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Abstract

Endocytosis is a fundamental cellular process for eukaryotic cells to transport molecules
into the cell. To understand the molecular mechanisms behind the process, researchers
have obtained abundant biochemical information about the protein dynamics involved
in endocytosis via fluorescence microscopy and geometric information about membrane
shapes via electron tomography. However, measuring the biophysical information, such
as the osmotic pressure and the membrane tension, remains a problem due to the small
dimension of the endocytic invagination. In this work, we combine Machine Learning
and Helfrich model of the membrane, as well as the dataset of membrane shapes
extracted from the electron tomography to infer biophysical information about
endocytosis. Our results show that Machine Learning is able to find solutions that both
match the experimental profile and fulfill the membrane shape equations. Furthermore,
we show that at the early stage of endocytosis, the inferred membrane tension is
negative, which implies strong compressive forces acting at the boundary of the
endocytic invagination. This method provides a generic framework to extract membrane
information from the super-resolution imaging.

Introduction 1

Clathrin-mediated endocytosis (CME) is an essential process for eukaryotic cells to 2

uptake nutrients, regulate signal transduction, and control the membrane 3

composition [1–6]. When CME occurs, a small patch of the plasma membrane is 4

internalized into the cytoplasm to form an endocytic pit, which is later pinched off to 5

form a vesicle. In the past decades, tremendous efforts have been devoted to understand 6

the molecular mechanisms that drive CME. Fluorescence microscopy is widely used to 7

obtain the dynamic information of the protein concentration during CME [7–9]. 8

Electron microscopy serves as a powerful tool to resolve the morphology of the 9

membrane during CME [10–14]. Though the advanced imaging technologies have 10

helped accumulate an enormous amount of data, mining out useful information from the 11

data remains insufficient. For instance, the deformation of the membrane during CME 12
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is shaped by many factors, including the force generated by the actin polymerization, 13

the curvature induced by clathrin proteins, and the osmotic pressure as a result of the 14

solute concentration difference between inside and outside of the cell. Geometric profiles 15

of the membrane obtained via the electron tomography therefore contain abundant 16

information of the mechanical properties of the membrane. However, the analysis of the 17

profile data is often limited to a few geometric features, derived from the original high 18

dimensional profile data. How to use the data to have a mechanistic understanding of 19

the physical mechanism remains elusive. 20

Measuring the physical quantities involved in endocytosis is important for us to 21

understand how endocytosis happens under the orchestrated action of many proteins. 22

Yeast cells have been used as a model system to study endocytosis due to their fast 23

proliferation and easy genetic manipulation [15–17]. Different from the mammalian cells, 24

yeast cells have a cell wall, which enables them to maintain a high osmotic pressure 25

(Fig. 1a). Minc et al. have used the deformation of a PDMS chamber to infer the 26

osmotic pressure by assuming the growth rate of fission yeast cells is powered by the 27

osmotic pressure, and the estimated value is 0.85± 0.15 MPa [18]. Atilgan et al. have 28

obtained a value of 1.5± 0.2 MPa in fission yeast cells by comparing the geometric 29

difference between the natural state in which the osmotic pressure expands the cell wall 30

and the lysed state in which the cell wall shrinks in response to the released osmotic 31

pressure [19]. In budding yeast, the osmotic pressure is estimated to be 0.6± 0.2 MPa 32

by analyzing the volume change upon variations in osmolarity [20]. Membrane tension 33

is another important quantity that is relevant for membrane morphology [21–23]. Its 34

value might vary significantly among different organisms and is widely accepted to be in 35

the range of 10−2 to 101pN/nm [18,19,24–26]. 36

Various theoretical models have been proposed to account for the membrane shape 37

evolution during endocytosis [27–32]. All of these models are based on the classical 38

Helfrich theory [33,34], which calculates the membrane shape by minimizing the total 39

energy of the membrane. Physical parameters, such as the bending rigidity, membrane 40

tension, and osmotic pressure are needed to characterize the membrane property. 41

