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Abstract

Closing the gap between measurable genetic information and observable traits is a longstanding
challenge in genomics. Yet, the prediction of molecular phenotypes from DNA sequences alone
remains limited and inaccurate, often driven by the scarcity of annotated data and the inability
to transfer learnings between prediction tasks. Here, we present an extensive study of foundation
models pre-trained on DNA sequences, named the Nucleotide Transformer, integrating information
from 3,202 diverse human genomes, as well as 850 genomes from a wide range of species, including
model and non-model organisms. These transformer models yield transferable, context-specific
representations of nucleotide sequences, which allow for accurate molecular phenotype prediction
even in low-data settings. We show that the representations alone match or outperform specialized
methods on 11 of 18 prediction tasks, and up to 15 after fine-tuning. Despite no supervision, the
transformer models learnt to focus attention on key genomic elements, including those that regulate
gene expression, such as enhancers. Lastly, we demonstrate that utilizing model representations
alone can improve the prioritization of functional genetic variants. The training and application
of foundational models in genomics explored in this study provide a widely applicable stepping
stone to bridge the gap of accurate molecular phenotype prediction from DNA sequence alone.

Introduction

Foundation models in artificial intelligence (AI) refer to large models incorporating millions of param-
eters and trained on vast amounts of data, which can be adapted for an array of predictive purposes.
These models have deeply transformed the AI field with notable examples in natural language includ-
ing the so-called language models (LMs) BERT [1] and GPT-3 [2]. LMs have gained considerable
popularity over the past years, owing to their capacity to be trained on unlabeled data to create
general-purpose representations that can solve downstream tasks. One way they achieve a general
understanding of language is by solving billions of cloze tests in which, given a sentence with some
blanked-out words, they are rewarded by suggesting the correct word to fill the gap. This approach
is referred to as masked language modelling [1]. Early examples of foundation models leveraging this
objective in biology were trained on protein sequences by tasking LMs to uncover masked amino acids
in large protein sequence datasets [3, 4, 5]. Trained protein LMs applied to downstream tasks, in
what is called transfer learning, showed an aptitude to compete and even surpass previous methods
for protein structure [3, 4] and function predictions [6, 7], even in data scarce regiments [8].

Beyond protein sequences, the dependency patterns embedded in DNA sequences are fundamental to
the understanding of genomic processes, from the characterization of regulatory regions to the impact
of individual variants in their haplotypic context. Along this line of work, specialized deep learning
(DL) models were trained to identify meaningful patterns of DNA, for example, to predict gene expres-
sion from DNA sequences alone [9, 10, 11, 12, 13], with recent work combining convolutional neural
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networks (CNN) with transformer architectures enabling the encoding of regulatory elements as far
as 100 kilobases (kb) upstream [14]. Modern genomics research has led to a tremendous increase in
the volume of sequencing data available, from repeat measurements of single organisms (e.g., to study
population variations [15]), to assays measuring multiplexed samples (e.g., to measure the biodiversity
of earth’s and human gut microbiomes [16, 17]). This deluge of data poses both an opportunity and a
challenge; on the one hand, abundant genomic data able to uncover the intricate patterns of natural
variability across species and populations is vastly available; on the other hand, powerful deep learning
methods, that can operate at large scale, are required to perform accurate signal extraction from this
large amount of unlabelled genomic data. Large foundation models trained on sequences of nucleotides
appear to be the natural choice to seize the opportunity in genomics research, with attempts to explore
different angles recently proposed [18, 19, 19, 20].

With the Nucleotide Transformer we crucially add to recent attempts to encode genomics through
foundation models. We built four distinct foundation language models of different sizes, ranging from
500M up to 2.5B parameters, and pre-trained them on three different datasets encompassing the Human
reference genome, a collection of 3,200 diverse human genomes, and 850 genomes from several species
(Table 6). Once trained, we leveraged representations, or embeddings, of each of these models to
further train downstream models on 18 genomics tasks. We then explored the models’ attention maps,
perplexities and performed data dimensionality reduction on embeddings to decipher the sequence
features learned during pre-training. Finally, we probed the embeddings’ ability to model the impact
of functionally important genetic variants in humans. As a result, we demonstrate the benefits of
building and pre-training foundational language models in genomics, across different genomic datasets
and parameter sizes, with the ability to surpass specialized solutions.

Results

The Nucleotide Transformer models outperformed or matched 15 of 18 ge-
nomic baselines after fine-tuning

We developed a collection of transformer DNA language models, dubbed Nucleotide Transformer, able
to learn general nucleotide sequence representations from unlabeled genomic data. After pre-training,
model representations were used to solve domain-specific tasks with simple models based on a small
number of parameters, such as logistic regression, across 18 different genomic prediction tasks (Fig. 1a)
and for which baseline performance metrics were available [21, 22, 23, 24, 25] (Fig. 1 b). Assembling
a set of standardized downstream tasks is paramount to evaluating and comparing language models
after the self-supervised training step. Motivated by the lack of such benchmark in genomics, we
first compiled a collection of 18 datasets, based on five peer-reviewed research studies, into a common
format to facilitate experimentation and increase reproducibility.
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Figure 1: 2.5B Multispecies Nucleotide Transformer model beats 15 out of 18 downstream
tasks using fine-tuning. a) The downstream tasks evaluated in this study visually contextualized
to the genome. b) Performance results on test sets across all downstream tasks for each Nucleotide
Transformer model (from smallest 500M human reference genome, to largest 2.5B multi-species). Re-
sults refer to fine-tuning (probing results in Suppl. Fig. 2). To unify different metric choices reported
in baselines, the term performance stands in for MCC, F1-score, or accuracy in order of preference
and availability (details in Table 5).
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The Nucleotide Transformer models were evaluated after self-supervised training through two different
techniques: probing and fine-tuning. Probing refers to the use of learned LM embeddings of DNA
sequences as features to simpler models for predicting genomic tasks. Specifically, we probed ten
arbitrarily chosen layers of the LMs using either a logistic regression model or a small multi-layer
perceptron (MLP) model composed of up to two hidden layers (Fig. 2). In agreement with recent
work [26], we observe that the best performance for a given task is both model and layer dependent
(Table 9). Moreover, we confirm that the best model performance is never obtained using embeddings
from the final layer, as usually done in earlier work [5]. For example, in the H3K4me1 histone occu-
pancy classification task, we observe a relative difference between the highest and lowest performing
layer as high as 38%, indicating that the representation quality varies significantly across the layers of
the transformer model (Suppl. Fig. 1).

