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Abstract

The Endoplasmic Reticulum (ER), the largest cellular compartment, harbours the machinery

for the biogenesis of secretory proteins, lipids, calcium storage/mobilisation and detoxification.

It is shaped as layered membranous sheets interconnected with a network of tubules extending

throughout the cell. Understanding the influence of the ER morphology dynamics on molecular

transport may offer clues to rationalising neuro-pathologies caused by ER morphogen mutations.

It remains unclear, however, how the ER facilitates its intra-luminal mobility and homogenises its

content, and the minuscule spatial and temporal scales relevant to the ER nanofluidics limit empir-

ical studies. To surmount this barrier, here we exploit the principles of viscous fluid dynamics to

generate a theoretical physical model emulating in-silico the content motion in actively contracting

nanoscopic tubular networks. The computational model reveals the luminal particle speeds, and

their impact in facilitating active transport, of the active contractile behaviour of the different ER

components along various time-space parameters. The results of the model indicate that repro-

ducing transport with velocities similar to those reported experimentally in single particle tracking

would require unrealistically high values of tubule contraction site length and rate. Considering

further nanofluidic scenarios, we show that width contractions of the ER’s flat domains (perinu-

clear sheets) generate fast-decaying flows with only a short-range effect on luminal transport. Only

contraction of peripheral sheets can reproduce experimental measurements, provided they are able

to contract fast enough.
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I. INTRODUCTION

The mammalian endoplasmic reticulum (ER) is the single largest intracellular structure

(see sketch in Fig. 1a). The organelle is made up of membranous sheets interconnected

with the nuclear envelope and branching out into a planar network of tubules extending

throughout the cell periphery (Fig. 1b) [1]. The ER dynamics on a second scale include the

cytoskeleton-assisted tubular network restructuring [2, 3] and an interconversion between

two distinct forms, including a narrower form covered by membrane curvature-promoting

proteins [4]. The ER morphology and its dynamics presumably enable and facilitate its

functions: the ER is responsible for the production, maturation and quality-controlled fold-

ing of secretory and membrane proteins, which constitute approximately a third of the cell’s

proteome [5]. The organelle’s membranes also harbour the lipid biosynthesis machinery,

while its lumen stores calcium. The contiguous nature of the ER is believed to ensure an

efficient delivery of all these components across the cell periphery.

Timely transport of the content within the ER is therefore integral to the function of

the cell. The geometry and dimensions of several cell types with extensive ER-containing

projections (e.g. neurons and strocytes) pose a kinetic challenge for material distribution

with physiological timing. These considerations predict the need for an active luminal

transport to ensure timely material homogenisation across the vast ER. Empirically, the

active nature of the ER luminal transport is supported by the sensitivity of GFP mobility

(measured by FRAP) to ATP depletion [6, 7]. Thus past measurements indicate that the

transport of proteins in ER is not consistent with Brownian motion [6, 8]. Using single

particle tracking of ER luminal markers, an active solute transport in the planar ER network

was observed directly [7]. A photoactivation chase technique also measured a superdiffusive

behaviour of luminal material spread through the ER network [9].

However, the mechanism for generating ER luminal flows remains unclear. Understand-

ing the mode of material exchange across the organelle is crucial for rationalising the ER

shaping defects-related neuronal pathologies [10], identifying factors controlling ER trans-

port and informing the development of ER transport modulation approaches with health

benefits. Based on ER marker velocity fluctuations measured in single particle tracking and

the detection of transient narrowing points in the tubules by improved super-resolution and

electron microscopy (EM) [7], it has been postulated that these active flows may result from
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the stochastic contractility (pinching and un-pinching) of ER tubules at specific locations

along their lengths (see sketch in Fig. 1e); other plausible mechanisms for flow generation

were also considered. However, measurements for testing this pinching hypothesis are cur-

rently inaccessible, due to limitations in space-time resolution of live cell microscopy; the

live cell-compatible super-resolution techniques achieve resolution of ∼80 nm at the relevant

speed, while the tubular radius is estimated in the range 30−60 nm [9, 11, 12]. Improvement

or resolution currently can only be achieved by trading off speed. To circumvent these ex-

perimental difficulties, in the current study we use mathematical modelling to quantitatively

analyse the relevant scenarios of actively contractility-driven flows. Specifically, we explore

how various sets of spatio-temporal parameters of ER contractility may produce flows facil-

itating solute transport in quantitative agreement with experimental measurements.

Specifically, assuming that the flow is driven by tubule contractions (shown schematically

in Fig. 1e), we construct a physical and mathematical model of the ER network and solve

it for the flows inside the network (description in Methods §IV). We use our model to carry

out numerical simulations to study the motion of Brownian particles carried by these flows

and show that the tubule pinching hypothesis is not supported by the results of our model

(§II A), a result independent of the network geometry (§II B). The failure of active pinching

to drive strong flows can be rationalised theoretically by deriving a rigorous upper-bound

on the rate of transport induced by a single pinch, (§II C), including possible coordination

mechanisms (§II D). Only by increasing both the length of pinches and their rate can beyond

admissible values can we produce particle speeds in agreement with measurements (§II E).

We then explore in §II F two different hypotheses as possible explanations for the active ER

flows, first the pinching of the junctions between tubules (Fig. 1c) and then the pinching of

the two types of ER sheets, perinuclear (Fig. 1f) and peripheral (Fig. 1d). We investigate

the conditions under which both would be consistent with the experimental measurements

of active transport in Ref. [7].

The question of how the endoplasmic reticulum homogenises its content across cell ex-

panses is an open problem which extends to the fundamentals of cell biology. Even though it

is highly debated in the field, it is extremely difficult to study due to the enormous technical

limits of directly observing intraorganellar nanofluidics. Thus, our study represents a mean-

ingful effort to break through this impasse by conducting a meticulous analysis of nanofluidic

scenarios. The findings we present constitute the best currently possible endeavor to shed
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light on this challenging problem. Our results do suggest that the biological origin of solute

transport in ER networks remains open and call for extensive empirical exploration of the

alternative mechanisms for flow generation.

II. RESULTS

A. Tubule contractility-driven ER luminal motion yields inadequate transport

kinetics

To assess the kinetics of particle motion in the lumen of tubular structures in response

to their contractility, we generated an in-silico simulation model of the process. The model

incorporates local calculations for the low-Reynolds number hydrodynamics of a contracting

tubule, assuming in the first instance the no-slip boundary conditions at the tubule walls

(i.e. Poiseuille hydrodynamics), into a global analysis using Kirchhoff’s Laws and standard

graph theoretical results of the flows throughout the network geometry (see Methods §IV

for details).

We initially implemented the model’s numerical simulations of particle transport in a

reconstructed ER network of a COS-7 cell [7] (which we label C0, see §IV A) with tubules

locally contracting stochastically according to the spatiotemporal parameters suggested by

microscopy measurements [7]. We will therein refer to these contractions, illustrated in

Fig. 1e, as ‘pinching’, with relevant parameters that include the duration and frequency of

pinch events, and the length that the pinch sites occupy along the tubule (for details of the

pinching kinematics, see Methods §IV B). An estimate reveals that these pinches are indeed

afforded by biologically realistic forces, of the order of 30 pN (see Methods §IV G).

The fluid flows in the edges of the network (model in §IV C computed as detailed in

§IV D) reveal a rapid direction alternation of luminal currents (on average with a frequency

of approximately 50 Hz), as reflected in the changes of the axial velocity sign (Fig. 2a),

with an average flow speed of 1.3 µm/s (see also Supplementary Video S1). Further, the

resulting instantaneous speed distribution of Brownian particles advected by these flows

(methodology in §IV E) is considerably shifted relative to the experimental counterpart [7]

towards lower values (Fig. 2b). Similarly, the distribution of average edge traversal speeds

(defined precisely in §IV F) from our simulations (solid blue line in Fig. 2c) is lower than
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the experimentally measured speed distribution by an order of magnitude (Fig. 2c, inset).

Moreover, the results for all measures of transport under pure diffusion, in the absence

of pinching-induced flows, were virtually indistinguishable from those where the pinching-

driven flows are included (see Fig. 2b-c). Within the framework of transport theory, this

conclusion can be rationalised by estimating the relevant Péclet numbers that measure the

relative importance of advection and diffusion. Using the average value Ū ∼ 1.3 µm/s of the

mean flow speeds over time and edges as a velocity scale, we may estimate a mean Péclet

number as Pe ∼ ŪR/D. Using R = 30 nm and the measured diffusivity D ≈ 0.6 µm2s−1 [7],

this leads to the estimate Pe ∼ 0.07. Flows affect transport for Péclet numbers above

order-one values [13], and therefore the pinching-driven flows have a negligible influence on

the transport inside the ER network. In order for fluid motion to have a noticeable effect,

one would thus need flows to be either stronger, or sustained in one direction for longer.