Among the theoretical studies, some assume a very small osmotic pressure and the 42

membrane shape is mainly determined by the membrane tension [28,30]. While other 43

models assume a large osmotic pressure [29,35]. The ambiguity in the choice of these 44

physical parameters might come from the difference between organisms, but also reflects 45

the difficulty in obtaining these physical parameters from experiments. 46

In the past ten years, Machine Learning (ML) [36,37] has made brilliant 47

achievements, including pattern recognition [38,39], computer vision [40,41], data 48

mining [42,43], natural language processing [44,45] and automatic driving [46]. 49

Recently, as one of the ML applications in the field of scientific computing, 50

physics-informed neural networks (PINNs) developed in Ref. [47] have been showed to 51

be a powerful tool in solving forward and inverse problems of partial differential 52

equations (PDEs) [48–51]. In the framework of PINNs, both the data and the physics 53

contribute to the loss in the training process. PINN is easy coding and much more 54

flexible than the classical numerical methods. In particular, it has been showed that 55

PINN is more effective than the classical numerical methods in solving inverse problems, 56

for instance, learning parameterized PDEs [48,52], and using the concentration field to 57

learn velocity fields with hidden fluid dynamics [52–54]. 58

In this paper we combine the Helfrich model of membrane and PINNs to learn the 59

model parameters including osmotic pressure and membrane tension based on the 60

membrane profile data obtained via the electron tomography for yeast cells [10]. The 61

method demonstrates stable convergences of the estimated parameters and, the learned 62

osmotic pressure is consistent with experimental measurements. Furthermore, we find 63

negative membrane tensions at the early stage of endocytosis, which implicates strong 64
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compressive forces applied at the boundary of the endocytic patch. 65

Results 66

Idea demonstration of the Helfrich model and the PINNs 67

The idea of the classical Helfrich model is to find membrane shapes that minimize the 68

total energy of the membrane, which is written as [33,34] 69

E =

∫
1

2
κ(c1 + c2)

2dA+ σA+ pV. (1)

The first term describes the bending energy of the internalized membrane patch with a 70

bending rigidity κ. The two principal curvatures of the membrane surface are denoted 71

as c1 and c2. The second term describes the energy contribution from the membrane 72

tension σ with the conjugated variable A being the total surface area of the internalized 73

membrane patch. The third term describes the energy contribution from the osmotic 74

pressure p with the conjugated variable V being the volume enclosed between the 75

membrane patch and the cell wall (Fig. 1a). 76

We use PINNs to infer the model parameters in the Helfrich model (1). The PINN is 77

a fully-connected neuron network with one input u, which is defined on the fixed 78

interval [0, 1], and two outputs r and z, which are the meridian coordinates of the 79

membrane profile (Fig. 1b). Note that we assume axisymmetry of the membrane profile 80

in the Helfrich model and perform a symmetrization procedure to the experimental 81

profile for comparison. In the forward problem, model parameters are given, and the 82

loss function Lfor = Leqs + Lbc + Lcon of the network includes evaluations of the 83

variational equations on a number of points Leqs, boundary conditions Lbc and 84

coordinates constraints Lcon. In the inverse problem, the model parameters become 85

internal variables of the neuron network. The loss function Ltot = Lfor + Ldata 86

incorporates the difference between the symmetrized experimental profile and the ML 87

outputs Ldata (Fig. 1c). A detailed description of the neuron network and the 88

symmetrization procedure can be found in the Supplemental Material. 89

After learning the model parameters, we further calculate the parameter f , which is 90

a Lagrangian multiplier derived from the learned p, σ, Rb to impose the membrane 91

height z0. It represents the minimum force needed to pull the membrane to the 92

corresponding height z0. A detailed description of the force calculation can be found in 93

the Supplemental Material. 94
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Figure 1. Illustration of
the physical parameters of
endocytosis and the PINN
method. (a) Simplified illustra-
tion of endocytosis in yeast cells.
The osmotic pressure inside of the
cell pushes the plasma membrane
against the cell wall. Internaliza-
tion of the membrane therefore
needs a pulling force f to over-
come the resistance from the pres-
sure p, as well as the membrane
tension σ. (b) Parametrization
of the axisymmetric membrane
shape [r(u), z(u)] where u = 0
corresponds to the membrane tip
and u = 1 to the membrane base
where the membrane is in contact
with the cell wall. (c) The struc-
ture of the neuron network and
the loss functions for the forward
and the inverse problem.
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Forward problem:

