2.1 

1.49E-07 0.003 0.903 -9.7 KCNJ2, encodes for an inwardly rectifying potassium channel (Kir2.1). Inwardly rectifying potassium ion 

channels can regulate HIV 1 entry and release into host cells [32]. Tight regulation of potassium ion 

concentrations has been shown to play a critical role in HIV-1 virus production in CD4+ T cells in cell 

culture models [143]. 

IL1A Interleukin-1 alpha  1.55E-06 0.012 0.904 -9.6 IL-1 is a potent proinflammatory cytokine that regulates inflammation by triggering a cascade of 

inflammatory mediators via NRLP3 inflammasome activation pathway [81, 82]. IL-1 is an “upstream” 

pro-inflammatory inducer of interleukin-6 (IL-6) [83], which is the strongest biomarker for non-AIDS 

morbidity (e.g., myocardial infarction, stroke, malignancy) [84-87] and mortality [80, 86-89] among HIV-

infected ART-suppressed individuals in resource-rich countries. 

GJB2 Gap Junction Protein Beta 2  2.26E-06 0.012 0.929 -7.1 GJB2 encodes for gap junction beta 2 protein, or connexin 26 (CX26), which acts as a communication 

channel between cells, facilitating transport of signaling molecules (calcium and cyclic AMP, ATP), and 

charged ions (K+, Ca+) [33, 34]. HIV-1 is thought to exploit these communication channels to 

disseminate infection and associated inflammation even in the absence of viral replication [46, 47].  

KCNJ2-AS1 KCNJ2 antisense RNA 1  2.49E-06 0.012 0.916 -8.4 KCNJ2-AS1 is a long non-coding RNA (lncRNA) encodes for KCNJ2 antisense RNA 1.  

AC034199.1 AC034199.1 2.88E-06 0.012 0.946 -5.4 Novel transcript: no data found in literature in association with HIV or immune response. 

CSF3 Colony Stimulating Factor 3 

(G-CSF) 

3.93E-06 0.013 0.925 -7.5 CSF3 encodes for granulocyte stimulating factor 3 (G-CSF), a member of the IL-6 superfamily of 

cytokines (78) and is also a growth factor for Neutrophils [90]. CSF3 modulates the function of CD4+ T 

cells by regulating cytokine production, their differentiation, and Treg induction [91]. 

TNFAIP6  Tumor Necrosis Factor alpha 

induced protein 6 

5.99E-06 0.016 0.924 -7.6 TNFAIP6 encodes for TNF-stimulated gene 6 protein (TSG-6), which, like TNFAIP5 (TSG-5), is 

induced by tumor necrosis factor α (TNF-α) and interleukin-1 (IL-1) in response to lipopolysaccharide 

(LPS)-stimulation [101, 102]. 
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TLR7  Toll Like Receptor 7 6.59E-06 0.016 0.929 -7.1 TLR7 is a member of toll-like receptor family of genes which plays critical role in pathogen recognition, 

activation of innate immune response and functions as a bridge between innate and adaptive immunity 

[127]. TLR7, is a pattern recognition receptor that can sense HIV single-stranded RNA (ssRNA) in 

endosomes [128, 129].  

MRAS Muscle RAS oncogene 

homolog 

1.07E-05 0.024 0.945 -5.5 MRAS encodes for a protein in the Ras family of small GTPases which functions as signal transducers 

in cellular processes.  

TNFAIP9 Tumor Necrosis Factor alpha 

induced protein 9 

1.53E-05 0.031 0.931 -6.9 TNFAIP9, encodes for TNF-α induced protein 9 (TSG-9). It is also known as STEAP4 (six 

transmembrane epithelial antigen of prostate 4) involved in negative regulation of NF-κB, STAT-3 

signaling, and IL-6 production [105, 106]. 

MIR3945HG MIR3945 Host Gene 2.09E-05 0.038 0.942 -5.8 MIR3945HG is an interferon stimulated lncRNA. 

DAPK1-IT1 DAPK1 Intronic Transcript 1 2.72E-05 0.043 0.950 -5.0 DAPK1-IT1 is a lncRNA transcribed from the death associated protein kinases 1 (DAPK1).  

OR2B11 Olfactory Receptor Family 2 

Subfamily B Member 11 

2.96E-05 0.043 0.939 -6.1 OR2B11 is a member of G-protein-coupled receptors (GPCR) responsible for the recognition and G 

protein-mediated transduction of odorant signals.  

CXCL3 C-X-C Motif Chemokine 

Ligand 3 

3.03E-05 0.043 0.928 -7.2 CXCL3 is a member of CXC subfamily called cytokine-induced neutrophil chemoattractant (CINCs). 