Using probing, our models outperformed or matched 11 out of 18 baselines (Table 4). This number
increases to 15 out of 18 after fine-tuning (Fig. 1). Even though fine-tuning was not extensively stud-
ied in previous work [5], possibly due to its high compute requirements, we overcame this limitation
by relying on a recent parameter efficient fine-tuning technique [27] requiring only 0.1% of the total
model parameters to be tuned. This technique allowed for faster fine-tuning on a single GPU, in
addition to reducing the storage needs by 1000-fold over all fine-tuning parameters, and increasing
performance. Coincidentally, while using simple downstream models on embeddings might appear
faster and less compute-intensive, in practice we observed that rigorous probing was more compute-
intensive compared to fine-tuning, as the choice of the layer, downstream model, and hyperparameters
strongly impacted the performance. Moreover, a smaller variance in performance was observed when
fine-tuning.

As an example, when classifying weak and strong enhancers using sequences alone, the combination
of the best LM and downstream model reached performance (metrics in Table 5) of 0.424 before,
and 0.501 after fine-tuning, thus outperforming the previous state-of-the-art baseline of 0.395 using
LSTM-CNN [22] (Table 4). On promoter detection, we report performance of 0.966 and 0.974 before
and after fine-tuning respectively, compared to 0.956 for the baseline [24]. For splice site detection,
performance increased from 0.762 to 0.983 when fine-tuning compared to the baseline performance of
0.965 achieved by SpliceFinder [23] (Table 4). This task is also the most affected by the downstream
model type, with performance increasing from 0.590 to 0.762 when considering a logistic regression as
opposed to an MLP.

Parameter scaling and increasing data diversity improve performance

Motivated by trends in natural language processing (NLP), where increasing the volume and diversity
of the datasets, as well as the size of the transformer model yields better results [28], we trained large
models from 500M up to 2.5B parameters on datasets of increasing size. We first constructed a pre-
training dataset with sequences from the Human reference genome to establish our baseline LM (see
Methods). We prepared additional training sets with sequences from 3,200 genetically diverse human
genomes [15], spanning 27 populations across the world (Table 2), which increased the data size but
also included 98% redundancy amongst samples. Finally, we developed a custom multispecies dataset
composed of reference sequences of 850 species (Fig. 2a; Table 6; see Methods). We observed that scal-
ing the model size and adding diversity to the dataset sequences increases the average performances
of the downstream tasks (Fig. 2c).
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Figure 2: Increasing model size and data diversity improves downstream performance and
increases token reconstruction accuracy. a) Visual representation of models parameter sizes
across datasets (larger circles indicate larger models). b) Pairwise comparison of token reconstruction
accuracy across models. P-values refer to a two-sided Wilcoxon signed rank test between models.
Median values for the two models compared are shown. c) Normalized sum of performance across 18
downstream tasks for all Nucleotide Transformer models after probing and fine-tuning. Normalized
sum is obtained by summing performances over tasks for each model and dividing by the number of
tasks.
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As a benchmark, the 500M parameter model trained on the Human reference genome achieved a com-
pound performance (in absolute best values) of 0.634 across tasks, whereas a model with the same
number of parameters trained on the 1000G dataset achieved a performance of 0.641. When increasing
the size of the model from 500M to 2.5B parameters on the 1000G dataset, compound performance
increased to 0.669. While adding intra-species diversity slightly helped the overall performance on
the designated tasks, adding inter-species diversity at a fixed model scale yielded better results. In-
deed, the 2.5B model on the multispecies dataset yields a compound performance of 0.709. Only this
combination of largest model size (2.5B), inter-species diversity (multispecies dataset) and fine-tuning
resulted in the compound performance of 0.709 surpassing baselines at 0.674 (Fig. 2c).

To further investigate the benefits of increasing the number of parameters of the models and genomic
diversity of the datasets, we assessed the ability of the models to reconstruct masked nucleotides.
Specifically, we partitioned the Human reference genome into non-overlapping 6kb sequences, tok-
enized the sequence into 6-mers, randomly masked a number of tokens, and estimated the proportion
of tokens correctly reconstructed (Fig. 2b). We observed that the reconstruction accuracy of the 500M
Human reference model showed a higher median accuracy than the 500M 1000G model (median=0.202
versus 0.198, P<2.2e-16, two-sided Wilcoxon rank sum test); however, it was lower than the accuracy
obtained by the 2.5B 1000G model (median=0.216) and the 2.5B Multispecies model (median=0.219),
which illustrates the impact of jointly increasing the model size and diversity of the dataset. Interest-
ingly, while the 2.5B Multispecies model showed the best reconstruction accuracy overall, a number of
sequences showed much higher reconstruction accuracy for the 2.5B 1000G model, which likely points
to particular characteristics of human sequences that were better learned by this model.

The Nucleotide Transformer models learnt to detect known genomic ele-
ments and human genetic variation