Lfor=Leqs+Lcon+Lbc

Inverse problem:

Ltot=Lfor+Ldata

PINNs are able to solve the nonlinear membrane shape equations 95

We first verify whether PINNs can solve the fourth-order nonlinear membrane shape 96

equations (7) and (8) provided the parameters are given, i.e., the forward problem, by 97

comparing the ML solution that minimizes the loss function Lfor with the solution 98

obtained by a finite difference (FD) method. 99

The parameters p/κ and σ/κ define two characteristic length scales Lp = 3
√

κ/p and 100

Lσ =
√
κ/σ. We choose two sets of parameters (listed in Table 1) with one having 101

Lp < Lσ (pressure-dominant) and the other Lp > Lσ (tension-dominant). Using a fully 102

connected network with 3 hidden layers, each layer containing 32 nodes, we see an 103

excellent agreement between the ML solutions and the FD solutions for a series of 104

membrane heights for both sets of parameters (Fig. 2). We stress that though the ML 105

solutions are comparable with the FD solutions in accuracy, the ML method is much 106

more time-consuming than the FD method when solving the forward problem. The 107

advantage of the ML method compared with the FD method is mainly reflected in the 108

inverse problem, which is discussed in the next section. 109
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Figure 2. The ML solu-
tions are comparable with
the FD solutions in accu-
racy. (a, b) ML solutions (dashed
lines) for a series of membrane
heights z0 = 10, 30, 50, 100nm are
shown in different colors. The
corresponding FD solutions are
shown in solid lines. The tension-
dominant regime is shown in (a)
and the pressure-dominant regime
is shown in (b). The two sets of
parameters are listed in Table 1.

a b

Table 1. Two sets of parameters used in Fig. 2.

κ p σ Rb
a z0

b

20kBT 1kPa 0.01pN/nm 50nm 10/30/50/100nm
2000kBT 1MPa 0.01pN/nm 50nm 10/30/50/100nm

a Rb refers to the base radius of the membrane.
b z0 refers to the height of the membrane.

PINNs show stable convergence of the model parameters for the 110

inverse problem 111

In this section, we use the PINNs to infer the model parameters, which include the 112

re-scaled pressure p/κ, the re-scaled tension σ/κ, and the base radius Rb. The idea is to 113

train the network parameters, which contain the model parameters, such that the ML 114

outputs r(u) and z(u) minimize the total loss function Ltot. In this way, the ML 115

outputs not only fulfil the variational equations, but also match the membrane profile 116

data obtained via electron tomography. We stress that it is the re-scaled parameters 117

p/κ and σ/κ that can be inferred from the experimental data. In order to have the 118

absolute value of the membrane tension σ and the osmotic pressure p, we specify 119

κ = 2000 kBT from Ref. [29] for the rest of the paper. 120

During the training of the neural network, we switch the model parameters between 121

trainable and untrainable states. In particular, we fix σ/κ and p/κ and tune Rb in the 122

first 105 training epochs, then fix Rb and vary σ/κ and p/κ for another 105 training 123

epochs. After executing this training procedure twice, the loss function Ltot and Ldata 124

can be both reduced to 10−2 (Fig. 3a), which implies that the membrane shape 125

equations are satisfied and the ML-learned shape fits well with the experimental data. 126

All three parameters show a trend of convergence at the end of the training (Fig. 3b). 127

Upon switching of the training states, their values show a jump with the drop of the 128

loss function (Fig. 3b). 129

As a verification of the effectiveness of the ML-learned parameters, we substitute 130

them into the membrane shape equations and solve the equations with a FD method. 131