The chaotic flows produced by the pinching events with stochastic parameters suggested

by resolution-limited microscopy [7] appear too weak to generate fast, non-diffusive edge

traversals.

Importantly, our conclusions remain unchanged upon relaxing the no-slip boundary con-

ditions, an important point to consider since the tubule membranes themselves could be

moving in response to the nanoscale fluid flow. This can be modelled by introducing a finite

slip boundary condition to couple the membrane-bound lipids with luminal flows (see Meth-

ods §IV G for details). Our simulations show that slip boundary conditions have virtually

no effect on the average edge traversal speeds (Supplementary Fig. 12a). Physically, while a

non-zero wall slip does change the shape of the flow profiles in the tubules (Supplementary

Fig. 12b), it does not modify the mean flow speeds which directly affect global particle trans-

port. These results justify our use of Poiseuille hydrodynamics (no-slip boundary conditions)

throughout this work.

B. Tubule pinching-induced transport is network geometry independent and fails

to facilitate luminal homogenisation

To estimate the network geometry’s contribution to transport simulation outcomes, we

compared results across four different ER structures (C1-C4, Fig. S8). The distributions

of the average edge traversal speeds appeared insensitive to ER structure variations for
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both pinching-induced and exclusively diffusional transport. This is reflected in the small

deviations from the mean of the data points averaged across the different structures (Fig. 2d-

e). Further, pinching-induced flows inside a regular honeycomb network (Fig. 2f, inset) with

a typical ER edge length (1 µm) appears within a reasonable variance compared to the

natural networks. Therefore, this mathematical idealisation of the ER network geometry

can be used for exploring the consequences of the network ultrastructure contractility on

transport kinetics in a standardised manner.

To test the effectiveness of the particle velocities for facilitating luminal material exchange

across the ER, we tracked homogenisation kinetics by measuring intermixing of particles of

two distinct colours equally seeded in each half of a honeycomb network at t = 0 (Fig. 3;

see also Supplementary Video S2 for the flows inside such a network driven by pinches

with the parameters from [7]). The measure of homogenisation is given by the variance

Var(φ(t)) ≡ Var(nb(t)− nr(t)) over twenty regions of the network (Fig. 3a, horizontal lines)

of the difference between the numbers nb (blue) and nr (red) of particles of each colour in

region; note Var = 0 represents perfect homogeneity. The measures of mixing over time for

pure diffusion and active transport with parameters [7] from Fig. 2 show a nearly complete

overlap (Fig. 3e; see also Supplementary Videos S3 and S4), distinct from faster mixing

under stronger flows in a network driven by pinches whose lengths are increased to their

maximum possible value (i.e. the length of the tubule) and which are in addition sped up

by a factor of 10 (see Supplementary Video S5; see also §II E for a discussion of the effects

of artificially strong pinch parameters on average edge traversal speeds). This indicates

that even if the experimental particle speeds were overestimated, the presumed pinching

parameters would be inadequate to facilitate ER luminal material exchange.

C. Theoretical analysis of advection due to a single pinch explains weak pinching-

induced transport

The slow luminal transport driven by the pinching-induced flows is intrinsically linked to

the volume of fluid expelled by each pinch during a contraction. The fundamental reason

underlying the weak pinching-induced transport is that individual pinches are very weak

generator of flow; even in the best possible configuration, the volumes of fluid pushed by

each pinch are too small to impact luminal transport. Specifically, in Methods (§IV J 1),
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we mathematically show that, given a pinch of length 2L, the maximum distance ∆zmax a

suspended particle may be advected instantaneously by an individual pinch is

∆zmax =
8

3
L. (1)

Using the experimentally-measured average value of the pinch length 2L = 0.14 µm [7], a

typical pinch can then propel a particle by a maximum distance of ∆zmax ≈ 0.19 µm.

This may, equivalently, be framed in terms of velocities. A transported particle experi-

ences an average velocity during the contraction of at most Vmax = 8L/3T , where T is the

duration of a contraction or a relaxation. Using the pinch length as above and the average

values of 2T = 0.213 s [7] this leads to the estimate Vmax ≈ 3.9 µm/s, which is an order of

magnitude smaller than the measured typical edge traversal speed of ∼ 45 µm/s, consistent

with the order of magnitude difference between the measurements and the predictions of the

computational model.

Note that this theoretical argument relies solely on the magnitude of fluid volumes ex-

pelled out of (or driven into) the pinching regions. These volumes are unaffected by the

boundary conditions at the tubule walls because the presence of a non-zero slip length only

changes the shape of the flow profile and not the volume fluxes (see Supplementary Fig. 12);

any potential slip is thus is inconsequential for averaged measures of particle transport.

D. Marginal addition of coordinated contractility to luminal transport

The theoretical upper bound in the previous section for the maximum luminal transport

produceable by an individual pinch is realisable only in the hypothetical situation where

the flow generated by the pinch is all directed to one end of the tubule i.e. when the other

end is effectively blocked. However, content transport produced during the contraction of a

single tubule would then be reversed when the tubule relaxes back to its original state, with

a single pinch site expected to exhibit only reciprocal (i.e. time-reversible) motions. Any

advection contributing to edge traversals must thus be dominated by non-reciprocal motions

of multiple pinches resulting in net displacements of solute particles.

The simplest system capable of producing non-reciprocal motions consists of two pinches,

and the optimal sequence of motions to maximise the resulting advective particle displace-

ment is illustrated in Fig. 5. We show in Methods (§IV J 2) that this is indeed the optimal
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two-pinch coordination, which results in a time-averaged displacement equal to the upper

bound derived in Eq. (1). Since this optimal sequence of motions involves one pinch site

starting a pinch halfway through the pinching of the other site, it is reasonable to estimate

its duration as 3T , and therefore an average particle speed of 8L/9T ≈ 1.3 µm/s. The low

particle speed achievable by the optimal coordination between two pinches suggests that a

very high level of coordination among multiple tens of pinches per tubule would be required

to reproduce the measured edge traversals.

E. A combination of high frequency and pinch length is required to replicate

experimental particle speeds

Since the magnitude of ER contractility suggested by microscopy [7] (pinch lengths and

frequency) do not explain the measured speeds, we set out to explore different sets of param-

eters that may generate particle velocities closer to the experimental measurements. The

currently achievable imaging spatiotemporal resolution limits the detection of tubular diam-

eter contractility by microscopy. Therefore, it is reasonable to postulate that the relevant

parameters may have been underestimated. We simulated ER transport varying individually

or in combination the values of pinch duration 2T , waiting time Twait between successive

pinches on a tubule, and pinch length 2L.

We first decreased both the original [7] values of T and Twait by the same factor of

1/α, where α ≥ 1, and simulated particle transport in the honeycomb network (Fig. 4a).

In effect, this simply ‘fast-forwards’ the flows in the original active network by a factor

of α, and Brownian particles of the original diffusivity are released into this sped-up flow.

Instantaneous and edge traversal speeds exhibited corresponding increases when we increased

the value of α (Fig. 4a). An extreme value of α = 100 produces an average edge traversal

speed distribution that peaks at around 8 µm/s (Fig. 4a). Similar results are observed

in the C0 network from a COS-7 cell (Fig. 4b). The longer tails of these distributions

(compared to those from the honeycomb network) result from the variation in edge lengths

in the real network, with shorter edges, across which edge traversals are correspondingly

fast, contributing to the tails.

These results suggest that, in order to produce average edge traversal speeds of the same

order as the experimental values, we would need an active network sped up by a unrealistic
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factors considerably greater than 100, probably on the order of α ∼ O(103) or higher and

corresponding to multiple thousands of pinches occurring on average per second on each

tubule. Similarly, it took an extreme increase in pinch site size to span the entire length of

an average tubule, only to yield an average speed of ∼ 10 µm/s (Fig. 4d).

Next, we attempted to obtain a better fit to experimental data by combining changes

in both the pinches’ time and geometry parameters. In Fig. 4e-f we thus sped up these

maximally long pinches by a factor of α = 5 and 10 respectively, which yielded speeds

averaging around 30 µm/s and above 60 µm/s respectively. Notably, the tail of the speeds

distribution appeared longer than that seen in the experiments.

F. Luminal transport kinetics derived from contractile ER tubular junctions and

sheets.

As shown above, establishing effective transport in a tubular constrictions-driven model

based on realistic ER fluid dynamics required a set of questionable assumptions, compelling

us to explore alternatives. Thus, we set out to investigate how ER luminal transport would

be impacted by the contractility of its structural components with volumes larger than

tubules: (i) the tubular junctions (Fig. 1c), (ii) the perinuclear ER sheets (Fig. 1f) and (iii)

the peripheral sheets (Fig. 1d).