To gain insights into the sequence elements that the nucleotide transformer is utilizing when making
predictions, we explored different aspects of the transformer language model architecture. First, we
evaluated the ability of the models to reconstruct tokens containing natural variation present in human
populations based on their haplotypic background (Fig. 3a). We measure the effectiveness of sequence
reconstruction by recording the model perplexity scores over single nucleotide polymorphisms (SNPs)
occurring at 1%, 5%, 10% and 50% frequencies. To evaluate the impact of genomic background and
genetic structure on the mutation reconstruction, we considered an independent dataset of genetically
diverse human genomes, originating from 7 different meta-populations [29] (see Methods). SNP tokens
are centered in sample-specific 6kb sequences. The perplexity is computed at the token position after
masking it. A lower perplexity value is indicative of more accurate sequence reconstruction. Across
all populations and SNPs frequencies, we consistently observe that the 2.5B parameter models, with
median perplexity ranging from 48.4±4.1 (2SD) to 95.4±7.2, outperform their 500M counterparts,
for which the perplexity values fluctuate between 69.1±5.2 and 118.2±8.2. These results are in line
with the observed reconstruction accuracies over human genome sequences, and confirm the impact of
model size on performance.
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Figure 3: The Nucleotide Transformer models acquired knowledge about genomic elements
and human genetic variation. a) Reconstruction perplexity of the Nucleotide Transformer models
on SNPs at 1%, 5%, 10% and 50% frequency across worldwide human populations. b) U-MAP
projections of embeddings of nine regulatory elements from layer four of the 2.5B model trained on
the 1000G dataset. c) Attention percentages per head and layer for all Nucleotide Transformer models
computed on enhancers.
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Next, we sought to determine whether the model embeddings encode representations of the different
genomic sequence features. We considered a total of 90,000 sequences annotated by Ensembl [30]
as: “5’ UTR”, “3’ UTR”, “exon”, “intron”, “enhancer”, “promoter”, “CTCF binding site”, “open
chromatin”, and “transcription factor binding sites”. For each sequence category, we examined 10,000
sequences of length 6kb, where the element is randomly positioned in the sequence. We computed em-
beddings at three arbitrary layers for all Nucleotide Transformer models and averaged them only over
the genomic element indexes. The resulting data was projected through Uniform Manifold Approxi-
mation and Projection (UMAP) to lower dimensions. We report the visualization of the embeddings
obtained at one layer over two UMAP components of the 2.5B parameters model trained over the
1000G dataset (Fig. 3b). We observe that the “enhancers”, “5’ UTR regions”, “CTCF binding sites”,
and “exons”sequence clusters are perfectly separated from the other genomic features. Interestingly,
sequences corresponding to “open chromatin”and “introns”features show limited overlap, while “pro-
moters”, “TF binding sites”and “3’ UTR regions”exhibit substantial co-clustering, probably owing
to the versatility of sequence function in regulatory portions of the genome. We observed similar
trends for all models, but not in all layers (Suppl. Fig. 13 and Suppl. Fig. 14), confirming the layers’
specialization, as well as the models’ ability to capture genomic patterns during self-supervised training.

Finally, to understand whether the model encodes for genomic features, we computed the attention
percentages for all heads and layers of the Nucleotide Transformer models over the same nine genomic
features, following the methodology introduced in previous work [31]. An attention head is thought to
recognize some specific elements if its attention percentage is significantly greater than the naturally
occurring frequency of the element in the pre-training dataset (Suppl. Fig. 12). We performed two
proportions z-test to determine whether any of these elements were detected due to chance across mod-
els and heads, and corrected for multiple testing using Bonferroni. Of 480 heads for the 500M models,
with a significance level of 0.05, we observed that 27 and 24 heads specialized in the detection of en-
hancers for the 500M Human reference and 1000G models. In the case of the larger 2.5B models with
640 heads, 28 and 26 detected enhancers for either the 1000G and multispecies datasets. Interestingly,
maximum attention percentages over enhancers were higher for the larger models, with values reaching
up to almost 100% attention for the 2.5B 1000G model (Fig. 3c). Similar results were observed for all
nine genomic sequence annotations (Suppl. Fig. 3 -11), with a maximum number of 117 out of 640
heads detecting introns for the 2.5B Multispecies model. Altogether, these results demonstrate that
DNA sequences are adequately recapitulated by language models, both at the scale of large genomic
regions and individual variants in diverse populations. Remarkably, custom representations can be
obtained for any region of the genome with mutations which could provide substantial improvement
in assessing the pathogenicity of mutations in their haplotypic context.

The Nucleotide Transformer embeddings predict the impact of mutations

Finally, we assessed the ability of our transformer models to differentiate between different types of
genetic variants, and to prioritise those of functional importance. In order to do so, we tested diver-
gence between alternative allele and reference embeddings for mutations of interest using four metrics
(see Methods; dubbed ”divergence score”).
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Figure 4: Prioritizing functional genetic variants based solely on DNA sequence informa-
tion. a) Proportion of variant consequence terms across deciles based on the L1 distance metric for
the Multispecies (2.5B) model. The consequence terms are shown in order of severity (more severe
to less severe) as estimated by Ensembl. b) Comparison of different distance metrics for the Multi-
species (2.5B) model to other methods for prioritizing functional variants based on GRASP eQTLs
and meQTLs, against 1000 Genomes Project common SNPs. Model performance is measured with the
area under the receiver operating characteristic curve (AUC).
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We first considered all segregating 1000 Genomes Project SNPs from chromosome 22 and investigated
the distribution of these embedding-based divergence scores across 17 variant categories (e.g. stop
gained, missense, intergenic). For the four models, the scores among the different categories were
significantly different (P-value = 2.22e−16, K-S rank sum test). The Multispecies (2.5B) model using
the L1 (Manhattan) distance showed the strongest ability to differentiate between categories (Fig. 4a).
Notably, scores computed from this model at coding variants, i.e. those with a potential functional
impact on protein function, showed significantly lower scores compared to intergenic variants (median
of 675 and 622 for missense and synonymous variants, respectively, versus median of 780 for intergenic
variants, P-value = 2.22e−16, two-sided Wilcoxon rank sum test). This illustrates how embedding-
based distances alone encodes information about variant functional categories. Nonetheless, we also
found that other types of variants, including those with high potential disruption on protein, such as
stop gain mutations, showed similar scores compared to intergenic variants (P-value >0.05, two-sided
Wilcoxon rank sum test), which suggests that this score is not necessarily associated with mutation
severity.

Lastly, we investigated the ability of the divergence scores to prioritize functional variants, and com-
pared these against scores that measure levels of genomic conservation, as well as a score that leverages
both conservation and genomic functional features (including genic effects, regulatory element anno-
tations, among others). Specifically, we assessed the ability of the divergence scores to classify genetic
variants exerting regulatory effects on gene expression (i.e., expression quantitative trait loci [eQTLs])
and genetic variants associated with DNA methylation variation (i.e., methylation quantitative trait
loci [meQTLs]) (Fig. 4b). As the scores computed from the Multispecies (2.5B) model showed the
best ability to differentiate variant categories, we relied on divergence scores only from this model.
Notably, the performance of divergence scores surpassed that of previous scores in prioritizing eQTLs
(dot score product, AUC=0.73) and achieved an AUC close to the best-performing score in prioritiz-
ing meQTLs (dot score product, AUC=0.708 versus GERP score, AUC=0.714). Overall, these results
illustrate how divergence scores, extracted solely from embeddings of DNA sequences, can help reveal
and contribute to understanding the potential biological consequences of variants associated with a
disease or phenotype.