We overlay the original and symmetrized experimental membrane profile, the 132
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ML-learned membrane profile, the FD-solved membrane profile, and observe a good 133

agreement between all the profiles (Fig. 3c). 134

Figure 3. Convergence test
of the PINNs and effective-
ness test of the ML-learned
parameters. (a) Evolution of the
total loss function Ltot and the
experimental loss function Ldata

during a training process. (b)
Evolution of the three model pa-
rameters to be tuned by the neu-
ron network to minimize the total
loss function during a training pro-
cess. (c) Illustration of the origi-
nal membrane profile (solid cyan),
the symmetrized membrane pro-
file (dash-dotted green), the ML-
learned membrane profile (dashed
orange), and the FD-solved mem-
brane profile, respectively.

a cb

Due to the non-linearity of the membrane shape equations (7) and (8), the solutions 135

might depend on the model parameters with different sensitivity. The possibility that 136

different parameters lead to similar membrane shapes limits the precision of the 137

estimated parameters. In order to estimate the precision of the parameters for a 138

particular experimental profile, we repeat the learning procedure 10 times and use the 139

standard deviation of the parameters over the 10 times to measure the uncertainty of 140

the estimation. For most of the experimental profiles, the multiple learning strategy 141

achieves a small standard deviation compared with the average value. In particular, for 142

the profile shown in Fig. 3c, the learned osmotic pressure p = 0.71± 0.06MPa, and the 143

membrane tension σ = 13.67± 0.18pN/nm (pstd/pavg = 0.09, σstd/σavg = 0.01, see the 144

comparison between the ML-learned shape and the experimental profile for the other 9 145

trainings in the Supplemental Material(Fig. S2). 146

ML-learned parameters are consistent with experimental 147

measurements 148

We perform the ML learning procedure on 79 membrane profiles extracted from the 149

Time-Resolved Electron Tomography provided by Ref. [10]. For each dataset, the 150

learning procedure was repeated 10 times, so that we have 790 learning results in total 151

for the osmotic pressure p and the membrane tension σ. In most of the learnings, the 152

total loss function can be reduced to below 10−2 and concentrated at 10−3 (Fig. 4), 153

which proves the effectiveness of the ML method. A more direct visualization of the 154

one-time learning results for 9 randomly picked-up membrane profiles are shown in 155

Fig. 5. All of the learnings show good agreement among the ML-learned shape, the 156

symmetrized experimental profile, and the FD-solved shape, which proves the 157

effectiveness of the ML method. We stress that what learned by the ML method is the 158

symmetrized experimental profile, but not the original profile. For original profiles that 159

are highly asymmetric, the membrane might be subject to asymmetric force 160

distributions or local variations of the model parameters. The ML-learned parameters 161

therefore represent the average of the model parameters such that the local variations 162

are evened out. 163
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Figure 4. Histogram of the
trained loss functions for 79
experimental profiles. His-
tograms of the loss function Ltot

in (a), Lfor in (b) and Ldata in (c).

a b c

Figure 5. Illustration of the
learned results for 9 experi-
mental membrane profiles of
various heights. The learned
parameters σ, p and the derived
parameter f are indicated on
the top of each box. In each
panel, the original membrane pro-
file (solid cyan), the symmetrized
membrane profile (dash-dotted
green), the ML-learned membrane
profile (dashed orange), and the
FD-solved membrane profile (dot-
ted red), are shown respectively.

To demonstrate the precision of learned parameters, for each one of the 79 164

experimental profiles, we calculate the average and the standard deviation of the 165

learned parameters over the 10 repetitions and show their joint distribution in Fig. 6. 166

We find that: (i) The distribution of the standard deviations is concentrated in a small 167

range near 0, and is much narrower than the distribution of the average values. This 168

certifies a good precision of the learned parameters; (ii) The average values of the 169

osmotic pressure p are mostly positive and the distribution is peaked at 0.45MPa, which 170

is consistent with experimental measurements [18,19]; (iii) The distribution of the 171

average values of the membrane tension σ exhibits two peaks, a large one centered at 172

−100pN/nm and a small one centered at 12pN/nm; (iv) The average values of the force 173

f are mostly positive and peaked at 2750pN. 174

7/16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.11.523591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523591
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6. Joint distribu-
tion of the average and the
standard deviation for ML-
learned parameters. The dis-
tribution for the osmotic pressure
p in (a), for the membrane tension
σ in (b), and for the force f in (c).

