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Abstract

Deep learning-based methods for protein structure prediction have achieved un-

precedented accuracy. However, the power of these tools to guide the engineering of

protein-based therapeutics remains limited due to a gap between the ability to predict

the structures of candidate proteins and the ability to assess which of those proteins

are most likely to bind to a target receptor. Here we bridge this gap by introduc-

ing Automated Pairwise Peptide-Receptor AnalysIs for Screening Engineered proteins

(APPRAISE), a method for predicting the receptor binding propensity of engineered

proteins. After generating models of engineered proteins competing for binding to

a target using an established structure-prediction tool such as AlphaFold2-multimer

or ESMFold, APPRAISE performs a rapid (under 1 CPU second per model) scoring

analysis that takes into account biophysical and geometrical constraints. As a proof-of-

concept, we demonstrate that APPRAISE can accurately classify receptor-dependent

vs. receptor-independent engineered adeno-associated viral vectors, as well as diverse
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classes of engineered proteins such as miniproteins targeting the SARS-CoV-2 spike

protein, nanobodies targeting a G-protein-coupled receptor, and peptides that specifi-

cally bind to transferrin receptor and PD-L1. With its high accuracy, interpretability,

and generalizability, APPRAISE has the potential to expand the utility of current

structural prediction and accelerate protein engineering for biomedical applications.

Introduction

Many protein-based biologics rely on specific targeting. As a result, considerable e↵ort has

been devoted to engineering proteins that bind to a specific receptor, using strategies such

as directed evolution1–4 and rational design.5–7 Currently, evaluating the receptor binding

propensities of candidate molecules with in vitro and in vivo tests is a major bottleneck,

which can be eased by computational prioritization of the candidate proteins.8

In order to predict protein function, two strategies have been employed: end-to-end

sequence-function and two-step sequence-structure/structure-function. The sequence-function

strategy, typically using end-to-end machine learning models,9,10 is best suited for highly spe-

cialized functions, such as enzyme activities, which are challenging to predict from physical

principles.11 However, these models require specific training datasets in order to be applied

to new contexts. In comparison, the two-step sequence-structure/structure-function strategy

o↵ers a more generalizable solution for functional prediction, particularly for functions with

clear biophysical mechanisms, such as protein-protein binding.

The rapid development of deep learning-based methods has brought unprecedented accu-

racy to the first step of the sequence-structure/structure-function strategy. Since AlphaFold2

(AF2)’s outstanding performance in CASP14 in 2020,12 a number of new deep learning-

based structure-prediction tools have been released,13–24 providing a powerful set of tools for

generating protein models with atomic-level precision. Some of the most recent structure-

prediction tools were trained to predict special targets such as antibody monomers,18 and

some,14,17 notably AlphaFold-multimer,14 can accurately model multi-chain complexes. Im-
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portantly, these structure-prediction tools allow the generation of models in less than one

GPU hour each, a level of throughput that experimental methods cannot match.

The second step, ranking target binding propensities based on modeled structures, has

been less attended compared to the first step. Structure-prediction neural networks generate

confidence scores for predicted complex models, such as pLDDT and pTM scores (used by

AF2),12 interface pTM scores (used by AF2-multimer),14 which have been used as metrics

to evaluate the probability that a protein binds to the target in some cases.17,25 However,

previous reports26 and our experience have revealed that these scores alone are, in some cases,

not reflective of binding propensities, particularly when the interaction is weak or transient.

Utilizing biophysical principles to analyze the predicted structure may help to improve the

ranking of binders by extracting relevant information stored in the 3D coordinates.

Ranking the binding probability of engineered proteins through modeled structures presents

unique challenges. One challenge is imposed by the high sequence similarity between can-

didate molecules. Engineered protein variants are often constructed by modifying a short

variable region to a common sca↵old. Due to this similarity, the energy di↵erence between

the candidate binders can be very small, sometimes buried in the error of the energy func-

tion used for candidate ranking.27,28 This problem is compounded by structure-prediction

methods that rely heavily on co-evolutionary information or homology, causing them to

generate similar binding poses for the candidate proteins. Another challenge is assessing

a large number of predicted structure models e�ciently. Direct quantification of protein-

protein interface energy using interpretable, physics-based methods trades o↵ accuracy and

speed.29 For instance, methods that use molecular dynamics simulations can cost more than

103 CPU hours per model. Faster, less rigorous methods with better-than-random ability to

predict the impact of interface mutations still require 1 CPU minute to 1 CPU hour per non-

antibody-antigen model.29 In the post-AlphaFold era, an interpretable and e�cient method

of predicting the target binding of a large number of models would greatly accelerate protein

engineering e↵orts.
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Recently, Chang and Perez utilized competitive modeling with AF2-multimer to demon-

strate a correlation between competition results and peptide binding a�nities.26 Neverthe-

less, the method that the study uses to assess the competition results necessitates a compar-

ison of the modeled structures to an experimentally solved ”native” structure, which is not

available for many engineered proteins.