Discussion

Evolution informs representations: models trained on genomes from different species top
charts. We explored the impact of different datasets to pre-train equally sized transformer models.
Both intra- (i.e. when training on multiple genomes of a single species) and inter-species (i.e., on
genomes across different species) variability play an important factor driving accuracy across tasks
(Fig. 2). Notably, the models trained on genomes coming from different species perform well on
categorical human genomics downstream tasks, as well as on human variant prediction, even when
compared to models trained exclusively on the human genome (Fig. 2). This could indicate that the
genome LMs capture a signal of evolution so fundamental across species that it better generalises to
shared functions.

Model scale drives performance. The Nucleotide Transformer models trained ranged from 500
million up to 2.5 billion parameters, which is five times larger than DNABert [18] and ten times
larger than the Enformer [14]. As has been the case in NLP [28], results in the genomic space con-
firmed that increasing model size yields better performance. Training the largest parameter model
required a total of 128 GPUs across 16 compute nodes for 28 days. Significant investments were made
to engineer efficient training routines that took full advantage of the infrastructure, highlighting the
need for both specialized infrastructure and dedicated software solutions. Once trained however, these
models can be used for inference at a relatively low cost, benefiting the research community as a whole.

Diverse datasets, large models and fine-tuning: best results require it all. Previous work in
biological LM development evaluated downstream performance exclusively probing the last transformer
layer [5], most likely due to its perceived ease of use, relative good performance and low computational
complexity. As in this study we sought to push the limits of downstream accuracy, we performed
computationally expensive, rigorous probing of different transformer layers, downstream models and
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hyperparameter sweeps. We observed best probing performance for intermediate transformer layers
(Suppl. Fig. 2), aligning with recent work in computational biology [26] and common practice in NLP
[32], suggesting that even for existing biological-related LMs new highs could be reached. Through
probing, the 2.5B multispecies Nucleotide Transformer model achieved better performance for 8 out of
18 tasks compared to the baseline. We additionally explored a recent downstream fine-tuning technique
that introduces a small number of trainable weights in the transformer for weight-efficient fine-tuning
(IA3 [27]). Compared to the extensive probing exercise, this technique yielded better results using
fewer compute resources and rose the number of tasks outperforming or matching baselines to 15,
confirming that downstream model engineering can yield performance improvements [33]. The usage
of this technique makes fine-tuning competitive with probing from an operational perspective, both
for training and inference.

Genomics insights are captured during training despite no supervision. The Nucleotide
Transformer models learned insights about key regulatory genomic elements through attention, as
demonstrated through the analysis of attention maps, embedding spaces, and probability distributions.
Elements such as enhancers and promoters were detected by all models, and at several heads and layers.
We also observed that each model contained at least one layer that produced embeddings which clearly
separated five of the genomic elements analyzed. As self-supervised training allowed for the detection
of these elements, we expect that this approach can be leveraged to unravel new elements and effects in
the future. While our models have an attention span limited to 6kbp, the recently developed Enformer
model [14] suggested that increasing the perception field up to 200kbp is necessary to capture long-range
dependencies, which are needed to accurately solve tasks such as gene expression prediction. Processing
such large inputs is intractable with the standard transformer architecture, due to the quadratic scaling
of self-attention with respect to the sequence length. The Enformer model addressed this by passing
sequences through convolution layers to reduce the dimensions of the inputs to transformer layers.
However, this choice hindered language modelling. Based on our results, we suggest that building
transformer models with the ability to model language that can work with long inputs, up to 200kbp
or more, is a promising direction for the field. Techniques such as sparse attention [34, 35] could be
investigated to overcome compute complexity limitations.
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P. Hallast, J. Kamm, H. Blanché, J.-F. Deleuze, H. Cann, S. Mallick, D. Reich, M. S. Sandhu,
P. Skoglund, A. Scally, Y. Xue, R. Durbin, and C. Tyler-Smith, “Insights into human genetic
variation and population history from 929 diverse genomes,” Science, vol. 367, Mar. 2020.

[30] B. L. Aken, S. Ayling, D. Barrell, L. Clarke, V. Curwen, S. Fairley, J. Fernandez Banet, K. Billis,
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A Methods

A.1 Models

Language models (LMs) have been primarily developed within Natural Language Processing (NLP)
to model spoken languages [1, 2]. A LM is a probability distribution over sequences of tokens (often
words), i.e. given any sequence of words, an LM will return the probability for that sentence to
exist. LMs gained in popularity thanks to their ability to leverage large unlabeled datasets to generate
general-purpose representations that can solve downstream tasks even when little supervised data is
available [36]. One technique to train LMs tasks models to predict the most likely tokens at masked
positions in a sequence, often referred to as masked language modelling (MLM). Motivated by results
obtained with MLM in the field of protein research [4, 5], where proteins are considered as sentences and
amino-acids as words, we apply MLM to train language models transformers in genomics, considering
sequences of nucleotides as sentences and k-mers (with k=6) as words. Transformers are a class of deep
learning models that achieved breakthroughs in machine learning fields including NLP and computer
vision. They consist of an initial embedding layer that transform positions in the input sequence into
an embedding vector, followed by stack of self-attention layers that sequentially refine these embedding.
The main technique to train language models transformers with MLM is called Bidirectional Encoder
Representations from Transformers (BERT) [1]. In BERT, all positions in the sequence can attend
to each other allowing the information to flow in both directions, which is essential in the context of
DNA sequences. During training, the final embedding of the network is fed to a language model head
that transforms it into a probability distribution over the input sequence.

A.1.1 Architecture

All our models follow an encoder-only transformer architecture. An embedding layer transforms se-
quences of tokens into sequences of embeddings. Positional encodings are then added to each embed-
ding in the sequence to provide the model with positional information. We use a learnable positional
encoding layer that accepts a maximum of 1000 tokens. The embeddings are then processed by a
transformer layer stack. Each transformer layer transforms its input through a layer normalisation
layer followed by a multi-head self-attention layer. The output of the self-attention layer is summed
with the transformer layer input through a skip connection. The result of this operation is then passed
through a new layer normalisation layer and a two layer perceptron with GELU activations [37]. The
number of heads, the embedding dimension, the number of neurons within the perceptron hidden layer
and the total number of layers for each model can be found in Table 3. During self-supervised training,
the embeddings returned by the final layer of the stack are transformed by a language model head into
a probability distribution over the existing tokens at each position in the sequence.