First, we run numerical simulations of transport driven by contracting junctions on an ER

network (C1 from Fig. S8d; sketch of junctions in Fig. 1c). Since junctions contracting at the

tubular pinch temporal parameters measured experimentally yielded inadequate transport,

we consider contractions/relaxations with duration 2T exponentially distributed with a mean

of α−1 times the original value in Ref. [7] and the waiting time Twait between subsequent

contractions/relaxations exponentially distributed with a mean β−1 times the original value

(i.e. values of α > 1 and β > 1 reflecting a higher frequency and faster pinches). Naturally,

the results depend on the choice of the volume ∆V expelled by a junction during each

contraction. Using fluorescence microscopy images, we may estimate the volume in junctions

(see Methods, § IV I 1). We assumed that the junction volumes are drawn from a normal

distribution with the same mean and standard deviation as our data set i.e. the distribution

N(0.0045 µm3, 0.0021 µm3). Volumes greater than the maximum value in our experimental

estimate (0.0081 µm3) or less than the minimum value (0.0020 µm3) are rejected.
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We show the results in Fig. 6a. The thick solid line illustrates a set of values of (α, β)

which produces distributions of average edge traversal speeds with means similar to the

experimental values in Ref. [7], and the dashed lines one standard deviation away. We are

interested in values of (α, β) close to unity because this corresponds to junctions which pinch

with similar pinch durations and frequencies as the experimentally observed tubule pinches

and are therefore biologically plausible; (α, β) ≈ (2.5,2) is the closest pair on this line to

unity. However, only for α ≈ 1 we obtained average edge traversal speed distributions of

reasonable shapes (i.e. approximately Gaussian), which would require a large β = 5 to match

experimental results quantitatively.

Further, the assumption that the entire junction volume is expelled during a contraction

may not be realistic, as it would require extreme bending/extension of tubule walls and the

ability of the entire junction to empty and fill out during each contraction. Reducing the

volume ∆V expelled in each contraction to two-thirds of the estimated distribution of the

junction’s volume (results shown in Fig. 6b) or to half (Fig. 6c) causes the average edge

traversal speeds to drop considerably. The lower the proportion of the junction volume

expelled during a contraction, the faster the pinches are required to be (i.e. large value of

α) as well as the larger the frequencies of the pinch events (large β) in order to produce

reasonably high average edge traversal speeds.

Next, we considered the particle transport generated by two types of ER sheets contract-

ing and relaxing over a duration 2T (see Methods for details). The perinuclear sheets are

shaped as contiguous layers of flat cisternae with a luminal volume larger than the tubules

branching from these structures (see sketch in Fig. 1f). Accordingly, their contraction with

2T = 5 s and Vsheet = 10 µm3 yielded a mean average traversal speed of 35 µm/s and

consistent with the single particle tracking experiments (see Fig. 7b). However, the speeds

distributions tailed towards higher values (Fig. 7a-b), something that has not be observed

experimentally so far; it may be that high velocities cannot be recovered in experiments

due to the constraints on linkage distance imposed to ensure trajectory fidelity in particle

tracking.

Further, our simulations reveal that the flow decays sharply with distance away from the

sheet where it originated as it branches out into tubules. This is illustrated in Fig. 7c-d and

we further quantify the spatial gradient of the average edge traversal speeds across Cartesian

2D coordinates in Fig. 7e, revealing the stark contrast between the homogeneous profile for
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contracting junctions (red dotted line) vs sheet-driven transport (blue solid line). The short

range of influence afforded by contracting perinuclear ER sheets thus argues against its

ability to sustain mixing flows and fast particle transport on the distal tubular network.

Instead, we sought to explore whether the the peripheral sheets (i.e. the smaller flat inter-

tubular ER regions, see sketch in Fig. 1d) may overcome the range limit. The peripheral

sheets have volume significantly larger than tubules and junctions, which we estimated at

0.12µm3 ± 0.04 µm3 (see Fig. S14 and Methods §IV I 4 for details). This suggests that the

peripheral sheets could produce average edge traversal speeds compatible with experimental

measurements. Assuming that a sheet typically occupies the area enclosed by a ‘triangle’

of tubules, we may incorporate the transport inside a sheet-driven network using our model

for junctions-contraction, but with junction volumes set to the measured sheet volumes (see

§IV I 4 for details) and with either (i) each node expelling one third of the volume expelled

by a contracting sheet (since peripheral sheet are in contact with three nodes on average), or

(ii) a contracting node expelling the entire volume expelled by a contracting sheet, but with

only one-third of the junctions actively contracting at any one time. Further assuming that

during each contraction an peripheral sheet expels half its total volume so that in simulation

(i) node k expels a volume Vk/6 in each contraction and in simulation (ii) each active node

k expels a volume Vk/3, nodes which contract at rates α−1 = 2.5 and α−1 = 5 times slower

than the tubule pinches in Ref. [7] in simulations (i) and (ii) respectively give average edge

traversal speeds in the correct range of 40 µm/s (Fig. 7f-g). The contraction of peripheral

sheets may thus be offered as a plausible mechanism for fast luminal transport, provided

they are able to contract with sufficiently high rates.

III. DISCUSSION

The motion of solutes in cellular compartments is now understood to be facilitated by

active components. This is evident from direct motion measurements and the dependence of

motion speed on the availability of ATP-contained energy [6–8, 14]. The origin of these active

driving forces is however challenging to identify. The cytoplasm’s currents are often believed

to originate from the motion of large complexes such as ribosomes and large vesicle cargo

shuttled by the cytoskeleton-mediated motorised transport [14]. In the case of enhanced

transport in the lumen of the ER tubules, the contractility of tubules has been suggested
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as the flow generating mechanism, and indeed such tubule deformations have been observed

in microscopy [7]. However, establishing the direct empirical link between tubule contrac-

tion and active flows, or experimentally testing other hypotheses for the driving mechanism

behind ER solute transport, remain currently unattainable. In this study, we thus propose

a physical modelling approach, which provides a platform to explore the nanofluidics be-

haviour of biological systems such as the ER network. The outcomes of our simulations

for a contractile ER argue against the plausibility of local pinch-driven flow; pinches with

frequency and size on the order of those estimated by microscopy yield significantly lower

speeds than single particle tracking measurements, as well as no enhancement of mixing

beyond that from passive diffusion. The deficit stems from the fact that the displaced fluid

volume upon local contraction is too small to generate sufficient particle transport.

Given the uncertainty of the empirical measurements for ER tubule deformation, due to

the limits in the spatio-temporal resolution of organelle structure imaging, the pinch pa-

rameters may have been significantly underestimated. This sanctioned exploring a wider

range of spatio-temporal parameters in our simulations, which revealed that a combination

of a higher frequency with a much larger pinch length may provide higher particle speeds

that are comparable to the single particle tracking measurements. Further, our modelling

results suggest the possibility of transport by luminal width contractions of larger volume

ER subdomains (which are contiguously interconnected with the network). In that respect,

the contraction of peripheral (i.e. inter-tubular) sheets, in particular yielded speed values in

a plausible range provided they are able to contrast fast enough. In contrast, the contraction

of a large-volume perinuclear sheets led to fast transport but with a limited spatial range

and with flows that would not impact transport beyond a few microns into the peripheral

network. Similarly, the alternative scenario of tubular junctions’ contractility appears un-

likely as particle speeds similar to experiments could only appears for junctions pinching at

up to 8 times faster than experimentally observed contracting tubules.

The modelling approach in this study, although focused on the ER network, provides

a step forward towards understanding intra-organellar fluid dynamics. Our simulation re-

sults have been used to rule out several scenarios, which seemed physically intuitive but are

nevertheless unable to explain the observed enhanced luminal transport. Furthermore, our

results generated a set of potentially testable predictions that can be used to validate or

refute each of the envisaged transport mechanisms. For example, as fluid expulsion from
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peripheral sheets appears to be in broad in agreement with single particle tracking measure-

ments data under even conservative assumptions, future measurements may explore whether

an active luminal motion is more pronounced and faster in proximity to peripheral sheets.

Moreover, a set of improved spatio-temporal resolution measurements of particle tracking

and structural contractions will be needed to complete the physical picture of ER luminal

transport.

While our study allowed us to test different plausible scenarios, questions remain open as

to the force-generation mechanisms responsible for the observed pinching dynamics. We have

estimated in Sec. IV G that forces on the order of 30 pN would be required to periodically

bend the tubules as seen empirically. The force exerted by a single molecular motor has

been estimated to be on the order of 6 pN [15], so the required forces for pinching may

be provided by several motors working together [16]. Recently discovered hydro-osmotic

instabilities could also contribute to shape fluctuations and pinching, although they are

predicted to have much longer wavelengths than the typical size of a pinching region [17].

