
The Nucleotide Transformer: Building and Evaluating Robust

Foundation Models for Human Genomics

Hugo Dalla-Torre1, Liam Gonzalez1, Javier Mendoza-Revilla1, Nicolas Lopez Carranza1,
Adam Henryk Grzywaczewski2, Francesco Oteri1, Christian Dallago2 3,

Evan Trop1, Bernardo P. de Almeida1, Hassan Sirelkhatim2,
Guillaume Richard1, Marcin Skwark1, Karim Beguir1,

Marie Lopez∗† 1, Thomas Pierrot∗† 1

1InstaDeep 2Nvidia 3TUM

Abstract

Closing the gap between measurable genetic information and observable traits is a longstand-
ing challenge in genomics. Yet, the prediction of molecular phenotypes from DNA sequences
alone remains limited and inaccurate, often driven by the scarcity of annotated data and the
inability to transfer learnings between prediction tasks. Here, we present an extensive study
of foundation models pre-trained on DNA sequences, named the Nucleotide Transformer, rang-
ing from 50M up to 2.5B parameters and integrating information from 3,202 diverse human
genomes, as well as 850 genomes selected across diverse phyla, including both model and non-
model organisms. These transformer models yield transferable, context-specific representations
of nucleotide sequences, which allow for accurate molecular phenotype prediction even in low-
data settings. We show that the developed models can be fine-tuned at low cost and despite
low available data regime to solve a variety of genomics applications. Despite no supervision,
the transformer models learned to focus attention on key genomic elements, including those that
regulate gene expression, such as enhancers. Lastly, we demonstrate that utilizing model rep-
resentations can improve the prioritization of functional genetic variants. The training and ap-
plication of foundational models in genomics explored in this study provide a widely applicable
stepping stone to bridge the gap of accurate molecular phenotype prediction from DNA sequence.
Code and weights available at: https://github.com/instadeepai/nucleotide-transformer in Jax and
https://huggingface.co/InstaDeepAI in Pytorch. Example notebooks to apply these models to any
downstream task are available on HuggingFace.

Introduction

Foundation models in artificial intelligence (AI) are characterized by their large-scale nature, incorpo-
rating millions of parameters trained on extensive datasets. These models can be adapted for a wide
range of subsequent predictive tasks and have profoundly transformed the AI field. Notable examples
in natural language processing (NLP) include the so-called language models (LMs) BERT [1] and GPT
[2]. LMs have gained significant popularity in recent years owing to their ability to be trained on un-
labeled data, creating general-purpose representations capable of solving downstream tasks. One way
they achieve a comprehensive understanding of language is by solving billions of cloze tests, in which
they predict the correct word to fill in the blank in a given sentence. This approach is known as masked
language modeling [1]. Early instances of foundation models applying this objective to biology involved
training LMs on protein sequences, where they were tasked with predicting masked amino acids in
large protein sequence datasets [3, 4, 5]. These protein LMs, when applied to downstream tasks using
transfer learning, demonstrated the ability to compete with and even outperform previous methods
for tasks such as predicting protein structure [3, 4] and function [6, 7], even in data scarce regiments [8].
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Beyond protein sequences, the dependency patterns encoded in DNA sequences play a fundamental
role in understanding genomic processes, from characterizing regulatory regions to assessing the impact
of individual variants within their haplotypic context. In this context, specialized deep learning (DL)
models have been trained to uncover meaningful patterns of DNA [9, 10, 11, 12]. For example, DL
models have been used to predict gene expression from DNA sequences [13, 14, 15, 16, 17, 18], with
recent advancements combining convolutional neural networks (CNN) and transformer architectures
enabling the encoding of regulatory elements located up to 100 kilobases (kb) upstream [19]. The
abundance of data generated by modern genomics research presents both an opportunity and a chal-
lenge. On one hand, intricate patterns of natural variability across species and populations are readily
available; on the other hand, powerful deep learning methods capable of handling large-scale data are
necessary for accurate signal extraction from unlabeled datasets. Large foundation models trained on
nucleotides sequences appear to be a natural choice for addressing this challenge [20, 21, 22, 23, 24, 25].

With the Nucleotide Transformer we present a systematic study and benchmark on how to construct
and evaluate robust foundation models to encode genomic sequences. We iniatiated our study by
building four distinct language models of varying sizes, ranging from 500M up to 2.5B parameters.
These models were pre-trained them on three different datasets including the human reference genome,
a collection of 3,202 diverse human genomes, and 850 genomes from various species. After training,
we leveraged the representations (i.e. embeddings) from each of these models to simultaneously train
them on a diverse set of 18 genomic curated prediction tasks. To decipher the sequence features
learned during pre-training, we explored the models’ attention maps, perplexities, and conducted data
dimensionality reduction on their embeddings. Additionally, we evaluated the embeddings’ capacity
to model the impact of functionally important genetic variants in humans, through zero-shot-based
scores. Expanding upon the findings from the initial set of experiments, we developed a second set of
four language models, with decreasing sizes from 500M to 50M parameters, to investigate the scaling
laws of such models. We successfully constructed a model that matches the performance of the previous
best model while achieving this level of performance with only one-tenth the number of parameters
and doubling the perception field size. We utilized our introduced benchmark and standardized robust
evaluation methodology to systematically compare our eight models to other foundational models,
consistently demonstrating that our best model outperforms them (Fig. 1a).

Results

The Nucleotide Transformer model accurately predicts diverse genomics
tasks

We developed a collection of transformer-based DNA language models, dubbed Nucleotide Transformer
(NT), which have learned general nucleotide sequence representations from 6kb unannotated genomic
data (Fig. 1a; Methods). Inspired by trends in NLP, where larger training datasets and model sizes
have demonstrated improved performance [26], we constructed transformer models with varying pa-
rameter sizes and datasets: (i) a 500 million parameter model trained on sequences extracted from
the human reference genome (Human ref 500M), (ii) a 500 million and (iii) a 2.5 billion parameter
model both trained on 3,202 genetically diverse human genomes[27] (1000G 500M and 1000G 2.5B
respectively), and (iv) a 2.5 billion parameter model, encompassing 850 species from diverse phyla
(Multispecies 2.5B), including 11 model organisms (Fig. 1c; Supplementary Tables 1, 2, 3, 4).

To assess the performance of these models in diverse molecular phenotype predictions, we assembled
18 distinct genomic datasets, each of which had established baseline performance metrics [28, 29, 30,
31, 32]. These datasets were then processed into a standardized format to facilitate experimentation
and ensure reproducibility (Methods). This collection of 18 genomic datasets represents a varied and
robust panel for evaluating the models’ performance (Fig. 1d; Supplementary Table 5). Based on these
genomic tasks, we evaluated the transformer models after self-supervised training through two different
techniques: probing and fine-tuning (Fig. 1b). Probing refers to the use of learned LM embeddings
of DNA sequences as input features to simpler models for predicting genomic labels. Specifically, we
probed ten arbitrarily chosen layers of the LMs using either a logistic regression or a small multi-layer
perceptron (MLP) composed of up to two hidden layers. In the case of fine-tuning, the LM head is
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substituted with either a classification or regression head, and a parameter-efficient technique is used
for retraining (Methods). To ensure a fair and accurate comparison of the transformer models with the
available baselines, we implemented a ten-fold cross-validation strategy. We considered the models to
be equivalent to or better than the baseline if the resulting two standard deviations either overlapped
or were superior to the reported baseline value, respectively.

Using this criterion, we observed performances that either matched or exceeded those of 12 out of
the 18 baseline models through probing alone (Supplementary Fig.1 and Table 6), and significantly
outperformed probing from raw tokens. In agreement with recent work [33], we observed that the best
performance is both model- and layer-dependent (Supplementary Table 7). We also noted that the
highest model performance is never achieved by using embeddings from the final layer, as shown in
earlier work [5]. For instance, in the H3K4me1 histone mark occupancy classification task, we observed
a relative difference as high as 38% between the highest and lowest performing layer, indicating signif-
icant variation in learned representations across the layers (Supplementary Fig. 3). In comparison to
our probing strategy, our fine-tuned models matched or surpassed 15 of the 18 baselines models. No-
tably, the larger and more diverse models consistently outperformed their smaller counterparts (Fig. 2a
and Supplementary Table 8 and 6). Our results also suggest that training on a diverse dataset, rep-
resented by the Multispecies 2.5B model, outperforms or matches the 1000G 2.5B model on several
tasks derived from human-based assays (Fig. 2a,b). This implies that a strategy of increased diversity,
rather than just increased model size, may lead to improved prediction performance, particularly when
computational resources are limited.

Fine-tuning has not been extensively explored in previous work [5], possibly due to its demanding
computational requirements. We overcame the limitation by adopting a recent parameter-efficient
fine-tuning technique [34] which requires only 0.1% of the total model parameters (Fig. 1b; Methods).
This approach allowed for faster fine-tuning on a single GPU, reduced storage needs by 1,000-fold over
all fine-tuning parameters, while still delivering comparable performance. In practice, we observed that
rigorous probing was slower and more computationally intensive than fine-tuning, despite the apparent
simplicity of using straightforward downstream models on embeddings. This discrepancy arises from
the significant impact of factors such as layer choice, downstream model selection, and hyperparame-
ters on performance. Additionally, fine-tuning exhibited a smaller variance in performance, enhancing
the robustness of the approach. Overall, this general approach is versatile and adaptable to various
tasks without requiring adjustments to the model architecture or hyperparameters. This stands in
contrast to supervised models, which typically feature distinct architectures and necessitate training
from scratch for each task.

We applied the Multispecies 2.5B model to three additional genomic prediction tasks, which encom-
passed the classification of 919 chromatin profiles from a diverse set of human cells and tissues [10],
predicting canonical splice acceptor and donor sites across the whole genome [35], and predicting devel-
opmental and housekeeping enhancer activities using Drosophila melanogaster S2 cells [12] (Methods).
Remarkably, the Multispecies 2.5B model achieved performance levels closely aligned with those of
specialized deep learning models. For instance, in the case of classifying chromatin feature profiles,
we obtained area under the curve (AUC) values that were, on average, only approximately ∼1% lower
than those achieved by DeepSEA (Fig. 2c). Regarding the prediction of whether each position in a
pre-mRNA transcript is a splice donor, splice acceptor, or neither, we adapted Nucleotide Transformer
model to deliver nucleotide-level splice site predictions and achieved a top-k accuracy of 95% and a
precision-recall AUC of 0.98 (Fig. 2d). Notably, our 2.5B 6kb-context model matched the performance
of the state-of-the-art SpliceAI-10k [35], which was trained on 15kb input sequences, in addition to
other splicing baselines; and outperformed SpliceAI when tested on 6kb input sequences. Finally, in the
case of housekeeping and developmental enhancer prediction, our model slightly surpassed (1%) and
obtained lower (4%) correlation values respectively (Fig. 2e), when compared to those of DeepSTARR
[12]. Across these three different tasks, we also conducted a comparison between our parameter-efficient
fine-tuning and full model fine-tuning. Interestingly, we observed no significant improvement in chro-
matin and splicing predictions, and only a modest 3% enhancement in enhancer activity predictions
(Supplementary Fig. 2), supporting the use of our efficient fine-tuning approach.
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Benchmark of genomics foundational models

We compared the Nucleotide Transformer models to other genomics foundational models: DNABERT-
1 [20], DNABERT-2 [23], HyenaDNA (1kb and 32kb context length; [25]) and the Enformer (used as a
pre-trained model, [19]) (see Fig. 2a,b and Methods). To ensure fair comparisons, all models underwent
fine-tuning and evaluation using the same protocol across the 18 downstream tasks (Methods). When
compared with DNABERT, HyenaDNA-32kb and Enformer, our Multispecies 2.5B model achieved
the highest performance across all tasks (Fig. 2a,b, Table 8). DNABERT-1 and Enformer achieved top
performance only in predicting promoters with a TATA-box motif, while DNABERT-2 matched the
top performance in 9 out of the 18 tasks. The results with HyenaDNA-1kb were more comparable: our
2.5B model exhibited lower performance in 5 tasks, matched performance in 5 tasks, and demonstrated
improved performance in 8 out of the 18 tasks. Notably, despite HyenaDNA being pre-trained on the
human reference genome, our Multispecies 2.5B model outperformed it in 6 out of the 8 tasks related
to human datasets, highlighting the advantage of pre-training on a diverse set of genome sequences.
Furthermore, the longer-input HyenaDNA-32kb model exhibited worse performance in all 18 tasks,
indicating a trade-off between increasing the input context length and performance in high-resolution
tasks. We have established an interactive leaderboard containing results for all models across each task
to facilitate comparisons 1. To the best of our knowledge, this represents the most extensive bench-
mark of foundational genomics models to date and should serve as a reference for the development of
further language models in genomics (Fig. 1c).