a b

c

Negative membrane tensions occur at early stage of endocytosis 175

We have shown that the average values of the model parameters have a much wider 176

distribution than the standard deviations over the 10 repeated learnings (Fig. 6), which 177

suggests that the parameters might vary at different stages of endocytosis. To test the 178

stage-dependence of the model parameters, we use the membrane height as a indicator 179

of the timeline of endocytosis, and plot the ML-learned parameters as a function of the 180

corresponding membrane height z0. It is found that the osmotic pressure p shows no 181

dependence on the membrane height (Fig. 7a), but the membrane tension σ exhibits a 182

strong height dependence (Fig. 7b). Large and negative membrane tensions are found 183

for z0 < 25nm. Above 50nm, the membrane tensions are almost independent of the 184

membrane height z0 and remain to be small and positive (Fig. 7b). The forces f stay 185

around 0pN for z0 < 25nm, and reach a plateau of about 3000pN above 50nm (Fig. 7c). 186

A strong positive correlation (R = 0.87) between the force f and the membrane tension 187
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σ is observed (Fig. 7d left). However, the force f is only weakly correlated with the 188

osmotic pressure p (R = 0.25)(Fig. 7d right). 189

Figure 7. Statistical analysis
of ML-learned parameters. (a-
c) Model parameters as a function
of the membrane height, with the
the osmotic pressure p in (a), the
membrane tension σ in (b), and
the force f in (c). Each point rep-
resents the average value of the
same experimental profile over 10
repeated learnings, and the error
bar represents the standard devia-
tion. (d) Scattered plots of (f, σ)
in left, and (f, p) in right. The
horizontal and vertical error bars
of each point represent the stan-
dard deviations of the correspond-
ing parameter over 10 repeated
learnings, respectively.

d

a cb

Discussion 190

The ML method has the natural advantage in learning model 191

parameters 192

We have shown that the ML method is able to solve the nonlinear membrane shape 193

equations to an accuracy that is comparable with the FD method. However, in terms of 194

speed, the FD method beats the ML methods with orders of magnitude. The ML 195

method takes at least a few minutes to solve the equations, and even hours when the 196

membrane height is large. In contrast, it takes less than a second for the FD method to 197

solve the same equation. However, when it comes to the inverse problem, i.e., learning 198

the model parameters with given experimental data, the FD method is less flexible than 199

the ML method. We use the bvp5c solver in MATLAB which is an iterative algorithm 200

based on the finite difference scheme of Runge-Kutta methods [55]. It requires a proper 201

initial guess of the solutions to solve the membrane shape equations provided the 202

parameters are given. In practice, we always choose a flat shape as the initial guess. If 203

the membrane height is large, direct use of the bvp5c solver often causes error. By 204

contrast, the ML method does not require a proper guess of the solution, and is 205

naturally extended to solve the inverse problem of the membrane shape equations by 206

incorporating Ldata into the loss function. Solving the inverse problem with the ML 207

method has almost the same computational cost as the forward problem. Therefore, the 208

ML method is very suitable for the task of parameter learning. 209
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Our results implies that the initiation of endocytosis is facilitated 210

with negative membrane tension 211

The presence of a large osmotic pressure inside of the yeast cells imposes a large force 212

barrier to complete endocytosis [35]. In this paper, we have shown that the ML-learned 213

osmotic pressure has an average value of about 0.66MPa (Fig. 7a), and the force f to 214

pull the membrane to a height of 100nm is about 3000pN (Fig. 7c). These findings are 215

consistent with previous studies. However, at the early stage of endocytosis when the 216

membrane height is low, our results suggest large and negative membrane tensions are 217

present at the boundary of the endocytic invagination (Fig. 7b and c). The negative 218

tension implies an inward force to pump lipids into the endocytic invagination through 219

the boundary and might induce membrane buckling, thus reducing the force 220

requirement to pull the membrane up. The myosin-1 motors have been reported to form 221