In contrast, the mechanisms involving topological remodelling of the ER, such as the well-

documented process of ring closure [18], occur over timescales of minutes and therefore

cannot account for the millisecond-scale transport measured here.

Although we have used in silico fluidics modeling for our conclusions, particularly in iden-

tifying new physically permitted mechanisms of luminal propulsion, our simulations should

be regarded as theoretical predictions demonstrating physical plausibility rather than mere

speculation. We have explored theoretically the consequences of structural fluctuations

which presumably do take place. Fluctuations in width of the flat ER areas, in particu-

lar, are expected since the structures appear dynamic in live light microscopy and narrow-

ing/extension points are observable in electron microscopy [19, 20]. Further, variability in

the areas of flat ER that are observable in electron microscopy can be explained by capturing

the structures in different states of fluctuations. It should be expected that the mobile elastic

structure such as ER sheets would not exhibit rigidity required to prohibit fluctuations.

In conclusion, it is worth emphasising that our in-silico fluid dynamical modelling re-

veals that for structural fluctuation-based mechanisms to facilitate luminal motion require

assumptions currently not supported by empirical data. This warrants explorations of al-

ternative mechanisms for ER luminal transport, for example anomalous diffusion driven

by the fluctuations of macromolecular complexes [14] or by osmotic forces, as previously
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suggested [7].

IV. METHODS

Here we describe the mathematical and physical model for the fluid mechanics and trans-

port driven by active contractions in the ER. This requires the introduction of a network

model for the geometry of the ER (§IV A) and individual pinches (§IV B) and a framework

for the hydrodynamics of pinching tubules (§IV C). Our solution method for the flows inside

our network is then described in §IV D. From simulations of Brownian particles advected

by these flows (§IV E) quantitative measures of particle transport (§IV F) are extracted for

comparison with experiment. Modifications of our model to explore alternative flow genera-

tion mechanisms are discussed in §IV I. Finally in §IV J we present in detail the derivations

of the theoretical results discussed in §II C (transport upper bound by a single pinch) and

§II D (coordination of pinches).

A. Network modelling

We represent the ‘skeleton’ of a two-dimensional ER network as a planar graph with each

node assigned a position x ∈ R2. Given an edge of the network labelled (i, j) and of length

|xi−xj| = l, we model the lumen of the corresponding tubule to occupy a cylinder of radius

R whose axis lies along the edge and has length l. This assumption avoids the intrinsic

difficulty in defining a precise boundary between a tubule and a tubular junction, as well as

leading to a simplified model of the intra-nodal dynamics of a solute particle (see below);

since the tubules are long compared to the size of the junctions, the impact of their small

overlap can be safely neglected.

We mathematically reconstruct a model ER network, which we refer to as C0, using the

skeleton image of the COS7 ER network given in Fig. 4 of the Supplementary Material from

Ref. [7]; this network is reproduced in Fig. 8a. We use the multi-point tool in ImageJ [21]

to place numbered points at the positions of the nodes on the source skeleton image, and

then obtain a list of the indices and position coordinates of each node. The edges are then

manually tabulated as a list of pairs of nodes; this gives us all the information required to

construct a mathematical graph as shown in Fig. 8b, with the original network superimposed
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on the mathematical model in Fig. 8c. Note that in what follows we work with the largest

connected component of the source skeleton image in order to study transport in a fully

connected network. We also use the same procedure to extract the graph structures from

microscopy images, of four smaller ER networks which we label C1-C4 (original network

with mathematical graph superimposed in Fig. 8d). In Supplementary Fig. 10, we show the

distributions of the edge (tubule) lengths in each of the C0-C4 networks, as well as the mean

edge lengths and the mean degrees (the degree of a node is the number of edges connected

to it). The mean edge lengths are around 1 µm and mean degrees are approximately 3. In

order to compare the biological network to an idealised ER system, we also consider below

a honeycomb network, i.e. one where every node (apart from those at the boundaries) has

a degree of 3, with all edge lengths exactly 1 µm.

B. Pinch modelling

To describe the pinches (Fig. 1e), we consider a model where the kinematics of each

pinch is fully prescribed in time. We therefore assume that the active biochemical forces

responsible for the deformation of the tubules balance with the elastic resistance of the

tubules and with the dissipative forces in the fluid in such a way that the pinches occur as

described.

The geometrical model for a pinch is illustrated in Fig. 9. Each tubule is assumed to have

a pinch site at its midpoint (i.e. with L1 = L2); we make this simplifying assumption in our

simulations, after verifying that more general pinch locations (L1 6= L2) have virtually no

effect on particle transport. The pinching events occur at the pinch sites stochastically and

independently of each other. Each pinch is defined geometrically by three parameters from a

random distribution (see below): (i) the duration of a pinch 2T , (ii) the time Twait between

the end of a pinch and the beginning of a new one on the same site, and (iii) the length of a

pinch 2L (see Fig. 9). We assume for simplicity that all pinches are axisymmetric so, using

the notation of Fig. 9, each tubule remains a cylinder of time-varying radius denoted by

r = a(z, t). Pinches are assumed to have reflectional symmetry about the plane in the cross-

section through the centre of the pinch (i.e. Fig. 9 each pinch is characterised by the same

length L on either side of it). The total length of a tubule is denoted by l = L1 + 2L+ L2,

so the portion before the pinch has length L1, and that after the pinch is of length L2.
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We model the geometrical profile of each pinch of length 2L as following a linear radius

change (see Fig. 9). Within a pinch located at z = z0, the radius of the cylinder is therefore

given by

a(z, t) = b(t) + [R− b(t)] |z − z0|
L

, −L ≤ z−z0 ≤ L. (2)

The time-varying function b(t) ≤ R is therefore the minimum pinch radius in the centre of

the tubule. As the simplest modelling choice, we assume in our simulations that b changes

in time sinusoidally and thus will use b(t) = (R + b0)/2 + (R− b0) cos(πt/T )/2, where t

is time after the pinch begins and b0 is the value of b halfway in time through the pinch.

Choosing a smooth time variation for the function b(t) will ensure the continuity of fluxes

in time (see Eq. (10) later). We have verified that changing the pinch shape to a smoother

geometry has essentially no impact on the fluid volume expelled/taken in, and therefore no

significant effect on the flows/transport.

In our simulations the stochastic pinch parameters are drawn from the distributions

measured in Ref. [7]. The pinch duration 2T is therefore drawn from an exponential dis-

tribution with rate parameter λ = ln 10/0.167 s−1 (so the mean value is 2T = 0.0725 s) ,

the time between pinches Twait from from an exponential distribution with rate parameter

λwait = ln 10/0.851 s−1 (mean value Twait = 0.370 s) and the pinch length 2L from a uniform

distribution with mean µ = 0.12 µm and variance σ2 = (0.062/ ln 10) µm2 ≈ (0.040 µm)2.

Throughout we set the tubule radius R = 30 nm and b0 = 0.01R (recall from Fig. 9).

C. Hydrodynamic modelling

1. Hydrodynamics of network

We assume that the fluid occupying the ER network is Newtonian. Flow inside the

network occurs at low Reynolds number, which can be justified in the following fashion.

From experiments in Ref. [7], we know that velocity scale relevant to ER flows is of the

order U ∼ 10−5 ms−1. With a typical tubule radius R ≈ 10−8 m and a kinematic viscosity

of at least that of water ν ≈ 10−6 m2s−1, we obtain a Reynolds number of the order Re =

UR/ν ∼ 10−7, so the flow is indeed Stokesian and inertial effects in the fluid can be safely

neglected.

At a typical instance in time, a tubule undergoing contraction (or relaxation) causes a
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net volume flux to exit (or enter) the corresponding tubule. In the context of our graph

theoretical model, we therefore model each pinch site as a ‘pinch node’ generating a net

hydrodynamic source/sink whenever the tubule contracts/relaxes.

However, since it is not guaranteed that the total volume created by all pinching events

always adds up to zero, we need a mechanism for the corresponding net volume to exit, or

enter, the network. We achieve this through a number of ‘exit nodes’ that allow mass to

be globally conserved. We locate the exit nodes at the exterior of the network and choose

their number randomly. From a hydrodynamic standpoint, we impose the pressure condition

p = p0 at each exit node to model their connection to a large fluid reservoir.

We numerically tested the robustness of our results to the details of the exit nodes by

repeating simulations with different configurations. The exact choices of exit nodes turn

out to not affect the transport results shown below provided there are sufficiently many of

them to avoid channeling the entire network’s worth of pinch-induced flow into a few tubules

towards the exterior, thereby producing artificially strong flows.