1https://huggingface.co/spaces/InstaDeepAI/nucleotide_transformer_benchmark
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Figure 1: The Nucleotide Transformer: effective methodology to pre-train, fine-tune, analyse and com-
pare foundational models for genomics. a,b) Overview of the Nucleotide Transformer training (a) and ap-
plication for downstream genomic prediction tasks through fine-tuning (b). Downstream task prediction through
probing is similar but without the rescaling weights in the Nucleotide Transformer. c) Comparison of the Nucleotide
Transformer models to other foundational genomics models in terms of perception field size, number of parameters
and performance over our benchmark made of 18 curated downstream tasks. d) Graphical representation of genomic
features considered for downstream tasks.
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Figure 2: The Nucleotide Transformer model accurately predicts diverse genomics tasks after fine-
tuning. a) Performance results across downstream tasks for fine-tuned NT models as well as HyenaDNA, DNABERT
and Enformer pre-trained models (MCC: Matthew’s correlation coefficient). DNABERT-1 has no values for splicing
acceptor and donor tasks since their sequences are longer than what the model can handle. Error bars represent
2 SDs derived from 10-fold cross-validation. b) Normalized mean of MCC performance across downstream tasks
(divided by category) for all language models after fine-tuning. c) The Multispecies 2.5B model performance on
DNase I hypersensitive sites (DHS), histone marks (HMs), and transcription factor sites predictions from different
human cells and tissues compared with the baseline DeepSEA model. Each dot represents the area under the ROC
curve (AUC) for a different genomic profile. The average AUC per model is labeled. d) The Multispecies 2.5B model
performance on predicting splice sites from the human genome, compared with the SpliceAI and other splicing models.
e) The Multispecies 2.5B model performance on developmental and housekeeping enhancer activity predictions from
Drosophila melanogaster S2 cells, compared with the baseline DeepSTARR model.
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The Nucleotide Transformer model learned to reconstruct human genetic
variants

To investigate the advantages of increasing the number of parameters in the models and enhancing
the genomic diversity of the training datasets, we evaluated the models’ ability to reconstruct masked
nucleotides. Specifically, we divided the human reference genome into non-overlapping 6kb sequences,
tokenized each sequence into 6-mers, randomly masked a certain number of tokens, and then calculated
the proportion of tokens that were accurately reconstructed (Fig. 3a; Supplementary Fig. 4, Meth-
ods). We observed that the reconstruction accuracy of the Human reference 500M model exhibited
higher median accuracy compared to the 1000G 500M model (median=0.202 versus 0.198, P<2.2e-16,
two-sided Wilcoxon rank sum test). However, the accuracy of this model was lower than that achieved
by the 1000G 2.5B model (median=0.216; P<2.2e-16, two-sided Wilcoxon rank sum test) and the
2.5B Multispecies model (median=0.219; P<2.2e-16, two-sided Wilcoxon rank sum test) (Supplemen-
tary Fig. 4), highlighting the impact of simultaneously increasing the model size and diversifying the
dataset. Interestingly, while the Multispecies 2.5B model exhibited the highest overall reconstruction
accuracy, specific sequences demonstrated significantly higher reconstruction accuracy for the Human
1000G 2.5B model (Fig. 3b). This likely indicates that certain characteristics of human sequences were
better captured and learned by the latter model.

To gain a deeper understanding of how transformer language models represent variant sites in DNA
and their capabilities in imputing such variants, we then focused on polymorphisms identified in human
samples from diverse populations. In order to assess whether our models can generalize and reconstruct
variants in unseen human genome sequences, we evaluated their sequence reconstruction effectiveness
by recording model perplexity scores across single nucleotide polymorphisms (SNPs) occurring at fre-
quencies ranging from 1% to 100% (Methods). To account for the influence of genomic background and
genetic structure on the mutation reconstruction, we considered an independent dataset of genetically
diverse human genomes, originating from 7 different meta-populations [36] (see Methods). Across vary-
ing SNP frequencies, we consistently observed that the 2.5B parameter models, with median perplexity
across populations ranging from 95.9±17.9 (2SD) to 145±9.3, outperformed their 500M counterparts,
for which the perplexity values fluctuate between 138.5±8.4 and 185.4±9.5 (Fig. 3c). Interestingly, the
1000G 2.5B model exhibited lower perplexity scores than the Multispecies 2.5B (median=121.5 versus
134.0, P<1.8e-12, two-sided Wilcoxon rank sum test) indicating that it effectively leveraged human
genetic variability observed in the 1000G data to accurately reconstruct variants in unseen human
genomes. These results are in line with the observed reconstruction accuracies over human genome
sequences, and confirm the impact of model size on performance (Fig. 3b). Notably, and in contrast
to typical genotype imputation methods where accuracy declines as variant frequency decreases [37],
transformer models exhibited comparable performance across frequencies, suggesting their potential
to enhance genotype imputation even for rare variants.

The attention layers detect known genomic elements in an unsupervised
manner

To gain insights into the interpretability and understand the type of sequence elements that the nu-
cleotide transformer utilizes when making predictions, we explored different aspects of the transformer’s
model architecture. First, we assessed the extent to which the embeddings can capture sequence in-
formation associated with five different categories of genomic elements (Supplementary Table. 9 6).
We observed that the transformer models, without any supervision, learned to distinguish genomic
sequences that were uniquely annotated as intergenic, intronic, coding, and UTR regions, albeit with
varying degrees of proficiency across different layers (Fig. 3d; Supplementary Fig. 6; Methods). In
particular, the 500 million-sized models and those trained on less diverse sequences, exhibited lower
separation among genomic regions, reinforcing the enhanced ability of the largest models to capture
relevant genomic patterns during self-supervised training. In the case of the Multispecies 2.5B model,
the strongest separation at layer 1 was observed between intergenic and non-intergenic regions, fol-
lowed by 5’ UTR regions on layer 5, and a separation between most regions on layer 21 (Fig. 3d).
The limited separation of 3’ UTR regions from other elements suggests that the model has not fully
learned to distinguish this type of element, or as previously suggested, that many of these regions
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might be misannotated [38]. Consistent with these observations, our probing strategy demonstrated
high classification performance for these elements, with accuracy values exceeding 0.78, especially for
deeper layers (Fig. 3e). This demonstrated that the Nucleotide Transformer models have learned to
detect known genomic elements within their embeddings in an unsupervised manner, which can be
harnessed for efficient downstream genomics task predictions.

Next, we conducted an analysis of the transformer models through the lens of attention to compre-
hend which sequence regions are captured and utilized by the attention layers [39]. We computed the
attention percentages across each model head and layer for sequences containing nine different types
of genomic elements related to gene structure and regulatory features (Fig. 3f). In a formal sense, an
attention head is considered to recognize specific elements when its attention percentage significantly
exceeds the naturally occurring frequency of that element in the pre-training dataset (Methods). For
example, a percentage of 50% implies that, on average over the human genome, 50% of the attention
of that particular head is directed toward the type of element of interest. By applying this approach
to each type of element across approximately 10,000 different 6kb windows, where the element can be
situated at various positions and accounts for between 2-11% of the sequence (Table 9), we discovered
that the model’s attention is distinctly focused on various types of genomic elements across its diverse
heads and layers (Fig. 3g, Supplementary Figs. 7 - 15). The number of significant attention heads
across layers varied markedly across models, with the highest number of significant attention heads
observed for the Multispecies 2.5B model for introns (117 out of 640 heads), exons (72) and TF binding
sites (74) (Supplementary Figs. 7, 8 and Table 11), despite the relatively small proportion of sequences
belonging to exons and TF motifs. Regarding enhancers, the maximum attention percentages were
highest for the largest models, with the 1000G 2.5B model, for instance, achieving nearly 100% atten-
tion (Supplementary Fig. 14). Similar patterns were also observed for other genomic elements such as
3’UTR, promoter, and TF binding sites, where the 1000G 2.5B model showed highly specialized heads
with high attention, particularly in the first layers (Supplementary Figs. 7 - 15).

To gain deeper insights into the pre-trained Nucleotide Transformer Multispecies 2.5B model at higher
resolution (i.e. focusing on more local sequence features), we examined token probabilities across dif-
ferent types of genomics elements as a metric of sequence constraints and importance learned by the
model. Specifically, we calculated the 6-mer token probabilities (based on masking each token at a
time) for every 6kb window in chromosome 22. Our findings revealed that, in addition to repetitive
elements, that are well reconstructed by the model as expected, the pre-trained model learned a variety
of gene structure and regulatory elements. These included acceptor and donor splicing sites, polyA
signals, CTCF binding sites and others (Supplementary Fig. 16a-d). Furthermore, we compared our
token predictions with an experimental saturation mutagenesis splicing assay of exon 11 of the gene
MST1R (data from Braun, Simon, et al. [40]). This analysis revealed a significant correlation between
the experimental mutation effects and the token predictions made by our Multispecies 2.5B pre-trained
model (Pearson Correlation Coefficient (PCC) = 0.44; Supplementary Fig. 16e). The model not only
captured constraints at different splicing junctions but also identified a region in the middle of the
second intron crucial for the splicing of this exon. This serves as robust validation of the biological
knowledge acquired by the Nucleotide Transformer model during unsupervised pre-training.