A.1.2 Training

The models are trained following the BERT methodology [1]. At each training step a batch of tokenized
sequences is sampled. The batch size is adapted to available hardware and model size. We conducted
all experiments on clusters of A100 GPUs, and took batches of sizes 14 and 2 sequences to train the
500M and 2.5B parameters models, respectively. Within a sequence, of a subset of 15% of tokens,
80% are replaced by a special mask [MASK] token. For training runs on the Human reference genome
and multispecies datasets, an additional 10% of the 15% subset of tokens are replaced by randomly
selected standard tokens (i.e. any token different from the class [CLS], pad [PAD] or mask [MASK]
token), as was done in BERT. For training runs on the 1000G dataset, we skipped this additional
data augmentation, as the added noise was greater than the natural mutation frequency present in
the human genome. For each batch, the loss function was computed as the sum of the cross-entropy
losses, between the predicted probabilities over tokens and the ground truth tokens, at each selected
position. Gradients were accumulated to reach an effective batch size of 1M tokens per batch. We used
the Adam optimizer [38] with a learning rate schedule, and standard values for exponential decay rates
and epsilon constants, β1 = 0.9, β2 = 0.999 and ϵ=1e-8. During a first warmup period, the learning
rate was increased linearly between 5e-5 and 1e-4 over 16k steps before decreasing following a square
root decay until the end of training.
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A.1.3 Probing

We refer to probing the assessment of the quality of the model embeddings to solve downstream tasks.
After training, for each task, we probe each layer of the model and compare several downstream
methods to evaluate in depth the representations capabilities of the model. In other words, given a
dataset of nucleotide sequences for a downstream task, we compute and store the embeddings returned
by ten layers of the model. Then, using the embeddings of each individual layer as inputs, we trained
several downstream models to solve the downstream task. We tested logistic regression with the default
hyperparameters from scikit-learn [39] and a multi-layer peceptron. As we observed that the choice of
hyperparameters, such as the learning rate, the activation function and the number of layers per hidden
layer impacted final performance, we also ran hyperparameters sweeps for each downstream model.
We used a ten fold validation scheme, where the training dataset was split ten times in a training and
validation set, that contain different shuffles with 90% and 10% of the initial set. For a given set of
hyperparameters, ten models were trained over the ten splits, and their validation performances were
averaged. This procedure is run 100 times with a Tree-structured Parzen Estimator solver [40] guiding
the search over the hyperparameters space, before evaluating the best performing set of models on the
test set. Therefore, for each downstream task, for ten layers of each pre-trained model, the performance
on the test set is recorded at the end of the hyperparameters search. The hyperparameters of the best
performing probe across the pre-trained models and their layers is reported in Table 9. This probing
strategy resulted in 760,000 downstream models trained, which provides detailed analysis into various
aspects of training and using LMs, such as the role of different layers on downstream task performance.

A.1.4 Fine-tuning

In addition to probing our models through embedding extraction at various layers, we also performed
parameter-efficient fine-tuning through the IA3 technique [27]. Using this strategy, the language model
head is replaced by either a classification or regression head depending on the task at hand. The weights
of the transformer layers and embedding layers are frozen and new, learnable weights are introduced.
For each transformer layer, we introduced three learned vectors lk ∈ Rdk , lv ∈ Rdv and lff inRdff , which
were introduced in the self-attention mechanism as:

softmax

(
Q(lk)⊙KT

√
dk

)
(lv ⊙ V )

and in the position-wise feed-forward networks as (lffγ (W1x))W2, where γ is the feed-forward network
nonlinearity, and ⊙ represents the element-wise multiplication. This adds a total of L (dk + dv + dff)
new parameters, where L is the number of transformer layers. We refer to these learnable weights as
rescaling weights. The intuition is that during fine-tuning these weights will weigh the transformer
layers to improve the final representation of the model on a downstream task, so that the classifi-
cation/regression head can more accurately solve the problem. As we observed layer specialization
during probing, we speculate that this fine-tuning technique will similarly select layers with greater
predictive ability for particular tasks.

In practice, the number of additional parameters introduced by rescaling weights and the classifica-
tion/regression head weights represented approximately 0.1% of the total number of weights of the
model. This increased fine-tuning speed since just a fraction of parameters needed updating. Sim-
ilarly, it alleviated storage requirements, needing to create space for just 0.1% new parameters over
500M and 2.5B for each downstream task using traditional fine-tuning. For instance, for the 2.5B pa-
rameters models, the weights represent 9.5GB. Considering 18 downstream tasks, classical fine-tuning
would have required 9.5×18 = 171 GBs, whereas parameter-efficient fine tuning required only 171 MB.

We used a batch size of eight and the Adam optimizer with a learning rate of 3e-3. Other optimizer
parameters were maintained from training regiments. Each model is fine-tuned for 10k steps for each
task. These hyperparameters were selected as they led to promising results in the field of NLP [27].
Diverging hyperparameter choices did not yield significant gains in our experiments.
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A.2 Datasets

A.2.1 The Human reference genome dataset

The Human reference dataset was constructed by considering all autosomal and sex chromosomes
sequences from reference assembly GRCh38/hg38 1 and reached a total of 3.2 billion nucleotides.

A.2.2 The 1000G dataset

To inform the model on naturally occurring genetic diversity in humans, we constructed a training
dataset including genetic variants arising from different human populations. Specifically, we down-
loaded the variant calling format (VCF) files2 from the 1000 Genomes project [41], which aims at
recording genetic variants occurring at a frequency of at least 1% in the human population. The
dataset contained 3202 high-coverage human genomes, originating from 27 geographically structured
populations of African, American, East Asian, and European ancestry as detailed in Table 2, making up
a total of 20.5 trillion nucleotides. Such diversity allowed the dataset to encode a better representation
of human genetic variation. To allow haplotype reconstruction in the FASTA format from the VCF
files, we considered the phased version of the data, which corresponded to a total of 125M mutations,
111M and 14M of which are single nucleotide polymorphisms (SNPs) and indels, respectively.

A.2.3 The Multispecies dataset

To build a dataset that encompassed a large and diverse set of genomes, we first parsed the genomes
available on NCBI3, before arbitrarily selecting only one species from each genus. Plant and virus
genomes were not taken into account, as their regulatory elements differ from those of interest in
this work. The resulting collection of genomes was downsampled to a total of 850 species, whose
genomes add up to 174 billion nucleotides. The final contribution of each class, in terms of number
of nucleotides, to the total number of nucleotides in the dataset, displayed in Table 6, is the same
as in the original collection parsed from NCBI. Finally, we enriched this dataset by selecting several
genomes that have been heavily studied in the literature (Table 7).