a ring structure around the endocytic invagination [56]. They might play such a role to 222

generate negative tensions. Investigating the effect of the negative tension will be our 223

future work. 224

Sensitivity of the model parameters limit the precision of the ML 225

estimation 226

There are two possible factors that limit the precision of the learned parameters. One is 227

due to the neuron network being unable to converge in a limited number of iterations, 228

which is manifested as a large loss function. The other is due to the fact that different 229

model parameters could give similar membrane shapes. In our results, we find for some 230

experimental profiles, the repeated learnings indeed give quite different parameters. The 231

large error bars observed in some of the points in Fig. 7 mainly arise from the 232

insensitivity of the model parameters to the membrane shapes but not the failure of the 233

neuron network. To prove this, we overlay the FD-solved membrane shapes of the 10 234

repeated learnings for experimental profiles that have the largest error bars. Most of the 235

shapes overlap with each other, though the parameters are quite different (Fig. 8). In 236

addition, for the 79 experimental profiles, we observe no correlation between the average 237

loss function and the standard deviation of the model parameters over the 10 repeated 238

learnings (Fig. 9), which implies that the large error bars are not due to the failure of 239

the neuron network to converge to a small loss function. Improving the parameter 240

precision for those profiles therefore needs more information than the geometric shapes. 241
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Figure 8. Learned membrane
shapes for experimental pro-
files with the largest standard
deviations of model parame-
ters. Each panel shows the FD-
solved membrane shapes for the
same experimental profile over 10
repeated learnings. The top, mid-
dle and bottom rows are for pa-
rameters p, σ and f , respectively.
From left to right, the standard
deviations go from large to small.

Figure 9. Scattered plots
of the standard deviations
and the average loss functions
over 10 repeated learnings.
(a, b) The average loss functions
⟨Lfor⟩ vs. the standard deviation
of the osmotic pressure pstd in (a)
and ⟨Ldata⟩ vs. pstd in (b). (c, d)
The average loss functions ⟨Lfor⟩
vs. the standard deviation of the
membrane tension σstd in (a) and
⟨Ldata⟩ vs. σstd in (b)
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Methods 242

Helfrich Model of the axisymmetric membrane 243

We assume rotational symmetry of the membrane shape such that the surface of the 244

membrane can be parameterized as 245

X(u, ϕ) = [r(u) cos(ϕ), r(u) sin(ϕ), z(u)] . (2)

The parameter ϕ ∈ [0, 2π] is the azimuthal angle, and the parameter u ∈ [0, 1] is the 246

meridional coordinate with u = 0 at the membrane tip and u = 1 at the membrane base 247

where the membrane is in contact with the cell wall. The functions r(u) and z(u) depict 248

the membrane profile as shown in Fig. 1b. The total energy (1) then becomes a 249

functional of r(u), z(u) and their derivatives up to second order, 250

E

2π
=

∫ 1

0

{κ

2
[(2H)2r + σr]a− p

2
r2z′

}
du, (3)

in which 251

2H =
1

a
(
b

a2
+

z′

r
), (4)

252

a =
√
r′2 + z′2, (5)

and 253

b = −r′′z′ + r′z′′. (6)

By performing variations against the functions r(u) and z(u), with a constraint that 254

a(u) is a constant, we obtain two variational equations 255

eqr =
∂E

∂r
− d

du

∂E

∂r′
+

d2

du2

∂E

∂r′′
= 0, (7)

and 256

eqz =
∂E

∂z
− d

du

∂E

∂z′
+

d2

du2

∂E

∂z′′
= 0. (8)

Here we do not give the explicit expressions of the equations which are quite lengthy 257

and contain little information. Note that Eqs. (7) and (8) are fourth-order ordinary 258

differential equations about r(u) and z(u). In order to solve the equations, we also need 259

to specify 8 boundary conditions, which include setting the base radius r(1) = Rb, and 260

the membrane height z(0) = z0. A more detailed description of the boundary conditions 261

can be found in the Supplemental Material. 262
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Data availability 270
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Code availability 273

The custom code generated during the current study are available at GitHub. 274
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