Lastly, we took the Multispecies 2.5B model, which had been fully fine-tuned on the DeepSTARR
enhancer activity data, and examined whether the model had learned about TF motifs and their
relative importance specifically for enhancer activity. We used a dataset of experimental mutation of
hundreds of individual instances of five different TF motif types across hundreds of enhancer sequences
[12] and evaluated our model’s accuracy in predicting these mutation effects. In comparison with the
state-of-the-art enhancer activity DeepSTARR model, our model achieved similar performance for
four TF motifs and demonstrated superior performance for the Dref motif (Supplementary Fig. 17).
Collectively, these results illustrate how the transformer models have acquired the ability to recover
gene structure and functional properties of genomic sequences and integrate them directly into its
attention mechanism. This encoded information should be useful to assess the significance of genetic
variants.
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Figure 3: The Nucleotide Transformer models acquired knowledge about genetic variations and ge-
nomic elements. a) Mean reconstruction accuracy of 6kb sequences across transformer models. b) Comparison
of reconstruction accuracies between the 1000G 2.5B and Multispecies 2.5B models. c) Reconstruction perplexity
across allele frequencies. Perplexity values shown per frequency bin are based on 6 populations from the Human
Genome Diversity Project. d) t-SNE projections of embeddings of 5 genomic elements from layer 1, 5, and 21 based
on the Multispecies 2.5B model. e) Accuracy estimates based on probing to classify 5 genomic elements across layers.
f) Cartoon describing the evaluation of attention levels at a given genomic element. g) Attention percentages per
head and layer across transformer models computed on enhancers. Barplot on the right of each tile plot shows the
maximum attention percentage across all heads for a given layer.
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The Nucleotide Transformer embeddings predict the impact of mutations

Additionally, we evaluated the transformer models’ capability to assess the severity of various genetic
variants and prioritize those with functional significance. Initially, we investigated the potential of
zero-shot scores, which are scores used to predict classes that were not seen by the model during
training. We compared the distributions of these scores across 10 different types of genetic variants
that varied in severity [41]. Precisely, we computed zero-shot scores using different aspects of vector
distances in the embedding space, as well as those derived from the loss function (Fig. 4a and Meth-
ods). Encouragingly, several of these zero-shot scores exhibited a moderate correlation with severity
across the models (Supplementary Fig. 18). This illustrates, how unsupervised training alone cap-
tured relevant information related to the potential severity of genetic mutations and highlighted the
utility of testing different scoring methods. The high variability in correlations between scores also
suggests that distinct aspects of the embedding space may more effectively capture information re-
lated to severity. Among these scores, cosine similarity exhibited the highest correlation with severity
across models, with r2 values ranging from −0.35 to −0.3 (P-value < 6.55e−186) (Supplementary Fig.
18). Across transformer models, we observed that the lowest cosine similarity scores were assigned to
genetic variants affecting protein function, such as stop-gained variants, as well as synonymous and
missense variants (Fig. 4b). Conversely, we noted that higher scores were assigned to potentially less
functionally important variants, such as intergenic variants.

To prioritize functional variants, especially those of high pathogenicity, we further explored the poten-
tial of zero-shot scores. Specifically, we assessed the ability of the models to classify genetic variants
that influence gene expression regulation (i.e., expression quantitative trait loci [eQTLs]), genetic vari-
ants linked to DNA methylation variations (i.e., methylation quantitative trait loci [meQTLs]), genetic
variants annotated as pathogenic in the ClinVar database, and genetic variants reported in the Human
Gene Mutation Database (HGMD). Remarkably, the zero-shot scores demonstrated high classification
performance, with the highest AUCs across the four tasks ranging from 0.7 to 0.8 (Fig. 4c). The
highest performance obtained for the Clinvar variants (AUC=0.80 for the Multispecies 2.5B model),
suggests that, at least for highly pathogenic variants, zero-shot scores might be readily applicable. To
formally evaluate the effectiveness of transformer models, we also made predictions based on fine-tuned
models, and compared their performance against several methods. These methods encompassed those
measuring levels of genomic conservation, as well as scores obtained from models trained on functional
features. Notably, the transformer models either slightly outperformed or closely matched the perfor-
mance of the other models (Fig. 4d). The best-performing models for prioritizing molecular phenotypes
(i.e. eQTLs and meQTLs) were those trained on human sequences, whereas the best-performing model
for prioritizing pathogenic variants was based on multispecies sequences. Given that the most severely
pathogenic variants tend to impact gene function due to amino acid changes, it is possible that the
multispecies model leveraged sequence variation across species to learn about the degree of conserva-
tion across sites. Our results also suggest that higher predictive power for non-coding variants such as
eQTLs and meQTLs, could be achieved by better-learned sequence variation derived from increased
human genetic variability. Moreover, when compared to zero-shot scores, the dot product yielded
AUC values of 0.73 and 0.71 for eQTLs and meQTLs, respectively, slightly surpassing or matching
those obtained by the fine-tuned models. Given that most of these genetic variants tend to reside
within regulatory regions [42, 43, 44], it is probable that the transformer models, without any supervi-
sion, have learned to distinguish relevant regulatory genomic features associated with gene expression
and methylation variation. This is in accordance with the level of attention observed across layers
and heads, especially for relevant regulatory sequences such as enhancers (Fig. 3d) and promoters
(Supplementary Fig. 12), which have been shown to be enriched in meQTLs and eQTLs [42, 43, 44].
Overall, these results illustrate how DNA-based transformer models can help reveal and contribute
to understanding the potential biological implications of variants linked to molecular phenotypes and
diseases.
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Figure 4: Prioritizing functional genetic variants. a) Overview of the Nucleotide Transformer application of
zero-shot predictions. b) Proportion of variant consequence terms across deciles based on the cosine similarity metric
across models. The consequence terms are shown in order of severity (less severe to more severe) as estimated
by Ensembl. c) Comparison of zero-shot predictions for prioritizing functional variants based on different distance
metrics. d) Comparison of fine-tuned models and available methods for prioritizing functional variants based on
GRASP eQTLs and meQTLs, ClinVar, and HGMD annotated mutations. Model performance is measured with the
area under the receiver operating characteristic curve (AUC). The AUC for the three best-performing models is shown.
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Optimization of Nucleotide Transformer models towards cost-effective pre-
dictions in genomics

Finally, we explored the potential for optimizing our top-performing NT model by incorporating con-
temporary architectural advancements and extending the training duration. We developed four new
Nucleotide Transformer models (NT-v2) with varying number of parameters ranging from 50 million to
500 million, and introduced a series of architectural enhancements (Supplementary Table 1; Methods).
These include the incorporation of rotary embeddings, the implementation of swiGLU activations, and
the elimination of MLP biases and dropout mechanisms, in line with the latest research [45]. Addition-
ally, we expanded the context length to cover 12 kilobase pairs (kbp) to accommodate longer sequences
and capture more distant genomic interactions. We extended the training duration of the 250 and 500
million parameter models to encompass 1 trillion tokens, aligning with recent recommendations in the
literature [46] (Fig. 5a). After pre-training on the same multispecies dataset, all four NT-v2 models
underwent fine-tuning and evaluation across the same set of 18 downstream tasks, with their results
compared to those of the NT models (Fig. 5b, Supplementary Tables 6 and 8).

We observed that the 50 million-parameter NT-v2 model outperformed our two NT 500 million-
parameter models as well as the 2.5 billion-parameter model trained on the 1000G dataset. This
demonstrates that the synergy of a superior pre-training dataset, coupled with advancements in train-
ing techniques and architecture, can lead to a remarkable 50-fold reduction in model parameters while
simultaneously enhancing performance (Fig. 1a). However, it is important to note that none of the
NT-v2 models surpassed the 2.5 billion-parameter multi-species model in performance. The NT-v2 500
million-parameter model managed to achieve a similar performance level while maintaining a signifi-
cantly leaner parameter count and doubling the perception field. Of particular interest is the NT-v2
250 million-parameter model, which attained an average MCC similar to that of the 10-times larger
2.5 billion-parameter model (Fig. 5b).

To gain further insights into the need for longer pre-training, we conducted a systematic evaluation of
the NT-v2 models’ performance in function of the number of tokens seen during pre-training (Fig. 5c).
This showed that the 500 million-parameter model has a small improvement over the 250 million model
only after training for longer than 500 billion tokens. In summary, the Nucleotide Transformer-v2 mod-
els, equipped with a context length of 12 kbp, are suitable for deployment on cost-effective accelerators
due to their compact sizes. Consequently, they offer an economically viable and practical alternative
for users seeking to leverage cutting-edge foundational models in their downstream applications.

We assessed the advantage of the longer context length of the NT-v2 models by evaluating the 500M
model on the SpliceAI splicing task. We adapted our classification head to predict nucleotide-level
probabilities of being a splicing donor, acceptor, or none (Fig. 5d; Methods). Compared to the NT
6kb models, our NT-v2 12kb models improved performance by 1% to a top-k accuracy of 96% and a
precision-recall AUC of 0.98 (Fig. 5e). This performance surpasses that of the state-of-the-art SpliceAI-
10k [35], which was trained on 15kb input sequences. It’s worth noting that we did not attempt to
optimize our model architectures specifically for the splicing prediction task; instead we applied a
similar fine-tuning approach as used for other downstream tasks, with adjustments in the classification
head to yield nucleotide-level predictions. Further architectural refinements tailored to specific tasks
like splicing are likely to enhance performance. In summary, these results affirmed the utility and
effectiveness of both Nucleotide Transformer v1 and v2 models for a wide range of genomics tasks,
requiring minimal modifications while achieving high accuracy.
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Figure 5: Efficient model architecture allows to match performance while strongly reducing the number
of model parameters. a) Nucleotide Transformer-v2 models loss value evolution during training as a function
of the number of tokens seen so far. b) Normalized mean of MCC performance across downstream tasks (divided
by category) for all NT (black) and -v2 (blue) Nucleotide Transformer models after fine-tuning. Black dashed line
represents the performance of the NT 2.5B multispecies model. c) Normalized mean of MCC performance for NT-v2
models as a function of the number of tokens seen during pre-training. d) Overview of the Nucleotide Transformer
fine-tuning on nucleotide-level splice site prediction task. Pre-trained weights and weights trained from scratch are
highlighted. e) The Multispecies v2 500M model performance on predicting splice sites from the human genome,
compared with its 2.5B counterpart and SpliceAI.
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Discussion

To our knowledge, this study represents the first attempt to investigate the impact of different datasets
used to pre-train equally-sized transformer models on DNA sequences. Our results, based on distinct
genomic prediction tasks, demonstrate that both intra-species (i.e., when training on multiple genomes
of a single species) and inter-species (i.e., on genomes across different species) variability significantly
influence accuracy across tasks (Fig. 1c, 2a). Models trained on genomes from different species out-
perform those trained exclusively on human sequences in many human prediction tasks. This suggests
that transformer models trained on diverse species have learned to capture genomic features that likely
have functional importance across species, thus enabling better generalization in various human-based
prediction tasks. Based on this finding, we anticipate that future studies may benefit from leveraging
genetic variability across species.

The transformer models trained in this study ranged from 50 million up to 2.5 billion parameters, which
is five times larger than DNABERT-1 [20] and ten times larger than the Enformer [19] models. As
previously demonstrated in NLP research [26], our results on genomic prediction tasks confirmed that
increasing model size leads to improved performance. To train the models with the largest parameter
sizes, we utilized a total of 128 GPUs across 16 compute nodes for 28 days. Significant investments
were made in engineering efficient training routines that fully utilized the infrastructure, underscor-
ing the importance of both specialized infrastructure and dedicated software solutions. Once trained,
however, these models can be used for inference at a relatively low cost, and we provide notebooks to
apply these models to any downstream task of interest, thereby facilitating further research.

