Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Vectored Immunoprophylaxis and Treatment of SARS-CoV-2 Infection

View ORCID ProfileTakuya Tada, View ORCID ProfileBelinda M. Dcosta, Julia Minnee, View ORCID ProfileNathaniel R. Landau
doi: https://doi.org/10.1101/2023.01.11.523649
Takuya Tada
1Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Takuya Tada
Belinda M. Dcosta
1Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Belinda M. Dcosta
Julia Minnee
1Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathaniel R. Landau
1Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nathaniel R. Landau
  • For correspondence: nathaniel.landau@med.nyu.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Summary

Vectored immunoprophylaxis was first developed as a means to establish engineered immunity to HIV through the use of an adeno-associated viral vector expressing a broadly neutralizing antibody. We have applied this concept to establish long-term prophylaxis against SARS-CoV-2 by adeno-associated and lentiviral vectors expressing a high affinity ACE2 decoy receptor. Administration of decoy-expressing AAV vectors based on AAV2.retro and AAV6.2 by intranasal instillation or intramuscular injection protected mice against high-titered SARS-CoV-2 infection. AAV and lentiviral vectored immunoprophylaxis was durable and active against recent SARS-CoV-2 Omicron subvariants. The AAV vectors were also effective when administered up to 24 hours post-infection. Vectored immunoprophylaxis could be of value for immunocompromised individuals for whom vaccination is not practical and as a means to rapidly establish protection from infection. Unlike monoclonal antibody therapy, the approach is expected to remain active despite continued evolution viral variants.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted January 12, 2023.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Vectored Immunoprophylaxis and Treatment of SARS-CoV-2 Infection
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Vectored Immunoprophylaxis and Treatment of SARS-CoV-2 Infection
Takuya Tada, Belinda M. Dcosta, Julia Minnee, Nathaniel R. Landau
bioRxiv 2023.01.11.523649; doi: https://doi.org/10.1101/2023.01.11.523649
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Vectored Immunoprophylaxis and Treatment of SARS-CoV-2 Infection
Takuya Tada, Belinda M. Dcosta, Julia Minnee, Nathaniel R. Landau
bioRxiv 2023.01.11.523649; doi: https://doi.org/10.1101/2023.01.11.523649

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4222)
  • Biochemistry (9095)
  • Bioengineering (6733)
  • Bioinformatics (23916)
  • Biophysics (12066)
  • Cancer Biology (9484)
  • Cell Biology (13720)
  • Clinical Trials (138)
  • Developmental Biology (7614)
  • Ecology (11644)
  • Epidemiology (2066)
  • Evolutionary Biology (15459)
  • Genetics (10610)
  • Genomics (14281)
  • Immunology (9447)
  • Microbiology (22749)
  • Molecular Biology (9056)
  • Neuroscience (48811)
  • Paleontology (354)
  • Pathology (1478)
  • Pharmacology and Toxicology (2558)
  • Physiology (3817)
  • Plant Biology (8300)
  • Scientific Communication and Education (1466)
  • Synthetic Biology (2285)
  • Systems Biology (6163)
  • Zoology (1295)