2. Hydrodynamic model for a pinch

a. Flow rate. The velocity field in a straight cylindrical tubule at low Reynolds number

is the classical parabolic Poiseuille flow [22]. When integrated through a cross section of the

tubule, this flow yields the Hagen-Poiseuille law relating the pressure change ∆p across a

length l of a tubule to the a net volume flux Q in the positive axial direction,

∆p = − 8µl

πR4
Q, (3)

where µ is the dynamic viscosity of the Newtonian fluid. Note that when Q > 0 our notation

leads to ∆p < 0, meaning that the pressure decreases across the length of the channel.

The result in Eq. (3) is valid for a straight (i.e. not pinching) tubule, and we need to

generalise it to the case of a pinching tubule. Consider first a more general axisymmetric

pipe whose radius a(z, t) varies with axial position z and time. We may use the long-

wavelength (lubrication) solution to Stokes’ equations for the streamwise velocity u(z, r, t)

and flux Q(z, t) inside such a pipe into which a flux Q1(t) enters at z = 0 [23],

u(z, r, t) = 2
Q(z, t)

πa(z, t)2

[
1−

(
r

a(z, t)

)2
]
, (4)
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where

Q(z, t) = Q1(t)− 2π

∫ z

0

a(z̃, t)
∂a(z̃, t)

∂t
dz̃. (5)

The equality in Eq. (5) can be derived using an intuitive mass conservation argument,

independently of the inspired ansatz in Eq. (4). Conservation of mass inside a small section

[z, z + δz] of the cylinder requires Q(z) − Q(z + δz) = 2πaȧδz + O(δz2). Considering the

limit δz → 0 and integrating the resulting expression for ∂Q/∂z from 0 to z yields Eq. (5).

In order for the no-slip boundary conditions at r = a(z, t) to be satisfied, and also to

satisfy the incompressibility condition ∇ · u = 0, the radial component of the velocity,

v(z, r, t), is necessarily non-zero and given by [23]

v(z, r, t) =
∂a(z, t)

∂t

r

a(z, t)

[
2−

(
r

a(z, t)

)2
]

+ 2
∂a(z, t)

∂z

Q(z, t)r

πa(z, t)3

[
1−

(
r

a(z, t)

)2
]
. (6)

Our geometrical model for each pinch in §IV B yields straightforwardly a piecewise linear

expression for a(z, t) in different regions of the tubule, with the time dependence entering

only through the value of the pinch radius b(t). Denoting by Qi (1 ≤ i ≤ 4) the fluxes in

the four regions of the pinched tubules shown in Fig. 9, we may substitute the linear shape

functions into Eq. (5) and obtain

Q2 = Q1 −
2πḃ(z − L1)

2

L

(
R

2
− (R− b)(z − L1)

3L

)
, (7)

Q3 = Q1 − 2πḃL

(
R

6
+
b

3

)
−2πḃ[z − (L1 + L)]

{
b+

R− 2b

2L
[z − (L1 + L)]− R− b

3L2
[z − (L1 + L)]2

}
, (8)

Q4 = Q1 − 2πḃL

(
R

3
+

2b

3

)
. (9)

Note that the final expression may be rearranged as

Q4 −Q1 = −2πḃL

(
R

3
+

2b

3

)
, (10)

which may be interpreted as the instantaneous volume source/sink during a contrac-

tion/relaxation at a pinch site.

b. Pressure drop. We next need to compute the pressure drop in the pinches. We

integrate the z-component of the Stokes equation

∂p

∂z
=

1

r

∂

∂r

(
r
∂u

∂r

)
+ µ

∂2u

∂z2
, (11)
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along 0 ≤ z ≤ L1 + 2L+ L2, and use the solution for u, to obtain

∆p ≡ p2 − p1 = −8µ

π

∫ L1+2L+L2

0

Q(z, t)

a(z, t)4
dz + µ

∂u

∂z

∣∣∣∣L1+2L+L2

0

(12a)

≈ −8µ

π

∫ L1+L

0

Q(z)

a(z, t)4
dz︸ ︷︷ ︸

I1

−8µ

π

∫ L1+2L+L2

L1+L

Q(z)

a(z, t)4
dz︸ ︷︷ ︸

I2

. (12b)

Here, the second term on the right-hand side of Eq. (12a) has vanished because ∂zu ∝

∂z(Q/a
2) but Q and a are approximately constant at the entrance and exits of the tubule

when the pinch site is sufficiently far from the ends of the tubule so that the flow is fully-

developed there.

Using the expression for Q2, an integration yields

I1 =
−8µQ1L1

πR4
− 8µ

π

[
LQ1

3(R− b)

(
1

b3
− 1

R3

)
+

∫ L1+L

L1

Q2(z)−Q1

a(z, t)4
dz

]
(13)

and, by symmetry,

−I2 =
8µQ4L2

πR4
− 8µ

π

[
− LQ4

3(R− b)

(
1

b3
− 1

R3

)
+

∫ L1+L

L1+2L+L2

−Q3(z) +Q4

a(z, t)4
dz

]
. (14)

Subtracting these two results (and noting the integrals cancel out by symmetry) we obtain

the modified Hagen-Poiseuille expression for a pinching tubule as

∆p = −8µ

π

[
L1

R4
+

L

3(R− b)

(
1

b3
− 1

R3

)]
Q1 −

8µ

π

[
L2

R4
+

L

3(R− b)

(
1

b3
− 1

R3

)]
Q4. (15)

Note that this relationship is linear in each of Q1 and Q4, and is to be solved alongside

Eq. (10) to relate the flow rates and pressure drops to the change in size of the pinches.

Importantly, the classical Hagen-Poiseuille law is recovered as b→ R since Eq. (15) becomes

in that limit

∆p = −8µ(L1 + 2L+ L2)Q1

πR4
, (16)

which agrees with Eq. (3) when taking l = L1 + 2L+ L2.

D. Solving the hydrodynamic network model

The incorporation of pinches as ‘dummy nodes’ into a graph theoretical framework of

§IV A along with Eqs. (10) and (15) for the necessary pinch-related quantities allow us to

reduce the problem of determining the time-dependent flows in an active pinching network
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into the simpler problem of solving at each instant for the instantaneous fluxes inside a

‘passive’ network with newly added nodes, appropriate sources/sinks, and modified pressure

drops. Note that since the flows at these sub-cellular scales are inertialess (i.e. Stokes flows),

we are able to effectively decouple time from our problem and solve the problem in the

quasi-steady limit.

For each edge (i.e. tubule) (i, j) in the network, we define Qij to be the flow rate from

node i to node j, with the sign convention such that flow is from i to j if Qij > 0. For

mathematical convenience, we define Qij = 0 in all cases where (i, j) is not an edge in the

graph. The goal is to solve for the values of the Qij’s corresponding to each edge.

After the incorporation of the dummy nodes, we denote by N the number of nodes and

E the number of edges. We label the nodes such that {1, . . . ,M} denotes the M exit nodes.

Let qi be the source or sink carried by the ith node (so that qi = 0 if i is a normal node, qi is as

specified by the RHS of Eq. (10) if i is a pinch node, and qi is a quantity to be determined if i

is an exit node.). Our M +E independent variables are therefore {qi|i = 1, . . . ,M} i.e. the

sources/sinks carried by the exit nodes, and the Qij’s corresponding to each edge. To obtain

their values, we employ the viscous hydraulic analogues of Kirchoff’s Laws.

1. Kirchhoff’s First Law (K1)

The first equation is that mass is conserved at each junction i.e. for each node i we have∑
j

Qij = qi, (17)

which gives us therefore N equations. Note that these equations together imply global

conservation of mass,
∑N

i=1 qi = 0.

2. Kirchhoff’s Second Law (K2)

The second equation is a consistency of pressure, namely that the pressure change

around any cycle (i.e. closed loop) of the network is zero. Therefore, in a given cycle

C = {v1, v2, . . . , vn, vn+1 = v1}, if ∆pvivi+1
denotes the pressure change from node vi to node

vi+1 we necessarily have
n∑
i=1

∆pvivi+1
= 0. (18)
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Note that the pressure change across a node is negligible.

The K2 statement in Eq. (18) applies to all cycles in the graph, which would give us more

equations than we need since the vectors of coefficients in Eq. (18) are linearly dependent.

Instead, we need a minimal set of linearly independent K2 equations, corresponding to the

cycles in a cycle basis of the graph, and we need only apply K2 to these cycles.

To construct a cycle basis of the graph G, we use standard results from graph theory [24].

We first construct a spanning tree T , defined as a connected subgraph which contains all

the nodes of G and no cycle, as shown in Supplementary Fig. 11a on an example. Any tree

T has N − 1 edges. Therefore there are E − (N − 1) edges in the graph G but not in the

spanning tree T ; for each such edge e, we denote by Ce the unique cycle in the graph created

by adding the edge e to the tree T (see Fig. 11b). The set of all such cycles Ce is then a cycle

basis of G, and thus there are E − (N − 1) cycles in this set. There are therefore E −N + 1

independent cycles in the cycle basis.