Previous work, which was based on language models trained on biological data (primarily protein
sequences), evaluated downstream performance exclusively by probing the last transformer layer [5].
This choice was likely driven by its perceived ease of use, relatively good performance, and low com-
putational complexity. In this study, our aim was to evaluate downstream accuracy through com-
putationally intensive and thorough probing of different transformer layers, downstream models, and
hyperparameter sweeps. We observed that the best probing performance was achieved with intermedi-
ate transformer layers (Supplementary Fig. 1), which aligns with recent work in computational biology
[33] and common practice in NLP [47]. Through probing alone, the Multispecies 2.5B model outper-
formed the baseline for 8 out of 18 tasks. Additionally, we explored a recent downstream fine-tuning
technique that introduces a small number of trainable weights into the transformer. This approach
provides a relatively fast and resource-efficient fine-tuning procedure with minor differences compared
to full-model fine-tuning (IA3 [34]). Notably, this fine-tuning approach only requires 0.1% of the total
number of parameters, allowing even our largest models to be fine-tuned in under 15 minutes on a
single GPU. In comparison to the extensive probing exercise, this technique yielded superior results
while using fewer compute resources, confirming that downstream model engineering can lead to per-
formance improvements [48]. The use of this technique makes fine-tuning competitive with probing
from an operational perspective, both for training and inference.

The Nucleotide Transformer model represents a powerful and versatile approach that can be readily
adapted to a wide array of genomics prediction tasks, encompassing areas such as histone modifications,
splicing sites, and regulatory elements like enhancers and promoters. The value of our unsupervised
pre-training approach becomes particularly evident when dealing with smaller datasets, where training
supervised models from scratch typically yields limited results. Recognizing the pivotal role of foun-
dational genomics models in the field, we have conducted an extensive comparison and benchmarking
study, evaluating our model against four distinct pre-trained models: DNABERT-1 [20], DNABERT-2
[23], HyenaDNA [25] and Enformer [19]. These findings will serve as a reference point for the devel-
opment of future language models in genomics.

Through various analyses related to the transformer architecture, we have demonstrated that the
models have acquired the ability to recognize key regulatory genomic elements. This property is
demonstrated throughout the analysis of attention maps, embedding spaces, token reconstruction, and
probability distributions. Crucial regulatory elements governing gene expression, such as enhancers
and promoters [42, 43, 44], were consistently detected by all models across multiple heads and layers.
Additionally, we observed that each model contained at least one layer that produced embeddings
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clearly distinguishing the five genomic elements analyzed. Given that self-supervised training facil-
itated the detection of these elements, we anticipate that this approach can be harnessed for the
characterisation or discovery of novel genomic elements in future research.

We have demonstrated that transformer models can match and even outperform other methods for pre-
dicting variant effects and deleteriousness. In addition to developing supervised transformer models, we
have also showcased the utility of zero-shot-based scores, especially for predicting non-coding variant
effects. Given that these zero-shot-based scores can be derived solely from genomic sequences, we en-
courage their application in non-human organisms, especially those with limited functional annotation.

Lastly, we have demonstrated the potential of enhancing the model architecture to achieve a dual
benefit of reducing model size and improving performance. Our subsequent series of NT-v2 models
have a context length of 12 kbp. To put this in perspective, this length is 24x and 4x larger than the
respective average context lengths of DNABERT-1 (512bp) and DNABERT-2 (3kb). These advanced
models not only exhibit improved downstream performance but also offer the advantage of being suit-
able for execution and fine-tuning on economical hardware. This advantage arises from their compact
size, complemented by the utilization of the efficient fine-tuning techniques that we have introduced.

While our models have an attention span that remains limited, the recently developed Enformer
model [19] suggested that increasing the perception field up to 200kb is necessary to capture long-
range dependencies in the human genome. The authors argued that these are needed to accurately
predict gene expression, which is controlled by distal regulatory elements, usually located far greater
than 10-20kb away from the transcription starting site. Processing such large inputs is intractable with
the standard transformer architecture, due to the quadratic scaling of self-attention with respect to the
sequence length. The Enformer model addresses this issue by passing sequences through convolution
layers to reduce input dimensions before reaching the transformer layers. However, this choice hampers
its effectiveness in language modeling. On the other hand, the recent HyenaDNA models were trained
with perception fields up to 1M base pairs, but our benchmark analyses in downstream tasks show that
the performance of these models quickly deteriorates when the perception field used during training
increases. Based on our results, we suggest that developing transformer models with the ability to
handle long inputs while maintaining high performance on shorter ones is a promising direction for
the field. In an era where multi-omics data are rapidly expanding, we ultimately anticipate that
the methodology presented here, along with the available benchmarks and code, will stimulate the
adoption, development, and enhancement of large foundational language models in genomics.
.
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Data availability

The Nucleotide Transformer pre-training sequences were obtained from publicly available resources.
The 1000 Genomes Project sequences were obtained from http://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/data_collections/1000G_2504_high_coverage, and the human and multispecies refer-
ence genomes from https://ftp.ncbi.nlm.nih.gov/genomes/refseq/. Gene annotations were ob-
tained from GENCODE (https://www.gencodegenes.org/) and Ensembl databases (https://www.
ensembl.org). Variants effects predictions were obtained using the Variant Effect Prediction (VEP)
API from Ensembl (https://www.ensembl.org/info/docs/tools/vep/index.html). Pathogenic
and regulatory variants were extracted from ClinVar (https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
vcf_GRCh38/), the Genome-Wide Repository of Associations Between SNPs and Phenotypes (GRASP)
(https://grasp.nhlbi.nih.gov), and The Human Gene Mutation Database (HGMD) (public ver-
sion 2020.4) through Ensembl Biomart. The training and test datasets used in the downstream
tasks were acquired from repositories that were referenced in the corresponding publications (see
Supplementary Table 5). We have also created an interactive browser session with the pre-trained
model token probabilities across the full chromosome 22 on the WashU Epigenome Browser at https:
//shorturl.at/jov28. HuggingFace versions of our pre-training and downstream tasks datasets can
be found at https://huggingface.co/InstaDeepAI.

Code availability

Model code and weights of the pre-trained transformer models as well as inference code in Jax are avail-
able for research purposes at https://github.com/instadeepai/nucleotide-transformer. Hug-
gingFace versions of the models, in PyTorch, can be found at https://huggingface.co/InstaDeepAI.
Example notebooks are available on HuggingFace at https://huggingface.co/docs/transformers/
notebooks#pytorch-bio.
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A Methods

A.1 Models

Language models (LMs) have been primarily developed within Natural Language Processing (NLP)
to model spoken languages [1, 2]. A LM is a probability distribution over sequences of tokens (often
words), i.e. given any sequence of words, an LM will return the probability for that sentence to
exist. LMs gained in popularity thanks to their ability to leverage large unlabeled datasets to generate
general-purpose representations that can solve downstream tasks even when little supervised data is
available [49]. One technique to train LMs tasks models to predict the most likely tokens at masked
positions in a sequence, often referred to as masked language modelling (MLM). Motivated by results
obtained with MLM in the field of protein research [4, 5], where proteins are considered as sentences and
amino-acids as words, we apply MLM to train language models transformers in genomics, considering
sequences of nucleotides as sentences and k-mers (with k=6) as words. Transformers are a class of deep
learning models that achieved breakthroughs in machine learning fields including NLP and computer
vision. They consist of an initial embedding layer that transform positions in the input sequence into
an embedding vector, followed by stack of self-attention layers that sequentially refine these embedding.
The main technique to train language models transformers with MLM is called Bidirectional Encoder
Representations from Transformers (BERT) [1]. In BERT, all positions in the sequence can attend
to each other allowing the information to flow in both directions, which is essential in the context of
DNA sequences. During training, the final embedding of the network is fed to a language model head
that transforms it into a probability distribution over the input sequence.

A.1.1 Architecture

All our models follow an encoder-only transformer architecture. An embedding layer transforms se-
quences of tokens into sequences of embeddings. Positional encodings are then added to each embed-
ding in the sequence to provide the model with positional information. We use a learnable positional
encoding layer that accepts a maximum of 1000 tokens. We used 6-mer tokens as a trade-off between
sequence length (up to 6kb) and embedding size, and because it achieved the highest performance
when compared with other token lengths. The token embeddings are then processed by a transformer
layer stack. Each transformer layer transforms its input through a layer normalisation layer followed
by a multi-head self-attention layer. The output of the self-attention layer is summed with the trans-
former layer input through a skip connection. The result of this operation is then passed through a
new layer normalisation layer and a two-layer perceptron with GELU activations [50]. The number of
heads, the embedding dimension, the number of neurons within the perceptron hidden layer and the
total number of layers for each model can be found in Table 1. During self-supervised training, the
embeddings returned by the final layer of the stack are transformed by a language model head into a
probability distribution over the existing tokens at each position in the sequence.

Our second version Nucleotide Transformer v2 models include a series of architectural changes that
proved more efficient: instead of using learned positional embeddings, we use Rotary Embeddings [51]
that are used at each attention layer; we use Gated Linear Units with swish activations without bias,
making NLPs more efficient. These improved models also accept sequences up to 2, 048 tokens leading
to a longer context window of 12kbp.

A.1.2 Training

The models are trained following the BERT methodology [1]. At each training step a batch of tokenized
sequences is sampled. The batch size is adapted to available hardware and model size. We conducted
all experiments on clusters of A100 GPUs, and took batches of sizes 14 and 2 sequences to train the
500M and 2.5B parameters models, respectively. Within a sequence, of a subset of 15% of tokens,
80% are replaced by a special mask [MASK] token. For training runs on the Human reference genome
and multispecies datasets, an additional 10% of the 15% subset of tokens are replaced by randomly
selected standard tokens (i.e. any token different from the class [CLS], pad [PAD] or mask [MASK]
token), as was done in BERT. For training runs on the 1000G dataset, we skipped this additional
data augmentation, as the added noise was greater than the natural mutation frequency present in
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the human genome. For each batch, the loss function was computed as the sum of the cross-entropy
losses, between the predicted probabilities over tokens and the ground truth tokens, at each selected
position. Gradients were accumulated to reach an effective batch size of 1M tokens per batch. We used
the Adam optimizer [52] with a learning rate schedule, and standard values for exponential decay rates
and epsilon constants, β1 = 0.9, β2 = 0.999 and ϵ=1e-8. During a first warmup period, the learning
rate was increased linearly between 5e-5 and 1e-4 over 16k steps before decreasing following a square
root decay until the end of training.

We slightly modified the hyperparameters of our NT-v2 models: the optimizer and learning rate sched-
ule are kept the same, however we increased batch size to 512 (1,000,000 tokens per batch).
Inspired by Chinchilla scaling laws [46], we also trained our NT-v2 models for longer duration com-
pared to other deep learning models. Specifically, we pre-trained our NT-v2 50M and 250M parameters
models for 300B tokens, while our 250M and 500M parameters models were trained for up to 1 trillion
tokens to understand the scaling laws at play. In comparison, the NT-v1 2.5B parameters models were
trained for 300B tokens, and their 500M counterparts were trained for 50B tokens. In the end we used
the following model checkpoints for the NT-v2 models: checkpoint 300B tokens for 50M and 100M
models, checkpoint 800B tokens for the 250M model, and checkpoint 900B tokens for the 500M model.

A.1.3 Probing

We refer to probing the assessment of the quality of the model embeddings to solve downstream tasks.
After training, for each task, we probe each layer of the model and compare several downstream meth-
ods to evaluate in depth the representations capabilities of the model. In other words, given a dataset
of nucleotide sequences for a downstream task, we compute and store the embeddings returned by ten
layers of the model. Then, using the embeddings of each individual layer as inputs, we trained several
downstream models to solve the downstream task. We tested logistic regression with the default hy-
perparameters from scikit-learn [53] and a multi-layer peceptron. As we observed that the choice of
hyperparameters, such as the learning rate, the activation function and the number of layers per hidden
layer impacted final performance, we also ran hyperparameters sweeps for each downstream model.
We used a 10-fold validation scheme, where the training dataset was split ten times in a training and
validation set, that contain different shuffles with 90% and 10% of the initial set. For a given set of
hyperparameters, ten models were trained over the ten splits, and their validation performances were
averaged. This procedure is run 100 times with a Tree-structured Parzen Estimator solver [54] guiding
the search over the hyperparameters space, before evaluating the best performing set of models on the
test set. Therefore, for each downstream task, for ten layers of each pre-trained model, the performance
on the test set is recorded at the end of the hyperparameters search. The hyperparameters of the best
performing probe across the pre-trained models and their layers are reported in Table 7. This probing
strategy resulted in 760,000 downstream models trained, which provides detailed analysis into various
aspects of training and using LMs, such as the role of different layers on downstream task performance.