A.3 Data preparation

Once the FASTA files of each genome / individual were collected, they were assembled into one unique
FASTA file per dataset that was then pre-processed before training. During this data processing
phase, all nucleotides other than A,T,C,G were replaced by N. A tokenizer was employed to convert
strings of letters to sequences of tokens. The tokenizer used as alphabet the 46 = 4096 possible 6-mer
combinations obtained by combining A,T,C,G, as well as five extra tokens to represent stand-alone
A,T,C,G and N. It also included three special tokens, namely the padding [pad], masking [mask] and
the beginning of sequence (also called class; [CLS]) token. This adds to a vocabulary of 4104 tokens.
To tokenize an input sequence, the tokenizer will start with a class token and then convert the sequence
starting from the left, matching 6-mer tokens when possible, or falling back on the stand-alone tokens
when needed (for instance when the letter N is present or if the sequence length is not a multiple of
6).

For the multispecies and Human reference dataset, genomes are split into overlapping chunks of 6100
nucleotides, each sharing the first and last 50 nucleotides with the previous and last chunk, respectively.
As a data augmentation exercise, for each epoch and chunk, a starting nucleotide index is randomly
sampled between 0 and 100, and the sequence is then tokenized from this nucleotide until 1000 tokens is
reached. The number of epochs was determined depending on the dataset so that the model processed
a total of 300B tokens during training. At each step, a batch of sequences sampled randomly within
the epoch set was fed to the model. For the 1000G dataset, batches of sequences from the Human
reference genome, prepared as specified above, are sampled at each step. Then, for each sampled chunk,
an individual from the 1000G dataset is randomly selected, and if that individual carries mutations

1https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26
2http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/

20201028_3202_phased/
3https://www.ncbi.nlm.nih.gov/
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at the positions and chromosome corresponding to that chunk, these mutations are introduced into
the sequence, and the corresponding tokens replaced. This data processing technique ensured uniform
sampling both over the genome and over the individuals during training, as well as enabled to efficiently
store only mutations for each individual, instead of full genomes.

A.3.1 Hardware

All models were trained on the Cambridge-1 Nvidia supercomputer system, using 16 nodes, each
equipped with eight A100 GPUs, leading to a total of 128 A100 GPUs used. During training, model
weights were replicated on each GPU, while batches were sharded across GPUs. Gradients were com-
puted on each shard and accumulated before being averaged across devices and backpropagated. We
relied on the jax library4 that relied on the NCCL5 protocol to handle communications between nodes
and devices, and observed almost linear decrease of the training time with respect to the number of
GPU available. The 500M parameters models were trained on a single node for a day, while the 2.5B
models models required the whole cluster for 28 days to be trained.

All fine-tuning runs were performed on a single node with eight A100 GPUs. As for the training runs,
the models weights were replicated and batches distributed across GPUs. As we used a batch size of
eight for fine-tuning, each GPU processed a single sample before averaging the gradients and applying
them. On average, a fine-tuning run lasted 20 minutes for the 500M parameter models, and 50 minutes
for the 2.5B parameter models.

For the probing experiments, all embeddings (for all sequences in all downstream tasks, for selected
layers of each model) were computed and stored on a single node with eight A100 GPUs, requiring
two days to compute. Then, 760,000 downstream models were fit on a cluster of 3000 CPUs, requiring
2.5 days.

A.4 Downstream tasks

A.4.1 Epigenetic marks prediction

We downloaded the dataset6 of epigenetic marks identified in the yeast genome, namely acetylation
and metylation nucleosome occupancies [21]. Nucleosome occupancy values in these ten datasets were
obtained with Chip-Chip experiments [42] and further processed into positive and negative observations
to provide epigenetic training data for the following histone marks: H3, H4, H3K9ac, H3K14ac, H4ac,
H3K4me1, H3K4me2, H3K4me3, H3K36me3 and H3K79me3.

A.4.2 Promoter sequence prediction

We built a dataset of promoter sequences to evaluate the capabilities of the model to identify promoter
motifs. Following the DeePromoter method [24], we considered sequences of 300 base pairs (bp)
genome-wide, selected to span 249bp upstream and 50bp downstream of transcription start sites. This
resulted in 29,597 promoter regions, 3,065 of which were TATA-box promoters. For each promoter
region sample, a negative sample (non-promoter sequence) with matching length was constructed by
splitting the promoter sequence in 20 sub-sequences and randomly selecting and shuffling 12 of them,
while keeping the other 8 intact. The final dataset is then composed of 59,194 sequences.

A.4.3 Enhancer sequence prediction

We used a single dataset presented prior [22] to evaluate the capacity of the transformer models to
provide an accurate representation of enhancer sequences. The original dataset included 742 strong
enhancers, 742 weak enhancers and 1484 non-enhancers, but previous work [22] showed that training
performance was increased by augmenting the dataset with 6000 synthetic enhancers and 6000 synthetic
non-enhancers produced through a generative model.

4https://jax.readthedocs.io/en/latest/_autosummary/jax.pmap.html
5https://developer.nvidia.com/nccl
6http://www.jaist.ac.jp/~tran/nucleosome/members.htm
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A.4.4 Splice site prediction

We used two datasets to evaluate splice site prediction. First, we downloaded the dataset used by
SpliceFinder [23], which was composed of donor, acceptor, and non-splice sites, containing sequences
detected in human genes. Each sequence was 400 nucleotides long and contained either a splicing site
in the center (i.e. an acceptor or donor site), or a non-splicing site. Second, to leverage a more diverse
set of splicing sites, we also downloaded the training dataset7 of the Spliceator model [25]. Contrary to
the SpliceFinder dataset, this set was based primarily on the G3PO database, which included sequences
from 147 phylogenetically diverse organisms (ranging from protists to primates, including humans).
All sequences were 600bp and included either a splicing site at the center (i.e. an acceptor or donor
site), or a non-splicing site. Following the Spliceator study, we only included sequences that were part
of the balanced ’Gold Standard’ dataset (referred to as ’GS 1’ in the study).

A.4.5 Metrics

Due to discrepancies in metric choices by baselines methods considered, different metrics were used
to compare downstream results for different tasks (Table 5). In general, MCC was preferred over
F1-score, which was preferred over accuracy. Thus, the term performance will be used as an umbrella
term throughout the text to refer to either MCC, F1-score, or to accuracy as listed in Table 5.