To compute the spanning tree T we use a breadth-first search (BFS) algorithm [25]. We

start from an arbitrary node and explore its neighbouring nodes. We add to T any previously

unexplored node (and the corresponding edge) which does not result in the creation of a

cycle in T . We then repeat this (in an arbitrary order) on the neighbours of the previous

generation of nodes added to T , until no more nodes are left to explore. This is illustrated

on an example in Supplementary Fig. 11c.

A similar algorithm is also used to compute the cycles Ce in the cycle basis. This time,

however, denoting e = (i, j), the algorithm is started from i and set to terminate as soon as

j is visited, yielding a path in the tree from i to j, which, together with the original edge

(i, j), completes a cycle.

3. Pressure boundary conditions at exit nodes

At this point in the modelling, we have M + E independent variables (the flow rates

in each edge and at the exit nodes), N equations from K1 (i.e. Eq. (17)), and E − N + 1

equations from K2 (i.e. Eq. (18)). The remaining M − 1 equations follow from the pressure

conditions at the exit nodes. Specifically, the pressure difference between any pair of exit

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 21, 2023. ; https://doi.org/10.1101/2023.01.11.523552doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523552


nodes i and j is zero ∑
i→j

∆p = 0. (19)

Here the sum
∑

i→j is defined to be over any path Pij from i to j. Thanks to Kirchhoff’s

second law, this quantity is path-independent. This indeed gives us

(
M

2

)
= M−1 equations,

which we pick to be
∑

1→j ∆p = 0 for j = 2, . . . ,M .

We then solve the resulting linear system of M +E equations numerically. Note that we

do not need to specify the value of the fluid viscosity µ in our algorithm because it cancels

out in the K2 equation, Eq. (18), and in the pressure boundary condition equation, Eq. (19).

E. Simulating particle transport

With our solution for the flows in the active network at each instant of time, we now

proceed to track the motion of Brownian particles inside the network using a discretisation

of their stochastic equations of motion, as a model for the transport of proteins in the ER

network.

We use the simplest approach where we superimpose Brownian motion onto advection

by the flow inside each tubule. Let x(t) denote the position of a Brownian particle in a

tubule and xn the finite-difference approximation of x(n∆t), where ∆t is a discrete time

step. The displacement of the particle at each time step can be obtained approximately

using an explicit first-order Euler scheme

xn+1 = xn + U(xn, t)∆t+ X(∆t), (20)

where U is the instantaneous flow velocity, and the random noise term X(∆t) is drawn from

a zero-mean Gaussian with variance 〈X(∆t)X(∆t)〉 = 2D∆tI [26], where D is the Brownian

diffusivity of the particle. In our simulations, we take the diffusion constant to be the mean

intranode diffusivity measured in Ref. [7], D ≈ 0.6 µm2s−1. We include interactions between

particles and walls by assuming that particles perfectly reflect off walls (i.e. elastic collisions).

The particles are modelled as rigid spheres of diameter 5 nm, and the size of the particle

matters only during elastic collisions with the walls of the tubules. As relevant in the limit

of low volume fraction, we neglect hydrodynamic interactions between particles and perform

ensemble averaging of the trajectories of many independent particles.
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When a particle enters a node, we model its dynamics as follows. We consider a particle

to have entered a node only if it has reached the end of a tubule, say of length l, at which in-

stance we assign the particle to the node-point (i.e. the single point associated with the node

in the graph description of the ER network). Although nodes contain a three-dimensional

volume, their typical nodal length scale is of the order R � l, and thus approximating

them by point nodes is appropriate on the scale of the whole network. To decide towards

which of the connected tubules the particle leaves the node, we estimate the values of the

Péclet number Pe in each of the tubules. We define a local Péclet Pei = UiR/D where Ui is

the mean flow velocity through tubule i, with Ui > 0 for flow out of the node and Ui ≤ 0

otherwise. We then assume that the particle enters a neighbouring tubule i connected to

the node with a probability proportional to max(Pei + 1, 0). This ensures that we have the

expected behaviour in both limits of Pe: at high (positive) Péclet numbers, the probability

is proportional to the flow speeds in each of the connected tubules, while at low Péclet the

exit of the node is limited by diffusion and thus the exit is equally likely in each tubule.

F. Data processing: instantaneous speeds and average edge traversal speeds

During each simulation, we compute the edge traversal speeds as follows. A particle is

defined to traverse an edge (i, j) if it travels from node (i.e. junction) i to node j, or from j

to i, without visiting i or j in between. The corresponding edge traversal time is then the

time between the arrival at the target node and the most recent departure from the node

of origin. The edge traversal speed is naturally defined as the length of the tubule (i, j)

divided by the edge traversal time.

The average edge traversal speed associated with an edge (i, j) is then defined as the

mean over all edge traversal events across (i, j) of the edge traversal speeds.

In addition we also compute for each particle the ‘instantaneous’ speeds defined by Vn =

|X(tn+1) − X(tn)|/∆t, where tn = n∆t with ∆t = 18 ms, which is the same temporal

resolution as in the particle tracking carried out in Ref. [7].
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G. Incorporating slip boundary conditions

The methodology we have detailed thus far assumes no-slip boundary conditions at the

tubule walls for the fluid flow. However, the membrane-bound lipids themselves could also

flow in response to the nanoscale luminal flows. This may be modelled by introducing a

finite slip boundary condition on the tubule wall. The slip boundary conditions with a slip

length λ ≥ 0 at the wall r = a(z, t) are given by

u = −λ∂u
∂r
, (21)

and (u− ∂a
∂t
er) · n = 0, with n = ∂a

∂z
ez − er, which simplifies to

v − ∂a

∂z
u =

∂a

∂t
. (22)

We may then derive the long-wavelength solution for the flow field inside an axisymmetric

deforming tubule as follows. Using an ansatz for the axial component u that is motivated

by the uniform-radius Poiseuille flow with slip,

u(r, z, t) =
2

1 + 4λ
a(z,t)

Q(z, t)

πa(z, t)2

[
1−

(
r

a(z, t)

)2

+
2λ

a(z, t)

]
, (23)

we may solve the incompressibility condition 1
r
∂
∂r

(rv)+ ∂u
∂z

= 0. Regularity at r = 0 constrains

the integration constant to be zero, yielding

v(r, z, t) =
1

1 + 4λ
a(z,t)

∂a(z, t)

∂t

r

a(z, t)

[
2−

(
r

a(z, t)

)2

+
4λ

a(z, t)

]

+
2

1 + 4λ
a(z,t)

∂a

∂z

Q(z, t)

πa(z, t)2
r

a(z, t)

{
1 + 3λ−

(
r

a(z, t)

)2

− λ

a(z, t)

1

1 + 4λ
a(z,t)

[
4λ

a(z, t)
+ 2−

(
r

a(z, t)

)2
]}

, (24)

which automatically satisfies the boundary condition in Eq. (22). Note that the mass con-

servation equations are not affected by the introduction of a slip length.

Using the new solution for u, the modified Hagen-Poiseuille expression with slip may be
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derived as before to be

∆p =− 8µ

π

{
L1

R4
+

L

64λ3(R− b)

[
log

(
1 + 4λ/b

1 + 4λ/R

)
− 4λ

b

(
1− 2λ

b

)
+

4λ

R

(
1− 2λ

R

)]}
Q1

− 8µ

π

{
L2

R4
+

L

64λ3(R− b)

[
log

(
1 + 4λ/b

1 + 4λ/R

)
− 4λ

b

(
1− 2λ

b

)
+

4λ

R

(
1− 2λ

R

)]}
Q4,

(25)

which does recover the no-slip result as λ→ 0.

These results may then be used to simulate particle transport with slip boundary condi-

tions. In Fig. 12a we plot the distributions of average edge traveral speeds obtained from

simulations of a C1 network pinching with the original pinch parameters from Ref. [7] for

four different values of the boundary slip length. In Fig. 12b we further display the profiles

of the longitudinal flow (Eq. (23)) for different slip lengths with the volume flux fixed.

H. Estimate of forces required for pinches

In this section we derive an order-of-magnitude estimate for the forces required to pinch

an ER tubule.

We first estimate the difference in the membrane’s elastic energy, ∆E = Epinched −

Eunpinched, between the pinched (Epinched) and unpinched configurations (Eunpinched). In the

absence of spontaneous curvature, the Helfrich free energy h per unit area of a membrane

is given by

h =
kc
2

(2H)2 + k̄K, (26)

where kc and k̄ are bending rigidities, H is the mean curvature, and K is the Gaussian

curvature [27]. The mean and Gaussian curvatures may be expressed in terms of the principle

curvatures κ1, κ2 as H = (κ1 + κ2)/2 and K = κ1κ2. We take κ1 and κ2 to be the principle

curvatures in the directions normal and parallel respectively to the tubule’s longitudinal

axis.