As a baseline, we evaluated the performance of a logistic regression model that takes as input the
tokenized sequence, i.e. before passing the tokens through the transformer layers. Using the raw
tokenized sequences as input yielded much better performance than using a vector where the token ids
were one-hot encoded and passed through a pooling layer (summing or averaging, over the sequence
length axis).

A.1.4 Fine-tuning

In addition to probing our models through embedding extraction at various layers, we also performed
parameter-efficient fine-tuning through the IA3 technique [34]. Using this strategy, the language model
head is replaced by either a classification or regression head depending on the task at hand. The weights
of the transformer layers and embedding layers are frozen and new, learnable weights are introduced.
For each transformer layer, we introduced three learned vectors lk ∈ Rdk , lv ∈ Rdv and lff ∈ Rdff , which
were introduced in the self-attention mechanism as:
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softmax
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Q(lk)⊙KT

√
dk

)
(lv ⊙ V )

and in the position-wise feed-forward networks as (lffγ (W1x))W2, where γ is the feed-forward network
nonlinearity, and ⊙ represents the element-wise multiplication. This adds a total of L (dk + dv + dff)
new parameters, where L is the number of transformer layers. We refer to these learnable weights as
rescaling weights. The intuition is that during fine-tuning these weights will weigh the transformer
layers to improve the final representation of the model on a downstream task, so that the classifi-
cation/regression head can more accurately solve the problem. As we observed layer specialization
during probing, we speculate that this fine-tuning technique will similarly select layers with greater
predictive ability for particular tasks.

In practice, the number of additional parameters introduced by rescaling weights and the classifica-
tion/regression head weights represented approximately 0.1% of the total number of weights of the
model. This increased fine-tuning speed since just a fraction of parameters needed updating. Sim-
ilarly, it alleviated storage requirements, needing to create space for just 0.1% new parameters over
500M and 2.5B for each downstream task using traditional fine-tuning. For instance, for the 2.5B pa-
rameters models, the weights represent 9.5GB. Considering 18 downstream tasks, classical fine-tuning
would have required 9.5×18 = 171 GBs, whereas parameter-efficient fine tuning required only 171 MB.

Like in the probing scheme, the training dataset was split ten times in a training and validation set,
that contain different shuffles with 90% and 10% of the initial set. For each, split, the model was fine-
tuned for 10k steps and parameters yielding the highest validation score were then used to evaluate
the model on the test set. We used a batch size of eight and the Adam optimizer with a learning
rate of 3e-3. Other optimizer parameters were maintained from training regiments. Each model is
fine-tuned for 10k steps for each task. These hyperparameters were selected as they led to promising
results in the field of NLP [34]. Diverging hyperparameter choices did not yield significant gains in
our experiments. We have also compared this approach with fine-tuning from a randomly initialized
checkpoint.

A.1.5 Comparison with published pre-trained genomics models

We have compared the fine-tuned performance of Nucleotide Transformer models on the 18 downstream
tasks with four different pre-trained models: DNABERT-1 [20], DNABERT-2 [23], HyenaDNA (1kb
and 32kb context length; [25]) and Enformer [19]. We ported the architecture and trained weights of
each model to our code framework and performed parameter-efficient fine-tuning on the transformer
part of every model as described above, using the same cross-validation scheme for a fair comparison.
All results can be visulaized in an interactive leader-board 2. Only for HyenaDNA we performed full
fine-tuning due to the incompatibility of our parameter-efficient fine-tuning approach with the model
architecture.
Note that the Enformer has been originally trained in a supervised fashion to solve chromatin and gene
expression tasks. For the sake of benchmarking, we re-used the provided model torso as a pre-trained
model for our benchmark, which is not the intended and recommended use of the original paper.
Though we think this comparison is interesting to highlight the differences between self-supervised
and supervised learning for pre-training and observe that the Enformer is a very competitive baseline
even for tasks that differ from gene expression.

A.2 Datasets

A.2.1 The Human reference genome dataset

The Human reference dataset was constructed by considering all autosomal and sex chromosomes
sequences from reference assembly GRCh38/hg38 3 and reached a total of 3.2 billion nucleotides.

2https://huggingface.co/spaces/InstaDeepAI/nucleotide_transformer_benchmark
3https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26
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A.2.2 The 1000G dataset

To inform the model on naturally occurring genetic diversity in humans, we constructed a training
dataset including genetic variants arising from different human populations. Specifically, we down-
loaded the variant calling format (VCF) files4 from the 1000 Genomes project [55], which aims at
recording genetic variants occurring at a frequency of at least 1% in the human population. The
dataset contained 3202 high-coverage human genomes, originating from 27 geographically structured
populations of African, American, East Asian, and European ancestry as detailed in Table 2, making up
a total of 20.5 trillion nucleotides. Such diversity allowed the dataset to encode a better representation
of human genetic variation. To allow haplotype reconstruction in the FASTA format from the VCF
files, we considered the phased version of the data, which corresponded to a total of 125M mutations,
111M and 14M of which are single nucleotide polymorphisms (SNPs) and indels, respectively.

A.2.3 The Multispecies dataset

To build a dataset that encompassed a large and diverse set of genomes, we first parsed the genomes
available on NCBI5, before arbitrarily selecting only one species from each genus. Plant and virus
genomes were not taken into account, as their regulatory elements differ from those of interest in
this work. The resulting collection of genomes was downsampled to a total of 850 species, whose
genomes add up to 174 billion nucleotides. The final contribution of each class, in terms of number
of nucleotides, to the total number of nucleotides in the dataset, displayed in Table 3, is the same
as in the original collection parsed from NCBI. Finally, we enriched this dataset by selecting several
genomes that have been heavily studied in the literature (Table 4).

A.3 Data preparation

Once the FASTA files of each genome / individual were collected, they were assembled into one unique
FASTA file per dataset that was then pre-processed before training. During this data processing
phase, all nucleotides other than A,T,C,G were replaced by N. A tokenizer was employed to convert
strings of letters to sequences of tokens. The tokenizer used as alphabet the 46 = 4096 possible 6-mer
combinations obtained by combining A,T,C,G, as well as five extra tokens to represent stand-alone
A,T,C,G and N. It also included three special tokens, namely the padding [pad], masking [mask] and
the beginning of sequence (also called class; [CLS]) token. This adds to a vocabulary of 4104 tokens.
To tokenize an input sequence, the tokenizer will start with a class token and then convert the sequence
starting from the left, matching 6-mer tokens when possible, or falling back on the stand-alone tokens
when needed (for instance when the letter N is present or if the sequence length is not a multiple of
6).

For the multispecies and Human reference dataset, genomes are split into overlapping chunks of 6100
nucleotides, each sharing the first and last 50 nucleotides with the previous and last chunk, respectively.
As a data augmentation exercise, for each epoch and chunk, a starting nucleotide index is randomly
sampled between 0 and 100, and the sequence is then tokenized from this nucleotide until 1000 tokens is
reached. The number of epochs was determined depending on the dataset so that the model processed
a total of 300B tokens during training. At each step, a batch of sequences sampled randomly within
the epoch set was fed to the model. For the 1000G dataset, batches of sequences from the Human
reference genome, prepared as specified above, are sampled at each step. Then, for each sampled chunk,
an individual from the 1000G dataset is randomly selected, and if that individual carries mutations
at the positions and chromosome corresponding to that chunk, these mutations are introduced into
the sequence, and the corresponding tokens replaced. This data processing technique ensured uniform
sampling both over the genome and over the individuals during training, as well as enabled to efficiently
store only mutations for each individual, instead of full genomes.

4http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/

20201028_3202_phased/
5https://www.ncbi.nlm.nih.gov/

24

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.01.11.523679doi: bioRxiv preprint 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20201028_3202_phased/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20201028_3202_phased/
https://www.ncbi.nlm.nih.gov/
https://doi.org/10.1101/2023.01.11.523679
http://creativecommons.org/licenses/by-nd/4.0/


A.3.1 Hardware

All models were trained on the Cambridge-1 Nvidia supercomputer system, using 16 nodes, each
equipped with eight A100 GPUs, leading to a total of 128 A100 GPUs used. During training, model
weights were replicated on each GPU, while batches were sharded across GPUs. Gradients were com-
puted on each shard and accumulated before being averaged across devices and backpropagated. We
relied on the jax library6 that relied on the NCCL7 protocol to handle communications between nodes
and devices, and observed almost linear decrease of the training time with respect to the number of
GPU available. The 500M parameters models were trained on a single node for a day, while the 2.5B
models models required the whole cluster for 28 days to be trained. The Nucleotide Transformer ver-
sion 2 (NT-v2) models with varying number of parameters ranging from 50M to 500M were similarly
trained on a single node for a single day. All fine-tuning runs were performed on a single node with
eight A100 GPUs. As for the training runs, the models weights were replicated and batches distributed
across GPUs. As we used a batch size of eight for fine-tuning, each GPU processed a single sample
before averaging the gradients and applying them. On average, a fine-tuning run lasted 20 minutes
for the 500M parameter models, and 50 minutes for the 2.5B parameter models.

For the probing experiments, all embeddings (for all sequences in all downstream tasks, for selected
layers of each model) were computed and stored on a single node with eight A100 GPUs, requiring
two days to compute. Then, 760,000 downstream models were fit on a cluster of 3000 CPUs, requiring
2.5 days.

A.4 Downstream tasks

A.4.1 Epigenetic marks prediction

We downloaded the dataset8 of epigenetic marks measured in the yeast genome, namely acetylation
and metylation nucleosome occupancies [28]. Nucleosome occupancy values in these ten datasets were
obtained with Chip-Chip experiments [56] and further processed into positive and negative observations
to provide epigenetic training data for the following histone marks: H3, H4, H3K9ac, H3K14ac, H4ac,
H3K4me1, H3K4me2, H3K4me3, H3K36me3 and H3K79me3.

A.4.2 Promoter sequence prediction

We built a dataset of promoter sequences to evaluate the capabilities of the model to identify promoter
motifs. Following the DeePromoter method [31], we considered sequences of 300 base pairs (bp)
genome-wide, selected to span 249bp upstream and 50bp downstream of transcription start sites. This
resulted in 29,597 promoter regions, 3,065 of which were TATA-box promoters. For each promoter
region sample, a negative sample (non-promoter sequence) with matching length was constructed by
splitting the promoter sequence in 20 sub-sequences and randomly selecting and shuffling 12 of them,
while keeping the other 8 intact. The final dataset is then composed of 59,194 sequences.

A.4.3 Enhancer sequence prediction

We used an enhancer dataset presented prior [29] to evaluate the capacity of the transformer models
to provide an accurate representation of enhancer sequences. The original dataset included 742 strong
enhancers, 742 weak enhancers and 1484 non-enhancers. As suggested by previous work[29] to increase
training performance, we augmented this dataset with 6000 synthetic enhancers and 6000 synthetic
non-enhancers produced through a generative model.