A.5 Additional Performance Analysis

A.5.1 Reconstruction accuracy and perplexity

We studied how pre-trained models could reconstruct masked tokens. We considered a trained language
model with parameters θ. Within a nucleotide sequence s of interest, we masked tokens using one of
two strategies (i.e. we replaced the tokens at these positions by the mask token [MASK]). We either
masked the central token of the sequence only, or we masked randomly 15% of the tokens within the
sequence. The masked sequence is then fed to the model and the probabilities over tokens at each
masked positions retrieved. The loss function l (θ, s) and the accuracy acc(θ, s) are defined as follows:

l (θ, s) =
∑

i∈Pmasked

∑
tok∈V

log p(θ, i, tok) · 1 (tok = s(i))

acc (θ, s) =
1

|Pmasked|
∑

i∈Pmasked

1

(
argmax
tok∈V

(log p(θ, i, tok)) = s(i)

)
where Pmasked is the set of masked positions and V the vocabulary, i.e. the set of all existing tokens.
The perplexity is usually defined in the context of autoregressive generative models. Here, we rely
on an alternative definition used in Rives [4], and define it as the exponential of the loss function
computed over the masked positions:

perplexity(θ, s) = 2l(θ,s) (1)

.
Perplexity measures how well a model can reconstruct masked positions, and is a more refined measure
than accuracy, as it does also account for magnitude. In contrast to accuracy, lower perplexity suggests
better reconstruction ability, thus better performance.

A.5.2 Functional variant prioritization

To obtain variant consequence annotations we used the Variant Effect Prediction (VEP) software on all
bi-allelic single nucleotide polymorphisms (SNPs) present on chromosome 22 from the 1000 Genomes
dataset. After filtering out genetic variants that were annotated to more than one consequence (e.g.
those annotated as stop gained and splice site variants), we obtained a final dataset of 72,788 genetic
variants across 17 consequence categories.

As a positive set of functional genetic variants we used SNPs associated to gene expression (i.e. expres-
sion quantitative trait loci [eQTLs]) and to methylation variation (i.e., meQTLs) from the Genome-
Wide Repository of Associations Between SNPs and Phenotypes (GRASP) database [43] with a P-value

7https://git.unistra.fr/nscalzitti/spliceator/-/tree/master/Data/Datasets
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<10−12. For each of these two datasets, we then constructed a set of negative variants based on SNPs
from the 1000 Genomes Project with a minor allele frequency (MAF) >5%, that did not overlap with
any variant reported in the GRASP dataset, and that were within 100kb of the associated variants.
After these filters, we retained a total of 82,489 and 11,910 genetic variants for the eQTLs and meQTLs
SNP datasets, respectively.

To predict the potential effect of genetic variants using our models, for each SNP, we obtained a 6kbp
sequence centered on the SNP of interest based on the Human reference genome. We created two
sequences, one carrying the reference allele and a second carrying the alternative allele at the SNP
position. We then computed four different similarity scores to capture different aspects of the vector
distances in the embedding space based on: (i) the L1 distance (Manhattan), (ii) the L2 distance (Eu-
clidean), (iii) the cosine similarity as well as (iv) the dot-product (not normalized cosine similarity)
between both embedding vectors.

A.5.3 Attention Maps Analysis

We analysed how attention maps gathered from the pre-trained models capture key genomic elements.
We followed a methodology proposed in previous work [31]. For a genomic element, we define the
indicator function over tokens f(i) that equals 1 if one or several nucleotide within token i belong
to the element, and 0 otherwise. We computed the average proportion of attention focused on that
genomic element aggregated over a dataset of nucleotide sequences X as:

pα(f) =
∑
x∈X

∑
i

∑
j

f(i)1 (α(i, j) < µ)

where α(i, j) is the attention coefficient between tokens i and tokens j defined such that
∑
i

αi,j = 1

and µ is a confidence threshold.

We computed the values of pα(f) for all the heads and all the layers of all models, and considered
nine elements ( “5’ UTR”, “3’ UTR”, “exon”, “intron”, “enhancer”, “promoter”, “CTCF binding
site”, “open chromatin”, and “transcription factor binding sites”). We perform these analyses over a
dataset made of 90,000 sequences, 10,000 per feature, of length 6000kbp extracted from the Human
reference genome. The average proportion of tokens belonging to each element can be found in Table 8.
For each sequence, the position of the feature within the sequence was sampled uniformly during the
dataset creation. As suggested in previous work [31], we selected a confidence threshold µ = 0.3 for
all experiments.

We considered that a feature is captured by an attention head if the quantity pα(f) is significantly
greater than the natural occurring frequency of the feature within the dataset (Table 8). To validate
this, we conducted a two proportion z-test with the null hypothesis as the natural frequency of the
feature, and the alternate hypothesis as pα(f). The total number of heads of each model is used as a
bonferonni correction to the significance level, α, of 0.05. We computed z-scores and associated p-value
for each head in every model for every genomic element as follow:

Z =
p̂1 − p̂2√

p̂ (1− p̂)
(

1
n1

+ 1
n2

)
where p̂1 represents the proportion of attention above µ associated with each genomic element, p̂2
represents the proportion of the sequence occupied by the genomic element, n1 is the total number
of sequence positions with attention above µ, n2 is the total number of sequence positions. Attention
heads with p-values below the Bonferonni corrected significance level are considered to be significant.

20

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2023. ; https://doi.org/10.1101/2023.01.11.523679doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523679
http://creativecommons.org/licenses/by-nd/4.0/


B Tables

Model Name Normalized summed downstream performance

500M Human Ref Probed 0.582
500M 1000G Probed 0.602
2.5B 1000G Probed 0.619
500M Human Ref Finetuned 0.634
500M 1000G Finetuned 0.641
2.5B Multispecies Probed 0.661
2.5B 1000G Finetuned 0.669
Peer-Reviewed Baselines 0.674
2.5B Multispecies Finetuned 0.709

Table 1: Normalized summed downstream performance. These values are obtained through summing
performances over all tasks for each model and dividing by the number of tasks.