The dominant contribution to ∆E is from Epinched, specifically from the region near the

pinch site i.e. the centre of the pinch, where the tubule radius is smallest, taken to be at

z = 0. We have κ1 = 1/a(z, t) and κ2 = O(R/L2), yielding H = 1/2a + O(R/L2) and

K = O(R/aL2). The dominant contribution to the membrane energy E = 2π
∫ L
−L ha dz is

therefore from H, in a neighbourhood of z = 0. Since real pinches do not have kinks, a
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linear term, for the purposes of estimating membrane energy, is unphysical, and we expect

a(z, t0) = b0 + O(z2) near z = 0, where b0 is the pinch radius in the centre of the pinch in

the maximally contracted state and t0 denotes a time at which the tubule is in a pinched

state. We may therefore write a(z) = b0 +Rz2/L2 to obtain an order-of-magnitude estimate

of the membrane energy in the pinched state.

Evaluating the integral for Epinched then yields the leading-order estimate

∆E ∼ kc
L√
b0R

, (27)

We may take kc, k̄ ∼ 50 kBT (kB is the Boltzmann constant times and T the room temper-

ature) [28], with estimate values R = 30 nm, and L = 70 nm. The minimum pinch radius

b0 may be estimated to be 10 nm allowing for membrane thickness and incomplete squeeze,

yielding

∆E ∼ 8× 10−19J. (28)

The hydrodynamic dissipation during a pinch may be calculated using the flow field in a

pinch (see §IV C for intraluminal flow field), and it turns out to be much smaller than the

elastic contribution to the work done to pinch a tubule.

An estimate for the force required to pinch the tubule may then finally be obtained as

F ∼ ∆E/R ∼ 30 pN.

I. Modelling of alternative flow generation mechanisms

We have described in detail our modelling of a network driven by the pinching of tubules.

In this study we explore two other flow generation mechanisms: the contraction of tubular

junctions and the contraction of ER sheets. Our model for pinching tubules is readily

generalised to account for these mechanisms, as we describe below.

1. Experimental estimates of junction volumes

From fluorescence microscopy images of ER networks, we measure the fluorescence inten-

sity of junctions (i.e. the number of pixels in a junction multiplied by the mean intensity per

pixel). We can then translate this intensity into an estimate of junction volume, assuming

that intensity is directly proportional to volume. In order to calibrate the fluorescence in-

tensity, we use our measurements for tubules. Specifically, we use the measured intensities
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of tubules and their known volumes, obtained by measurements of tubule lengths and the

assumption that they are cylinders of radius 30 nm, in order to determine the proportion-

ality constant to convert between pixel intensity and volume. Our new measurement of the

intensities of the junctions then allows us to obtain estimates of their volumes; we obtain

twelve values, ranging between 0.0020 µm3 and 0.0081 µm3, with a mean of 0.045 µm3 and

a standard deviation of 0.0021 µm3.

2. Mathematical modelling of contractions of tubular junctions

To include the contribution of tubular junctions into the model (Fig. 1c), we assume that

in addition to the pinch sites along tubules, each tubular junction pinches independently

of other tubules and other tubular junctions. Given a junction, we assume that it expels

the same volume ∆V of fluid during a contraction for all its pinches (and takes in the same

volume when it relaxes). Each pinch is assumed to create a sinusoidal flow source, so a pinch

lasting for a time 2T produces a flow rate S(t) = ∆V sin(πt/T )π/2T at a time t measured

from the beginning of the pinch, where the numerical factors in S(t) are chosen such that

the volume expelled during a contraction is indeed
∫ T
0
S(t) dt = ∆V . We accommodate the

flows from the junctions mathematically by modifying our K1 equations, Eq. (17), to allow

the normal nodes to also carry non-zero sources (as opposed to just the pinch nodes, as was

the case before); the other equations in the model remain unchanged.

3. Mathematical modelling of contractions of perinuclear sheets

In the tubules-pinching model, we included M exit nodes located towards the exterior of

the network and through which flow could enter and exit the system in order to conserve

mass. To account for the connection to a perinuclear sheet (Fig. 1f), we now assign randomly

a number of these exit nodes, denoted M2 < M , to be ‘sheet nodes’ i.e. nodes which are

directly connected to a peripheral sheet, so that a number M1 = M −M2 > 0 of exit nodes

remain. This is illustrated in Supplementary Fig. 13, where we show the C1 network from

Fig. 8 with both sheet nodes (blue asterisks) and exit nodes (red squares).

A sheet contraction+relaxation lasting a time 2T produces a total source Ssheet(t) =

Vsheetπ sin(πt/T )/2T at a time t from the beginning of the pinch, where again, the integral
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of Ssheet over a contraction gives a volume Vsheet of fluid expelled by the sheet.

Similarly to the mathematical model with tubular pinches only, our independent variables

are the E tubule fluxes, the M1 sources at the exit nodes, and the M2 sources at the sheet

nodes. As before, the K1 (Eq. 17) and K2 (Eq. 18) equations give us E + 1 equations. The

requirement that the exit nodes are at the same (exit) pressure give us
(
M1

2

)
= M1 − 1

equations, namely the equality ∆Pij = 0 for i, j exit nodes. We make the additional as-

sumption that the sheet nodes are all at the same mechanical pressure (i.e. that they are

connected to the same reservoir), which provides an additional M2 − 1 equations. Requir-

ing that the sources at the sheet nodes sum to the prescribed flow rate Ssheet yields one

additional equation, so we again have a system of E +M independent linear equations.

4. Experimental estimates of volumes of peripheral sheets

To model the contraction of peripheral sheets (Fig. 1d), we need to estimate their con-

tained volumes. Using the open-source image analysis software Fiji [29], we identify nine

regions roughly occupied by peripheral sheets in a microscopy image of an ER network; this

is illustrated in yellow in Supplementary Fig. 14. We then measure their areas (in µm2)

and convert them to volumes by multiplication with the diameter of a tubule; we take the

diameter to be 60 nm i.e. we assume that the effective thickness of a sheet is equal to the

tubular diameter. From our nine data values, we finally obtain a mean sheet volume of 0.12

µm3 and a standard deviation of 0.04 µm3.

J. Derivation of theoretical bounds for active flows driven by pinching tubules

1. Advection due to a single pinch

In this section we calculate an upper bound for the axial distance ∆z a particle can be

advected by the flow produced by an individual pinch. Recall the formula for the volume

‘source’ due to a pinch,

q = −2

3
πḃL(R + 2b). (29)

Among all possible ways for a particle to be transported by a pinch, an upper bound

on the transport distance ∆z ≤ ∆zmax can be reached if all of the following conditions
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are satisfied: (i) All of the source flows to one side of the pinch (i.e. there is no leakage

on the other side); (ii) The particle travels outside the pinching region (axial flows within

the pinching region produce smaller advective displacements than those outside, as may be

verified numerically); (iii) The particle travels along the centreline of the tubule (i.e. at twice

the cross-section averaged flow velocity, a standard Poiseuille result); (iv) The minimum

pinch radius b0 (recall from Fig. 9) is 0.

Under conditions (i) and (ii), the cross-section averaged speed corresponding to maximal

transport generated from a single pinch can then be computed using Eq. (29) as

πR2Ū(t) = −2

3
πḃL(R + 2b). (30)

Using condition (iii), the position of the particle along the centreline z(t) satisfies then the

ordinary differential equation

ż = 2Ū(t) = − 4L

3R2
ḃ(R + 2b). (31)

Integrating this equation from t = 0 (start of contraction, with b(0) = R) to T (end of

contraction, with b(T ) = b0) then leads to

∆z =
8L

3

(
1− b0

2R
− b20

2R2

)
. (32)

The value of ∆z is maximized when b0 = 0 (i.e. when condition (iv) holds), yielding the

upper bound

∆z ≤ ∆zmax =
8

3
L. (33)

2. Extension to nonlinear interactions between two pinches

An isolated pinch is only capable of reciprocal motions. The simplest system capable

of producing non-reciprocal motions is illustrated in Fig. 5 and consists of two pinch sites

arranged in series near the midpoint of a long horizontal tubule.

We may calculate an upper bound on the net particle displacement that can be achieved

after both pinch sites pinch exactly once. We make the assumptions (ii)-(iv) as above, and in

addition, allow pinches to spend extended amounts of time in their completely closed state;

any deviation from these assumptions will result in net transport that is further reduced.