A.4.4 Splice site prediction

We used two datasets to evaluate splice site prediction. First, we downloaded the dataset used by
SpliceFinder [30], which was composed of donor, acceptor, and non-splice sites, containing sequences
detected in human genes. Each sequence was 400 nucleotides long and contained either a splicing site

6https://jax.readthedocs.io/en/latest/_autosummary/jax.pmap.html
7https://developer.nvidia.com/nccl
8http://www.jaist.ac.jp/~tran/nucleosome/members.htm
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in the center (i.e. an acceptor or donor site), or a non-splicing site. This is a multi-label prediction
task with labels being acceptor, donor or none (Splice site all). Second, to leverage a more diverse set
of splicing sites, we also downloaded the training dataset9 of the Spliceator model [32]. Contrary to the
SpliceFinder dataset, this set was based primarily on the G3PO database, which included sequences
from 147 phylogenetically diverse organisms (ranging from protists to primates, including humans).
All sequences were 600bp and included either a splicing site at the center (i.e. an acceptor or donor
site), or a non-splicing site. Here we created two binary classification tasks: one for splice acceptor
prediction (Splice acceptor) and other for donor prediction (Splice donor). Following the Spliceator
study, we only included sequences that were part of the balanced ’Gold Standard’ dataset (referred to
as ’GS 1’ in the study).

A.4.5 Chromatin Profiles Prediction

We used the dataset10 compiled in Zhou et al. 2015 [10] for chromatin profiles prediction. The dataset
is composed of 2.4 million sequences, each of size 1000 nucleotides, and associated with 919 chromatin
features. These include 690 transcription factor (TF), 125 DNAse, and 104 histone features. As in
the original publication, our model is trained simultaneously on the 919 classification tasks, with 919
independent classification heads, and a loss taken as the average of the cross entropy losses. Since
each label is highly unbalanced and is composed mostly of negative samples, the losses associated
with positive samples are upscaled by a factor of 8. Contrarily to the DeepSEA method [10], which
trained two models independently, one on the forward sequences and one on the corresponding reverse-
complementary, and evaluated the average of their predictions, the model presented here was trained
only on the forward sequences.

A.4.6 SpliceAI benchmark

We used the scripts available at the Illumina Basespace platform 11 to reproduce the training dataset
presented in SpliceAI [35]. Briefly, this training dataset is constructed using GENCODE v24lift37
annotations and RNA-seq data from the GTEx cohort, focusing solely on splice site annotations
from the principal transcript. The training dataset comprises annotations from genes located on
chromosomes 2, 4, 6, 8, and 10-22, as well as chromosomes X and Y, while annotations from genes
on the remaining chromosomes, which were not paralogs, constitute the test dataset. Each sequence
produced by this pipeline has a length of 15,000 bp, with the central 5,000 bp containing the sites
to be predicted. Additional details about the construction of the training dataset can be found in
the original publication. We adapted this original SpliceAI dataset to be able to run our models by
reducing the sequence length to 6,000 bp (for NT-v1 model) and 12,000 bp (for NT-v2 model), reducing
the flanking contexts but keeping the central 5,000 bp. We also removed sequences that contained Ns.
When comparing against SpliceAI on the first dataset, which we refer to as SpliceAI-6k, we appended
9,000 ”N” nucleotides as flanking sequence since SpliceAI is based on a model with a 15,000 bp input.
When comparing against SpliceAI on the second dataset, we report the performance presented in the
original publication, which, compared to this dataset, includes a sequence length of 15,000 bp instead
of 12,000 bp.
This task is a multi-label classification for each of the input sequence’s nucleotides similar to Splice AI
[35] (Fig. 5d). From each embedding outputted by the transformer model, a head predicts, for each of
the 6 nucleotides represented by the token embedding, three label probabilities: splice acceptor, splice
donor or none. The head is a simple classification layer that predicts 18 classes, i.e 3 labels for each
of the 6 nucleotides. To ensure that each embedding is associated with a 6-mer, the sequences are
cut so that their length is divisible by 6. Furthermore, all sequences with Ns are removed from both
training and test set, which represents a neglectable portion of the data. Note that if we were to use
a Byte Pair Encoding tokenizer like DNABERT-2 [23], the number of nucleotides represented by each
embedding would vary and make nucleotide-level prediction tasks substantially trickier to implement.

9https://git.unistra.fr/nscalzitti/spliceator/-/tree/master/Data/Datasets
10http://deepsea.princeton.edu/media/code/deepsea_train_bundle.v0.9.tar.gz
11https://basespace.illumina.com/projects/66029966/
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A.4.7 Enhancer Activity Prediction

We used the enhancer activity dataset 12 released in de Almeida et al. 2022 [12]. The dataset is
composed of 484,052 DNA sequences of size 249 nucleotides, each measured for their quantitative
enhancer activity towards a developmental or a housekeeping promoter. We added two independent
regression heads to our models to predict both enhancer activities in simultaneous. Following the
methodology used in [3], we chose to treat this regression task as a multi-label classification problem.
Specifically, each label y was discretized over a set of 50 values (bi)i∈[1,50], evenly spaced between the
minimum and maximum value. For each label, the model predicts the normalized weights (wi)i∈[1,50]

such that

y =
50∑
i=1

wibi.

A.4.8 Performance Metrics

The baselines considered here used different performance metrics, as each study used datasets that
varied in size and number of positive/negative observations (Table 5). In order to benchmark the trans-
former models presented here, we decided to use the following ranking across performance metrics: The
Matthews Correlation Coefficient (MCC) was preferred over the F1-scores, which was preferred over
accuracy. The term performance, which is used throughout the text, should therefore be considered
as an umbrella term to refer to the performance used by each baseline. For a fair comparison to all
the baselines, we used the same train/test folds as respective models. For a final comparison across
models, we calculated for each model the mean MCC across the 3 different categories of task, where
for each category we use the median MCC across tasks.

A.5 Additional Performance Analysis

A.5.1 t-SNE projections of embeddings

T-distributed Stochastic Neighbor Embedding (t-SNE) was used to reduce Nucleotide Transformer
inner embeddings to 2-D vectors to visualize the separation of different genomic elements. Nucleotide
Transformer embeddings for each genomic element were computed at several transformer layer outputs
and the mean embeddings computed across the sequence locations corresponding to the element were
calculated. These mean embeddings were then passed as input into a TSNE reducer object with default
parameters from the sklearn python package [57].

A.5.2 Reconstruction accuracy and perplexity

We studied how pre-trained models could reconstruct masked tokens. We considered a trained language
model with parameters θ. Within a nucleotide sequence s of interest, we masked tokens using one of
two strategies (i.e. we replaced the tokens at these positions with the mask token [MASK]). We either
masked the central token of the sequence only, or we masked randomly 15% of the tokens within
the sequence. The masked sequence is then fed to the model and the probabilities over tokens at
each masked position are retrieved. The loss function l (θ, s) and the accuracy acc(θ, s) are defined as
follows: 

l (θ, s) =
∑

i∈Pmasked

∑
tok∈V

log p(θ, i, tok) · 1 (tok = s(i))

acc (θ, s) =
1

|Pmasked|
∑

i∈Pmasked

1

(
argmax
tok∈V

(log p(θ, i, tok)) = s(i)

)
where Pmasked is the set of masked positions and V is the vocabulary, i.e. the set of all existing tokens.
The perplexity is usually defined in the context of autoregressive generative models. Here, we rely
on an alternative definition used in Rives [4], and define it as the exponential of the loss function
computed over the masked positions:

perplexity(θ, s) = 2l(θ,s). (1)

12https://zenodo.org/record/5502060#.Y9qO7hzMLUc
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Perplexity measures how well a model can reconstruct masked positions, and is a more refined measure
than accuracy, as it does also account for magnitude. In contrast to accuracy, lower perplexity suggests
better reconstruction ability, thus better performance.

A.5.3 Reconstruction of tokens in different genomics elements

We have also performed this token reconstruction approach across the full chromosome 22 in 6kb win-
dows. We only kept windows without Ns. For each window masked each token at a time, recovering
the predicted probability for the original token in the sequence. We display these scores as a WashU
Epigenome Browser session 13. To obtain average token probabilities across different types of genomic
elements, we retrieved gene annotation regions from Ensembl (exons, introns, splice acceptors and
donors, 5’UTR, 3’UTR, TSS, TES 14), polyA signal sites from GENCODE 15 and regulatory elements
from ENCODE (enhancers, promoters and CTCF-bound sites from SCREEN database 16).

A.5.4 Functional variant prioritization

To obtain genetic variants with varying levels of associated severity we used the Variant Effect Predic-
tion (VEP) software [41] and annotated sequences across the human genome. Specifically, we randomly
sampled sequences throughout the human genome, and kept genetic variants within those sequences
annotated to any of the following classes: “intron variant”, “intergenic variant”, “regulatory region
variant”, “missense variant”, “3 prime UTR variant”, “synonymous variant”, “TF binding site vari-
ant”, “5 prime UTR variant”, “splice region variant”, and “stop gained variant”. After keeping only
single nucleotide polymorphisms and filtering out variants annotated to more than one consequence
(e.g. those annotated as stop gained and splice variants), we obtained a final dataset composed of 920
genetic variants per class.

As a positive set of functional genetic variants we compiled SNPs from four different resources. We
used SNPs associated to gene expression (i.e. expression quantitative trait loci [eQTLs]) and to methy-
lation variation (i.e., meQTLs) from the Genome-Wide Repository of Associations Between SNPs and
Phenotypes (GRASP) database [58] with a P-value <10−12, SNPs with “likely pathogenic ”annota-
tions from ClinVar [59] and SNPs reported in The Human Gene Mutation Database (HGMD) (public
version 2020.4) [60]. After these filters, we retained a total of 80,590, 11,734, 70,224, and 14,626 genetic
variants for the eQTLs, meQTLs, ClinVar, and HGMD SNP datasets, respectively. For each of these
four datasets, we then constructed a set of negative variants based on SNPs from the 1000 Genomes
Project with a minor allele frequency (MAF) >5%, that did not overlap with any variant reported in
the dataset tested, and that were within 100kb of the associated variants, resulting in four balanced
datasets.

To compute zero-shot based scores for a given site of interest we did the following: For each SNP, we
obtained a 6,000 bp sequence centered on the SNP of interest based on the human reference genome.
We then, created two sequences, one carrying the reference allele and a second carrying the alternative
allele at the SNP position. We then computed several zero-shot scores that capture different aspects
of the vector distances in the embedding space between those two sequences, namely: the L1 distance
(Manhattan), (ii) the L2 distance (Euclidean), (iii) the cosine similarity, and (iv) the dot-product (not
normalized cosine similarity). We also computed the loss of the alternative allele and the difference in
the loss between the sequence carrying the alternative and reference alleles, as two additional zero-shot
scores. In the case of functional variants, in addition to zero-shot scores, we also fine-tuned the trans-
former models to classify positive and negative variants. We employed a similar strategy as the one
previously described, with the primary difference being that the training and test sets were divided by
chromosomes and strictly kept non-overlapping. Specifically, we divided the 22 chromosomes into 5
sets and sequentially used each of them as a test set and the 4 others as a training set. By fine-tuning
on the training set, we could derive probabilities of being a positive variant for each sequence in the

13https://shorturl.at/jov28
14https://www.ensembl.org/info/data/ftp/index.html
15https://www.gencodegenes.org/human/
16https://api.wenglab.org/screen_v13/fdownloads/GRCh38-ccREs.bed
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test set. We use those probabilities as a score for each SNP.