CXCL3 is involved in adhesion and migration of monocytes [109, 110], neutrophils chemoattraction 

[111-113], and   angiogenesis [114].  

TNFAIP5 

/PTX3 

TNF Alpha-Induced Protein 5 

(TNFAIP5), Pentraxin-related 

protein (PTX3), Tumor 

Necrosis Factor-Inducible 

Protein TSG-14 (TSG14). 

3.27E-05 0.043 0.941 -5.9 TNFAIP5 is a pattern recognition receptor (PRRs) that is induced in response to TNF- α, TLR 

engagement and IL-1β signaling [96, 97].  

RRN3P4 RRN3 Pseudogene 4 3.97E-05 0.049 0.950 -5.0 Pseudogene 

CXCL10 C-X-C Motif Chemokine 

Ligand 10 

4.21E-05 0.049 0.908 -9.2 CXCL10 encodes for IP-10 (interferon gamma-induced protein 10) (interferon gamma-induced protein 

10) which recruits activated Th1 lymphocytes to sites of infection [117-119] and in HIV, signals through 

TLR7/9-dependent pathways [119], predicts HIV disease progression [120, 121], correlates with acute 

HIV seroconversion [122], and promotes of HIV latency [123, 124]. 

European Ancestry Subpopulation 

TLR7e Toll Like Receptor 7 1.48E-06 0.018 0.906 -9.4 TLR7 is a member of toll-like receptor family of genes which plays critical role in pathogen recognition, 

activation of innate immune response and functions as a bridge between innate and adaptive immunity 

[127]. TLR7, is a pattern recognition receptor that can sense HIV single-stranded RNA (ssRNA) in 

endosomes [128, 129]. 

GJB2e Gap Junction Protein Beta 2 2.70E-06 0.018 0.909 -9.1 GJB2 encodes for gap junction beta 2 protein, or connexin 26 (CX26), which acts as a communication 

channel between cells, facilitating transport of signaling molecules (calcium and cyclic AMP, ATP), and 

charged ions (K+, Ca+) [33, 34]. HIV-1 is thought to exploit these communication channels to 

disseminate infection and associated inflammation even in the absence of viral replication [46, 47]. 

AC034199.1e Ac034199.1 3.09E-06 0.018 0.930 -7.0 novel transcript 

PPP1R17 Protein Phosphatase 1 

Regulatory Subunit 17,  

4.20E-06 0.018 0.934 -6.6 PPP1R17 (Protein Phosphatase 1 Regulatory Subunit 17) is a substrate for cGMP-dependent protein 

kinase.  
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IGSF6 Immunoglobulin Superfamily 

Member 6 

4.73E-06 0.018 0.972 -2.8 Immunoglobulin superfamily member 6 (IGSF6) is also known as downregulated by activation 

(DORA).  

AL133163.2 Al133163.2 7.81E-06 0.025 0.945 -5.5 novel transcript 

a p = two sided p-value. 
b q = two-sided false discovery rate (FDR) Benjamini-Hochberg q-value.  
c FC = fold-change in host gene expression per two-fold change in copies of HIV from multivariate model adjusted for age, sex, nadir CD4+ T cell count, timing of ART initiation, ancestry (PCs), and 
residual variability (probabilistic estimation of expression residuals, PEERs). 
d % Change = percent change in host gene expression per two-fold change in copies of HIV. 
e % also significant in full cohort analysis.
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Figure 4. Network analysis of the top differentially expressed genes (see Table 2 and Supplemental Table 2) associated with HIV unspliced RNA 

demonstrated that the top significant genes mapped to immunologic pathways involving bacterial translocation (e.g., TLR4 signaling, activated by 

bacterial lipopolysaccharide, LPS) and pro-inflammatory responses (e.g., IL-1β signaling, NLRP3 inflammasome assembly, Th2 cell cytokine 

production). A Benjamini-Hochberg false discovery rate (FDR) of q<0.05 was used to generate nodes (circles) based on kappa scores ≥0.4. The size 

of the nodes reflects the enrichment significance of the terms, and the different colors represent distinct functional groups.  
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Figure 5. Network analysis of the top statistically significant gene sets associated with HIV unspliced RNA (see Supplement Table 4). Gene sets 

related to immunologic pathways involving bacterial translocation (e.g., response to bacterium, LPS-mediated signaling pathway), and inflammatory 

signaling (e.g., IL-1β, IL-6, IL-10, TNF-), were significantly associated with HIV usRNA. A Benjamini-Hochberg false discovery rate (FDR) of q<0.05 

was used to generate nodes (circles) based on kappa scores ≥0.4. The size of the nodes reflects the enrichment significance of the terms, and the 

different colors represent distinct functional groups. 
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