How can we maximise the positive (i.e. rightward in Fig. 5) particle displacements induced

by the contractions, and minimise the magnitude of the negative (leftward) displacement
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induced by relaxations? As in the figure, let us denote the pinch on the left ‘pinch 1’ and

that on the right ‘pinch 2’. Pinch 1 produces maximum positive displacement (magnitude

4L/3, i.e. half of the optimal from Eq. (33)) when pinch 2 is completely open i.e. when

the hydrodynamic resistance to its right is minimal. Pinch 2 then produces maximum

positive displacement (of magnitude 8L/3, i.e. the optimal value in Eq. (33)) when pinch 1

is completely closed and all pinch-induced flow continues to be directed rightwards. Similarly,

pinch 1 produces minimal negative displacement when pinch 2 is completely closed (zero

average displacement, since no flow is then allowed to escape to the right of pinch 2), while

pinch 2 then produces a negative displacement of magnitude 4L/3 to the left when pinch

1 is completely open. These optima can be achieved by the non-reciprocal sequence of

motions illustrated in Fig. 5: close pinch 1, close pinch 2, open pinch 1, open pinch 2. The

coordination between two pinches can therefore be used to generate the net displacement of

8L/3 equal to the theoretical upper bound from Eq. (33).
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FIG. 1: Sketch of the cellular geometry with nomenclature of the sub-cellular structures

discussed in the paper. a. Cross section of cell showing nucleus and Endoplasmic

Reticulum (ER) (adapted from image in public domain [30]). b. Cut through cross section

of the tubular ER network at the edge of cell. c. Sketch of the contraction and expansion

of the tubular junctions (3D view and cross section); contractions leads to flow leaving the

junction into the network while expansions lead to flow leaving the network and entering

the junction. d. Contraction and expansion of the peripheral sheets. e. Contraction and

expansion of the tubules driven by pinching (3D view and cross section). f. Contraction

and expansion of the perinuclear sheets.
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FIG. 2: A quantitative test of the pinching-tubule hypothesis. a. Cross-sectionally

averaged flow velocities in a typical edge as obtained in our simulations. b. c. Histograms

of instantaneous speeds (b) and edge traversal speeds (c) using data from simulations in

the C0 network with flow (blue solid line) and with just diffusion (red dashed line). The

insets in (b) and (c) illustrate the distributions of instantaneous speeds and average edge

traversal speeds respectively as experimentally measured in Ref. [7]. The symbols indicate

the values taken by the probability mass function and the curves are log-normal

distributions fitted to all average edge traversal speeds obtained. d-f. Histograms of

average edge traversal speeds obtained from simulations in networks C1-C4 from Fig. 8d

with flow (d) and only diffusion (e) and from simulations in the regular honeycomb

network with active flows (f). The inset in (f) illustrates the honeycomb geometry. Points

indicate mean ± one standard deviation over the four networks (C1-C4) of normalised

frequencies in each speed range; curves are log-normal (d-f) or normal (f) distributions

fitted to all average edge traversal speeds for each set of pinch parameters. The means of

the original simulation results and of the fitted distributions are indicated in the legends in

each of (c-f).
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FIG. 3: Mixing by active pinching flows. a. Initial configuration of blue and red particles

in honeycomb network. The strips used to quantify mixing are illustrated in black dotted

line. b-d. The configuration after t = 3 s of mixing in a passive network with no flow (b),

an active network pinching with the original pinch parameters (c), and an active network

pinching with maximally long pinches at 10 times the original rates (d). e. The measure of

mixing Var(φ(t)) against t for the network pinching with the original parameters (blue),

the passive network (red), and the network pinching with maximally long and 10x faster

pinches (yellow).
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FIG. 4: Histograms of instantaneous speeds (top) and average edge traversal speeds

(bottom), for a-b. an active honeycomb network (a) and the reconstructed C0 network

from Fig. 8a-c (b) with pinch parameters T and Twait decreased to 1/α times the original

values from Ref. [7], and the same measured diffusivity D = 0.6 µm2s−1, and for c-f. the

C1-4 networks from Fig. 8d with varying pinch parameters: original parameters from

Ref. [7] (c); pinch length increased to the total length of the tubules (d); a five-fold

increase in the rate of pinching and pinch length set to the total length of the tubules (e);

a ten-fold increase in the rate of pinching and pinch length set to the total length of the

tubules (e). Bottom rows: points indicate mean ± one standard deviation over the four

networks (C1-C4) of normalised frequencies in each speed range; curves are log-normal

distributions fitted to all average edge traversal speeds for each set of pinch parameters;

insets show means of original simulation results and of fitted distributions.
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FIG. 5: Illustration of coordination mechanism allowing the interactions between two

pinch in series to induce the net transport of a suspended particle; the mechanism is akin

to small-scale peristalsis.
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FIG. 6: Contour plots of the mean values of the average edge traversal speeds obtained

from simulations of our model in a junction- and tubules-driven C1 network from Fig. 8

with different values of (α, β) and with contraction volumes ∆V expelled during each

contraction drawn from: a. the normal distribution estimated for the junction volumes

N(0.0045, 0.0021) (in µm3); b. two thirds the estimated normal distribution for the

junction volume; and c. half the estimated distribution for the junction volume. Thick

solid black lines indicate the mean of the average edge traversal speed distribution

reported in Ref. [7] (45.01 µm/s) and thick dotted black lines indicate mean ± standard

deviation (45.01 ± 12.75 µm/s).
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FIG. 7: a-b. Distributions of instantaneous speeds (a.), and average edge traversal speeds

(b.) obtained from simulations of the C1 network from Fig. 8 driven by the contraction of

a perinuclear sheet. In these simulations the sheet undergoes one contraction+relaxation

lasting 2T = 5 s, and expels a volume Vsheet = 10 µm3 of fluid during a contraction. c-

d. Colour maps of normalised average edge traversal speeds obtained from simulations of

the C1 network from Fig. 8 driven by contraction of tubules + sheets (c) and junctions +

tubules (d) respectively. e. The speeds averaged along the y direction of the network, V (x),

are plotted against x, to effectively project the information onto one dimension from c. (blue

solid line) and d. (red dashed line). f-g. Histograms of average edge traversal speeds (dots)

and normal fits (lines) and mean AETS (inset) in C1 networks with parameters adjusted as

follows to approximate a network with peripheral sheets: Junction k expels a volume Vk/6 of

fluid in each pinch, the pinches are α−1 = 2.5 times slower than the original tubule pinches,

and all nodes actively pinch (f); and node k expels a volume Vk/2 of fluid in each pinch, the

pinches are α−1 = 5 times slower than the original tubule pinches, and only a third of the

nodes actively pinch (g).
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FIG. 8: a. Skeleton image of COS7 ER reproduced from Ref. [7]. b. Model ER graph (blue

solid lines) reconstructed from (a) using ImageJ. c. Experimental images in (a)

superimposed with mathematical model from (b). d. Microscopy images of four different

COS7 ER networks (labelled C1-C4) with reconstructed model networks (blue solid lines)

superimposed.
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a(z,t) R
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Q3 Q4

p = p1
p = p2

z = 0 z

FIG. 9: Mathematical model of a pinching tubule. The tubule has a radius of R outside

the pinch, a(z, t) in the pinch (where z is the axial coordinate), and b(t) at its narrowest

point i.e. the centre of the pinch. The portion of the tubule before the tubule has length L1

while that after has length L2; the pinch is symmetric and has a length 2L. Q1, Q2, Q3, and

Q4 denote the volume fluxes through the tubule in the four different regions as indicated.

The pressures at the end of the tubule are p = p1 at z = 0 and p = p2 at z = L1 + 2L+ L2.
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length (μm) mean degree

C0 1.30 3.16
C1 1.09 2.95
C2 1.07 2.83
C3 1.27 2.83
C4 1.19 3.07

mean edge 

FIG. 10: Distributions of edge lengths in the five C0-C4 networks. Bottom right: mean

edge lengths and mean degrees (i.e. number of edges connected to a node) of the C0-C4

networks.
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FIG. 11: Elements of graph theory required to model the ER network. a. A graph G

(black solid lines) and its spanning tree T (black dots). b. The unique cycle Ce (red)

formed by adding an edge e ∈ G\T to T . c. A breadth-first search (BFS) starting at the

rightmost node; the graph is explored in the order red, green, blue.
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FIG. 12: Impact of non-zero slip length on transport and flow. (a) Distributions of average

edge traversals speeds in simulations of a C1 network pinching with the original pinch

parameters as measured in Ref. [7] and used in Fig. 2, for different slip lengths λ = 0, 3, 30

and 300 nm. (b) Longitudinal flow profile inside a cylindrical tubule for different slip

lengths, all with the same volume flux; an increase of the slip length leads to a

redistribution of the flow in the cross section.
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FIG. 13: Illustration of the C1 network from Fig. 8 with M1 = 13 exit nodes (red squares)

and M2 = 9 peripheral sheet nodes (blue asterisks).
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FIG. 14: Estimation of areas of peripheral sheets, taken as the regions encircled in yellow.
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