To compare these predictions against other methods, we randomly sampled 10,000 positive and nega-
tive SNPs from each of the four datasets. We then used the Combined Annotation Dependent Depletion
tool (version GRCh38-v1.6) to compute CADD, GERP, phastCons, and phyloP scores. The DeepSEA
scores were computed using the Beluga model available at: https://hb.flatironinstitute.org/sei/. The
score considered was the “disease impact score”reported for each SNP.

A.5.5 Attention Maps Analysis

We analysed how attention maps gathered from the pre-trained models capture key genomic elements.
We followed a methodology proposed in previous work [39]. For a genomic element, we define the
indicator function over tokens f(i) that equals 1 if one or several nucleotides within token i belong
to the element, and 0 otherwise. We computed the average proportion of attention focused on that
genomic element, in one attention head, aggregated over a dataset of nucleotide sequences X as:

pα(f) =
1

|X|
∑
x∈X

∑
i

∑
j

f(i)1 (α(i, j) > µ)∑
i

∑
j

1 (α(i, j) > µ)

where α(i, j) is the attention coefficient between tokens i and tokens j defined such that
∑
i

αi,j = 1

and µ is a confidence threshold.

We computed the values of pα(f) for all the heads and all the layers of all models, and considered
nine elements ( “5’ UTR”, “3’ UTR”, “exon”, “intron”, “enhancer”, “promoter”, “CTCF binding
site”, “open chromatin”, and “transcription factor binding sites”). We perform these analyses over
a dataset made of 90,000 sequences, 10,000 per feature, of length 6k bp extracted from the Human
reference genome. The average proportion of tokens belonging to each element can be found in Table 9.
For each sequence, the position of the feature within the sequence was sampled uniformly during the
dataset creation. As suggested in previous work [39], we selected a confidence threshold µ = 0.3 for
all experiments.

We considered that a feature is captured by an attention head if the quantity pα(f) is significantly
greater than the natural occurring frequency of the feature within the dataset (Table 9). To validate
this, we conducted a two proportion z-test with the null hypothesis as the natural frequency of the
feature, and the alternate hypothesis as pα(f). The total number of heads of each model is used as a
Bonferroni correction to the significance level, α, of 0.05. We computed z-scores and associated p-value
for each head in every model for every genomic element as follows:

Z =
p̂1 − p̂2√

p̂ (1− p̂)
(

1
n1

+ 1
n2

)
where p̂1 represents the proportion of attention above µ associated with each genomic element, p̂2
represents the proportion of the sequence occupied by the genomic element, n1 is the total number
of sequence positions with attention above µ, n2 is the total number of sequence positions. Attention
heads with p-values below the Bonferonni corrected significance level are considered to be significant.

A.5.6 Prediction of important TF motif instances from DeepSTARR data

We retrieved experimental mutagenesis data from the DeepSTARR dataset [12] where individual TF
motif instances are mutated and their impact is measured in the activity of developmental and house-
keeping enhancers. We assessed the performance of the fully-finetuned NT2.5B multispecies model
(since it was the model with the highest test set performance) to predict the contribution of each TF
motif instance by predicting the activity of the wildtype and respective motif-mutant sequence and
calculating their log2 fold-change. We compared our predicted mutation effects with the ones predicted
by the original method DeepSTARR and the experimentally derived log2 fold-changes.
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Population name Population code Number of individuals

African Ancestry SW ASW 74
African Caribbean ACB 116
Bengali BEB 131
British GBR 91
CEPH CEU 179
Colombian CLM 132
Dai Chinese CDX 93
Esan ESN 149
Finnish FIN 99
Gambian Mandinka GWD 178
Gujarati GIH 103
Han Chinese CHB 103
Iberian IBS 157
Japanese JPT 104
Kinh KHV 2
Kinh Vietnamese KHV 120
Luhya LWK 99
Mende MSL 99
Mexican Ancestry MXL 97
Peruvian PEL 122
Puerto Rican PUR 139
Punjabi PJL 146
Southern Han Chinese CHS 163
Tamil STU 114
Telugu ITU 107
Toscani TSI 107
Yoruba YRI 178

Supplementary Table 2: Number of individuals per population in the 1000G dataset.
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Class Number of species Number of nucleotides (B)

Bacteria 667 17.1
Fungi 46 2.3
Invertebrate 39 20.8
Protozoa 10 0.5
Mammalian Vertebrate 31 69.8
Other Vertebrate 57 63.4

Supplementary Table 3: Genomes in the multispecies dataset.

Class Selected Species

Bacteria Escherichia coli
Fungi Saccharomyces cerevisiae
Invertebrate Caenorhabditis elegans, Drosophila melanogaster
Protozoa Plasmodium vivax, Plasmodium falciparum
Mammalian Vertebrate Homo sapiens, Mus musculus, Rattus norvegicus
Other Vertebrate Danio rerio, Xenopus tropicalis

Supplementary Table 4: Model organisms genomes in the multispecies dataset.

sequences
Num train

sequences
Num test

length in bp
Max sequence

Metric
Reported

Name
Baseline

H3K4me3 25953 2884 500 MCC SVM [28]
H3K4me2 27614 3069 500 MCC SVM [28]
H3K36me3 31392 3488 500 MCC SVM [28]
H3K9ac 25003 2779 500 MCC SVM [28]
Splice donor 19775 2198 600 F1 Spliceator [32]
Splice site all 27000 3000 400 Acc SpliceFinder [30]
H4ac 30685 3410 500 MCC SVM [28]
H3K4me1 28509 3168 500 MCC SVM [28]
Enhancer 14968 400 200 MCC LSTM-CNN [29]
Enhancer types 14968 400 200 MCC LSTM-CNN [29]
H4 13140 1461 500 MCC SVM [28]
Splice acceptor 19961 2218 600 F1 Spliceator [32]
H3K79me3 25953 2884 500 MCC SVM [28]
Promoter non-TATA 47767 5299 300 F1 DeePromoter [31]
Promoter all 53276 5920 300 F1 DeePromoter [31]
H3K14ac 29743 3305 500 MCC SVM [28]
H3 13468 1497 500 MCC SVM [28]
Promoter TATA 5509 621 300 F1 DeePromoter [31]

Supplementary Table 5: Downstream tasks metadata.
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Dataset H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT-1 0.763 (± 0.013) 0.403 (± 0.012) 0.474 (± 0.009) 0.396 (± 0.005) 0.282 (± 0.013) 0.258 (± 0.01)
DNABERT-2 0.785 (± 0.012) 0.515 (± 0.009) 0.591 (± 0.005) 0.512 (± 0.008) 0.333 (± 0.013) 0.353 (± 0.021)
Enformer 0.724 (± 0.018) 0.284 (± 0.024) 0.345 (± 0.019) 0.291 (± 0.016) 0.207 (± 0.021) 0.156 (± 0.022)
HyenaDNA-1KB 0.781 (± 0.015) 0.608 (± 0.02) 0.614 (± 0.014) 0.512 (± 0.008) 0.455 (± 0.028) 0.55 (± 0.015)
HyenaDNA-32KB 0.747 (± 0.017) 0.405 (± 0.015) 0.479 (± 0.015) 0.387 (± 0.017) 0.276 (± 0.01) 0.291 (± 0.025)
NT 2.5B Randomly Initialized 0.731 (± 0.105) 0.419 (± 0.103) 0.188 (± 0.01) 0.367 (± 0.077) 0.257 (± 0.039) 0.289 (± 0.074)
NT 500M Randomly Initialized 0.687 (± 0.116) 0.347 (± 0.083) 0.408 (± 0.086) 0.318 (± 0.057) 0.219 (± 0.055) 0.216 (± 0.06)
NT-1000G (2.5B) 0.754 (± 0.008) 0.453 (± 0.008) 0.53 (± 0.012) 0.418 (± 0.012) 0.278 (± 0.015) 0.311 (± 0.012)
NT-1000G (500M) 0.736 (± 0.012) 0.381 (± 0.011) 0.468 (± 0.008) 0.38 (± 0.009) 0.26 (± 0.016) 0.235 (± 0.008)
NT-HumanRef (500M) 0.718 (± 0.014) 0.372 (± 0.006) 0.448 (± 0.012) 0.361 (± 0.015) 0.27 (± 0.015) 0.236 (± 0.018)
NT-Multispecies (2.5B) 0.793 (± 0.013) 0.538 (± 0.009) 0.618 (± 0.011) 0.541 (± 0.005) 0.324 (± 0.014) 0.408 (± 0.011)
NT-Multispecies-v2 (100M) 0.787 (± 0.012) 0.521 (± 0.007) 0.594 (± 0.005) 0.523 (± 0.008) 0.303 (± 0.013) 0.376 (± 0.009)
NT-Multispecies-v2 (250M) 0.792 (± 0.009) 0.54 (± 0.008) 0.621 (± 0.007) 0.541 (± 0.005) 0.322 (± 0.009) 0.403 (± 0.01)
NT-Multispecies-v2 (500M) 0.786 (± 0.012) 0.549 (± 0.007) 0.624 (± 0.004) 0.55 (± 0.007) 0.32 (± 0.012) 0.406 (± 0.01)
NT-Multispecies-v2 (50M) 0.792 (± 0.01) 0.511 (± 0.006) 0.582 (± 0.007) 0.514 (± 0.007) 0.299 (± 0.016) 0.333 (± 0.016)
Raw Probe 0.295 (± 0.005) 0.013 (± 0.006) 0.052 (± 0.006) 0.053 (± 0.01) 0.086 (± 0.009) 0.062 (± 0.005)

Dataset H3K79me3 H3K9ac H4 H4ac enhancers enhancers types

DNABERT-1 0.578 (± 0.007) 0.505 (± 0.009) 0.784 (± 0.007) 0.359 (± 0.01) 0.495 (± 0.016) 0.367 (± 0.034)
DNABERT-2 0.615 (± 0.01) 0.545 (± 0.009) 0.797 (± 0.008) 0.465 (± 0.013) 0.525 (± 0.026) 0.423 (± 0.018)
Enformer 0.498 (± 0.013) 0.415 (± 0.02) 0.735 (± 0.023) 0.275 (± 0.022) 0.454 (± 0.029) 0.312 (± 0.043)
HyenaDNA-1KB 0.669 (± 0.014) 0.586 (± 0.021) 0.763 (± 0.012) 0.564 (± 0.011) 0.52 (± 0.031) 0.403 (± 0.056)
HyenaDNA-32KB 0.567 (± 0.013) 0.472 (± 0.01) 0.761 (± 0.017) 0.379 (± 0.012) 0.489 (± 0.018) 0.352 (± 0.04)
NT 2.5B Randomly Initialized 0.533 (± 0.086) 0.181 (± 0.015) 0.755 (± 0.094) 0.117 (± 0.017) 0.379 (± 0.035) 0.425 (± 0.05)
NT 500M Randomly Initialized 0.505 (± 0.082) 0.408 (± 0.104) 0.711 (± 0.103) 0.303 (± 0.092) 0.507 (± 0.053) 0.26 (± 0.041)
NT-1000G (2.5B) 0.574 (± 0.007) 0.491 (± 0.009) 0.787 (± 0.006) 0.408 (± 0.009) 0.546 (± 0.029) 0.432 (± 0.03)
NT-1000G (500M) 0.562 (± 0.015) 0.479 (± 0.01) 0.755 (± 0.011) 0.342 (± 0.014) 0.509 (± 0.033) 0.395 (± 0.027)
NT-HumanRef (500M) 0.566 (± 0.016) 0.451 (± 0.011) 0.75 (± 0.011) 0.332 (± 0.017) 0.502 (± 0.026) 0.429 (± 0.018)
NT-Multispecies (2.5B) 0.623 (± 0.01) 0.547 (± 0.011) 0.808 (± 0.007) 0.492 (± 0.014) 0.545 (± 0.028) 0.444 (± 0.022)
NT-Multispecies-v2 (100M) 0.605 (± 0.008) 0.541 (± 0.008) 0.792 (± 0.009) 0.48 (± 0.004) 0.491 (± 0.023) 0.413 (± 0.02)
NT-Multispecies-v2 (250M) 0.616 (± 0.014) 0.55 (± 0.007) 0.797 (± 0.006) 0.501 (± 0.008) 0.534 (± 0.033) 0.451 (± 0.024)
NT-Multispecies-v2 (500M) 0.63 (± 0.009) 0.567 (± 0.014) 0.799 (± 0.007) 0.496 (± 0.009) 0.559 (± 0.04) 0.438 (± 0.043)
NT-Multispecies-v2 (50M) 0.594 (± 0.008) 0.526 (± 0.011) 0.805 (± 0.008) 0.46 (± 0.011) 0.516 (± 0.033) 0.411 (± 0.025)
Raw Probe 0.081 (± 0.007) 0.134 (± 0.007) 0.15 (± 0.007) 0.113 (± 0.007) 0.391 (± 0.007) 0.263 (± 0.003)