Population name Population code Number of individuals

African Ancestry SW ASW 74
African Caribbean ACB 116
Bengali BEB 131
British GBR 91
CEPH CEU 179
Colombian CLM 132
Dai Chinese CDX 93
Esan ESN 149
Finnish FIN 99
Gambian Mandinka GWD 178
Gujarati GIH 103
Han Chinese CHB 103
Iberian IBS 157
Japanese JPT 104
Kinh KHV 2
Kinh Vietnamese KHV 120
Luhya LWK 99
Mende MSL 99
Mexican Ancestry MXL 97
Peruvian PEL 122
Puerto Rican PUR 139
Punjabi PJL 146
Southern Han Chinese CHS 163
Tamil STU 114
Telugu ITU 107
Toscani TSI 107
Yoruba YRI 178

Table 2: Number of individuals per population in the 1000G dataset.
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2.5B 1000G 2.5B Multispecies 500M 1000G 500M Human Ref

alphabet k-mers k-mers k-mers k-mers
k for kmers 6 6 6 6
num warmup updates 16000 16000 16000 16000
warmup init lr 0.00005 0.00005 0.00005 0.00005
warmup end lr 0.0001 0.0001 0.0001 0.0001
training set proportion 0.95 0.95 0.95 0.95
masking ratio 0.15 0.15 0.15 0.15
masking prob 0.8 0.8 0.8 0.8
random token prob 0.0 0.1 0.0 0.1
alphabet size 4105 4105 4105 4105
prepend bos True True True True
append eos False False False False
attention heads 20 20 20 20
embed dim 2560 2560 1280 1280
ffn embed dim 10240 10240 5120 5120
num layers 32 32 24 24
token dropout True True True True
num parameters 2547800585 2547800585 485729545 485729545
dataset 1000G Multispecies 1000G Human Reference

Table 3: Models hyperparameters.
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sequences
Num train

sequences
Num test

length in bp
Max sequence

Metric
Reported

Name
Baseline

H3K4me3 25953 2884 500 MCC SVM [21]
H3K4me2 27614 3069 500 MCC SVM [21]
H3K36me3 31392 3488 500 MCC SVM [21]
H3K9ac 25003 2779 500 MCC SVM [21]
splice donor 19775 2198 600 F1 SpliceFinder [23]
splice site SF 27000 3000 400 Acc SpliceFinder [23]
H4ac 30685 3410 500 MCC SVM [21]
H3K4me1 28509 3168 500 MCC SVM [21]
enhancer 14968 400 200 MCC LSTM-CNN [22]
enhancer types 14968 400 200 MCC LSTM-CNN [22]
H4 13140 1461 500 MCC SVM [21]
splice acceptor 19961 2218 600 F1 SpliceFinder [23]
H3K79me3 25953 2884 500 MCC SVM [21]
promoter nonTATA 47767 5299 300 F1 DeePromoter [24]
promoter all 53276 5920 300 F1 DeePromoter [24]
H3K14ac 29743 3305 500 MCC SVM [21]
H3 13468 1497 500 MCC SVM [21]
promoter TATA 5509 621 300 F1 DeePromoter [24]

Table 5: Downstream Tasks Meta-Data.

Class Number of species Number of nucleotides (B)

Bacteria 667 17.1
Fungi 45 2.3
Invertebrate 39 20.8
Protozoa 10 0.5
Mammalian Vertebrate 31 69.8
Other Vertebrate 57 63.4

Table 6: Distribution of the genomes present in the multispecies dataset.

Class Selected Species

Bacteria Escherichia coli
Fungi Saccharomyces cerevisiae
Invertebrate Caenorhabditis elegans, Drosophila melanogaster
Protozoa Plasmodium vivax, Plasmodium falciparum
Mammalian Vertebrate Homo sapiens, Mus musculus, Rattus norvegicus
Other Vertebrate Danio rerio, Xenopus tropicalis

Table 7: Model organisms selected to be included in the multispecies dataset.
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containing this element
Percentage of sequences

belonging to this element
Mean Percentage of Sequence Length

Enhancer 10.18% 11.09%
Open chromatin 11.32% 6.16%
3’ UTR 11.37% 4.30%
TF binding 11.28% 6.38%
Intron 10.45% 11.08%
Exon 11.87% 3.18%
5’UTR 11.84% 1.99%
Promoter 10.95% 9.78%
CTCF Binding Site 10.69% 7.36%

Table 8: Genomic element percentage of considered dataset and length’s percentage of input sequence
(6kbp). This corresponds to the dataset used for attention maps and embedding spaces visualization
experiments.
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C Supplementary Figures

Supplementary Figure 1: For each pre-trained model, the embeddings are extracted from 10 layers
of the transformer when taking the H3K4me1 dataset as input. We tuned the hyperparameters of
an MLP on the train set with 10 fold cross-validation and selected the 10 models corresponding to
the best performing set of hyperparameters to evaluate them on the test set. Their performances are
displayed by each whisker box. Median performance on the test dataset varies significantly across the
layers as, when using the 2.5B Multispecies model, embeddings produced by the layer 14 produce a
median MCC score of 0.50 against 0.38 for the final layer, a 30% increase in performance.
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Supplementary Figure 2: Performance results on test sets across all downstream tasks for each Nu-
cleotide Transformer model (from smallest 500M Human reference genome, to largest 2.5B Multi-
species) during probing. Best layers and best downstream models are used for each model and task.
The error bars represent 1 std for the 10-folds validation.
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Supplementary Figure 3: Nucleotide Transformer
models attention percentages per head computed
for the 3’ UTR regions.

Supplementary Figure 4: Nucleotide Transformer
models attention percentages per head computed
for CTCF binding sites.
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Supplementary Figure 5: Nucleotide Transformer
models attention percentages per head computed
for the enhancers.

Supplementary Figure 6: Nucleotide Transformer
models attention percentages per head computed
for the exons.
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Supplementary Figure 7: Nucleotide Transformer
models attention percentages per head computed
for the 5’ UTR regions.

Supplementary Figure 8: Nucleotide Transformer
models attention percentages per head computed
for the introns.
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Supplementary Figure 9: Nucleotide Transformer
models attention percentages per head computed
for the open chromatin.

Supplementary Figure 10: Nucleotide Transformer
models attention percentages per head computed
for the promoters.
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Supplementary Figure 11: Nucleotide Transformer models attention percentages per head computed
for the transcription factor binding sites.

Supplementary Figure 12: Genomic element length’s percentage of input sequence (6kbp). This corre-
sponds to the dataset used for attention maps and embedding spaces visualization experiments. Details
in Table 8.
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Supplementary Figure 13: U-MAP projections of embeddings of nine regulatory elements from layers
4, 14 and 24 for the two Nucleotide Transformer 2.5B parameters models.
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Supplementary Figure 14: U-MAP projections of embeddings of nine regulatory elements from layers
4, 14 and 24 for the two Nucleotide Transformer 500M parameters models.
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