Dataset H3K79me3 H3K9ac H4 H4ac enhancers enhancers types

DNABERT-1 0.961 (± 0.001) 0.962 (± 0.002) 0.956 (± 0.006) NaN 0.975 (± 0.002) NaN
DNABERT-2 0.972 (± 0.002) 0.972 (± 0.002) 0.955 (± 0.006) 0.975 (± 0.002) 0.939 (± 0.003) 0.963 (± 0.002)
Enformer 0.955 (± 0.002) 0.955 (± 0.003) 0.959 (± 0.006) 0.915 (± 0.007) 0.847 (± 0.005) 0.906 (± 0.008)
HyenaDNA-1KB 0.959 (± 0.002) 0.959 (± 0.002) 0.944 (± 0.011) 0.959 (± 0.003) 0.956 (± 0.004) 0.947 (± 0.007)
HyenaDNA-32KB 0.956 (± 0.002) 0.954 (± 0.003) 0.939 (± 0.008) 0.96 (± 0.007) 0.962 (± 0.004) 0.957 (± 0.006)
NT 2.5B Randomly Initialized 0.956 (± 0.163) 0.963 (± 0.088) 0.951 (± 0.092) 0.97 (± 0.109) 0.676 (± 0.03) 0.971 (± 0.073)
NT 500M Randomly Initialized 0.936 (± 0.123) 0.945 (± 0.084) 0.945 (± 0.096) 0.948 (± 0.119) 0.956 (± 0.115) 0.95 (± 0.09)
NT-1000G (2.5B) 0.965 (± 0.002) 0.967 (± 0.001) 0.957 (± 0.007) 0.98 (± 0.002) 0.976 (± 0.002) 0.979 (± 0.001)
NT-1000G (500M) 0.951 (± 0.003) 0.951 (± 0.002) 0.936 (± 0.006) 0.965 (± 0.002) 0.968 (± 0.001) 0.971 (± 0.001)
NT-HumanRef (500M) 0.952 (± 0.002) 0.952 (± 0.002) 0.942 (± 0.006) 0.962 (± 0.003) 0.97 (± 0.002) 0.971 (± 0.002)
NT-Multispecies (2.5B) 0.975 (± 0.002) 0.977 (± 0.002) 0.959 (± 0.004) 0.986 (± 0.002) 0.982 (± 0.002) 0.987 (± 0.001)
NT-Multispecies-v2 (100M) 0.969 (± 0.001) 0.97 (± 0.001) 0.954 (± 0.003) 0.979 (± 0.002) 0.979 (± 0.002) 0.981 (± 0.001)
NT-Multispecies-v2 (250M) 0.972 (± 0.001) 0.974 (± 0.003) 0.962 (± 0.003) 0.982 (± 0.001) 0.98 (± 0.001) 0.982 (± 0.003)
NT-Multispecies-v2 (500M) 0.976 (± 0.002) 0.976 (± 0.002) 0.965 (± 0.004) 0.981 (± 0.003) 0.984 (± 0.002) 0.987 (± 0.006)
NT-Multispecies-v2 (50M) 0.96 (± 0.001) 0.962 (± 0.002) 0.947 (± 0.004) 0.977 (± 0.003) 0.975 (± 0.002) 0.973 (± 0.002)
Raw Probe 0.658 (± 0.001) 0.67 (± 0.037) 0.649 (± 0.005) 0.679 (± 0.003) 0.635 (± 0.002) 0.708 (± 0.023)

Supplementary Table 6: Downstream performance per task for all models. Every model was fine-tuned
with PEFT, except for ”Raw Probe” that used probing strategy.
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Model name Model type Approach Average performance

Raw Probe Control Probing 0.283
NT-HumanRef (500M) NT-v1 Probing 0.582
NT-1000G (500M) NT-v1 Probing 0.602
NT-1000G (2.5B) NT-v1 Probing 0.619
NT-Multispecies (2.5B) NT-v1 Probing 0.661
Peer-Reviewed Baselines Baseline Fine-tuned 0.674
Enformer Enformer Fine-tuned 0.680
NT 500M Randomly Initialized Control Fine-tuned 0.718
NT 2.5B Initialized Control Fine-tuned 0.724
HyenaDNA-32KB HyenaDNA Fine-tuned 0.743
NT-HumanRef (500M) NT-v1 Fine-tuned 0.745
NT-1000G (500M) NT-v1 Fine-tuned 0.747
DNABERT-1 DNABERT Fine-tuned 0.771
NT-1000G (2.5B) NT-v1 Fine-tuned 0.782
DNABERT-2 DNABERT Fine-tuned 0.789
NT-Multispecies-v2 (50M) NT-v2 Fine-tuned 0.790
HyenaDNA-1KB HyenaDNA Fine-tuned 0.798
NT-Multispecies-v2 (100M) NT-v2 Fine-tuned 0.801
NT-Multispecies-v2 (250M) NT-v2 Fine-tuned 0.811
NT-Multispecies (2.5B) NT-v1 Fine-tuned 0.812
NT-Multispecies-v2 (500M) NT-v2 Fine-tuned 0.821

Supplementary Table 8: Normalized summed downstream performance of all models, sorted by per-
formance. These values are obtained by averaging the median MCC score obtained by each model
on the three categories of downstream tasks: Chromatin Profiles, Regulatory elements and Splicing.
Information about model type and probing/fine-tuning approach is also provided.
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containing this element
Percentage of sequences

belonging to this element
Mean Percentage of Sequence Length

Enhancer 10.18% 11.09%
Open chromatin 11.32% 6.16%
3’ UTR 11.37% 4.30%
TF binding 11.28% 6.38%
Intron 10.45% 11.08%
Exon 11.87% 3.18%
5’UTR 11.84% 1.99%
Promoter 10.95% 9.78%
CTCF Binding Site 10.69% 7.36%

Supplementary Table 9: Proportions of the genomic elements in the dataset used for attention maps
and embedding space visualization experiments.
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C Supplementary Figures

Supplementary Figure 1: Probing performance results on test sets across downstream tasks for each
Nucleotide Transformer model. The performances of the best layers and best downstream models are
shown. The error bars represent 2 std from the 10-fold cross-validation procedure.
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Supplementary Figure 2: Parameter efficient fine-tuning compared with full-model fine-tuning. The
performances across different tasks are shown and compared with respective baselines.

Supplementary Figure 3: Probing performance across layers for the H3K4me1 prediction task. Boxplots
show the MCC values of 10 layers based on 10 fold cross-validation experiments.
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Supplementary Figure 4: Pairwise comparison of token reconstruction accuracy across transformer
models. P-values refer to a two-sided Wilcoxon signed rank test between models. Median values for
the two models compared are shown.

Supplementary Figure 5: Genomic element length’s percentage of input sequence (6kbp). This corre-
sponds to the dataset used for attention maps and embedding spaces visualization experiments. Details
in Table 9.
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Supplementary Figure 6: t-SNE projections of embeddings of 5 genomic elements across transformer
models and layers.
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Supplementary Figure 7: Nucleotide Transformer
models’ attention percentages per head computed
for exons.

Supplementary Figure 8: Nucleotide Transformer
models’ attention percentages per head computed
for introns.
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Supplementary Figure 9: Nucleotide Transformer
models’ attention percentages per head computed
for 3’ UTR regions.

Supplementary Figure 10: Nucleotide Transformer
models’ attention percentages per head computed
for CTCF binding sites.
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Supplementary Figure 11: Nucleotide Transformer
models’ attention percentages per head computed
for open chromatin.

Supplementary Figure 12: Nucleotide Transformer
models’ attention percentages per head computed
for promoters.
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Supplementary Figure 13: Nucleotide Transformer
models’ attention percentages per head computed
for 5’ UTR regions.

Supplementary Figure 14: Nucleotide Transformer
models’ attention percentages per head computed
for enhancers.
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Supplementary Figure 15: Nucleotide Transformer
models’ attention percentages per head computed
for transcription factor binding sites.
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Supplementary Figure 16: Interpretation of Nucleotide Transformer multispecies 2.5B pre-trained
model at higher resolution. a-c) Genome browser screenshot depicting token probabilities for (a) an
exon region of gene LZTR1 (chr22:20990296-20990630), (b) a polyA signal from GUSBP11 3’UTR
(chr22:23638476-23638540), and (c) a CTCF binding site (chr22:22254952-22254981). ENCODE reg-
ulatory elements, conservation, and Jaspar TF motifs are also shown. d) Distribution of average token
probability scores across different types of genomic elements that do not overlap repeat elements (left)
or across repeat elements (right). Violins are shown with horizontal lines marking the median and lower
and upper quartile. ****P ¡ 0.0001, ***P ¡ 0.001, **P ¡ 0.01, *P ¡ 0.05, (two-sided Wilcoxon rank-sum
test). e) Top: experimentally measured impact of mutating every nucleotide position in the different
splicing isoforms of exon 11 of gene MST1R. Middle: effect in Alternative Exon (AE) 11 inclusion as
delta percentage. Bottom: token probability predictions by the multispecies 2.5B pre-trained model.
Pearson Correlation Coefficient (PCC) between token predictions and AE11 inclusion mutation effects
is shown.
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Supplementary Figure 17: Prediction of transcription factor motif importance. a) Bar plots showing
the Pearson Correlation Coefficient (PCC) between predicted (by DeepSTARR or the multispecies 2.5B
full-finetuned model) and observed log2FC for mutating individual instances of each motif type. b-d)
Distribution of experimentally measured enhancer activity log2FC after mutating 1,013 different Dref
motif instances across enhancers (violin plot), compared with the log2FC predicted by (c) DeepSTARR
or (d) the multispecies 2.5B model.

Supplementary Figure 18: Performance of zero-shot based scores for SNPs annotations based on
Ensembl Variant Effect Prediction (VEP). Performance is based on the Pearson correlation between
the scores and severity as estimated by Ensembl.
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