To bridge the remaining gap between structure prediction and protein engineering, here

we present Automated Pairwise Peptide-Receptor AnalysIs for Screening Engineered proteins

(APPRAISE), a readily interpretable and generalizable method for ranking the receptor

binding propensity of engineered proteins based on competitive structure modeling and fast

physics-informed structure analysis.

Results and discussion

The workflow of APPRAISE (Figure 1) comprises four main components. In the first step,

pairs of peptides from N candidate protein molecules (N2 pairs total) are modeled with a

target receptor using a state-of-the-art structure modeling method such as AF2-multimer.14

In the second stage, two simplified energetic binding scores are calculated for both the peptide

of interest (POI) and its competitor in each individual model. In the third, optional, step,

geometrical constraints for e↵ective binding are applied to these scores. Finally, the score

di↵erence between the POI and the competitor is used to determine the result of each

competition, and the peptides are ranked based on the matrix of competition results.
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PO
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Pair-wise structure modeling Calculate energetic binding scores Ranking based on relative scores 

Receptor

Apply geometrical constraints

APPRAISE 1.0+
APPRAISE 1.1+

Ranking receptor binding propensities of protein variants with APPRAISE

Nclash, competitor = 1Ncontact, competitor = 94

Sabsolute, competitor= max(94 - 1*1000, 0) = 0

Ncontact, POI = 131 Nclash, POI = 0

Sabsolute, POI= max(131 - 0*1000, 0) = 131

✓

Nclash, competitor = 1Ncontact, competitor = 94

Sabsolute, competitor= max(94 - 1*1000, 0) = 0

Ncontact, POI = 131 Nclash, POI = 0

Sabsolute, POI= max(131 - 0*1000, 0) = 131

✓

Candidate peptide
Competitor peptide

!!"!#$!%&'()*

= !()*	- !'+,-!%&%+#
Δ!()*,'+,-!%&%+#

!!"!#$!%&''+,-!%&%+#

! = !!"!#$!%&' + !("$)!

! = !!"!#$!%&' + !("$)! + !*!+%,

APPRAISE 1.1:

APPRAISE 1.2:

Figure 1: Workflow of Automated Pairwise Peptide-Receptor AnalysIs for Screen-
ing Engineered proteins (APPRAISE). First, peptides from the receptor-binding region
of the engineered protein candidates are modeled in pairs in complex with the target receptor
using tools like AF2-multimer or ESMFold. Second, a non-negative energetic binding score
based on atom counting is calculated for each peptide in the pair. Third, in APPRAISE
1.1+, additional geometrical constraints that are important for peptide binding are consid-
ered. Finally, a relative score for each individual match is calculated by taking the di↵erence
of the score for the peptides, and a matrix of the averaged relative scores is used to determine
the ranking of the peptides.

APPRAISE can accurately classify receptor-mediated brain trans-

duction of viral vectors

We first developed APPRAISE to predict the binding propensities of engineered Adeno-

Associated Viral (AAV) capsids for brain receptors. Recombinant AAVs are widely used

as delivery vectors for gene therapy due to their relative safety as well as their broad and

engineerable tropism. In vivo selections from libraries of randomized peptide-displaying AAV

variants have yielded capsids that can transduce the animal brain,1,2,30–34 an organ tightly

protected by the blood-brain barrier (BBB). Widely-known examples among these capsids

are AAV-PHP.B1 and AAV-PHP.eB,30 two AAV9-based35 variants displaying short (7aa-

9aa) surface peptides. The two variants can e�ciently deliver genetic cargo to the brains

of a subset of rodent strains. Genetic and biophysical studies have revealed that the BBB

receptor for PHP.B/PHP.eB in these trains is LY6A, a GPI-anchored membrane protein.36–38

A dataset comprising peptide-displaying AAV capsids that were engineered in a similar way
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as PHP.B/eB was collected in order to train the APPRAISE method(Figure S1). Although

binding between the AAV and the LY6A receptor is dynamic39,40 and therefore challenging

to be quantitatively measured, we could infer the binary LY6A-binding profiles of AAV

capsids from their di↵erential brain transduction profiles in mice strains with and without

the receptor, producing a training set of peptide-displaying AAV capsids(Figure S1).

One challenge for modeling AAV capsids is that they are huge complexes made of 30,000+

amino acids (aa). In order to reduce computational costs for structure modeling and avoid

complications arising from non-specific interactions, we modeled each AAV capsid variant

using a single peptide spanning the engineered region (Figure 2a). This peptide (residues

587-594 in the VP1 sequence) includes 7 inserted residues and 8 contextual residues flanking

the insertion. All of these residues are surface-exposed and may make direct contact with

the receptor in the assembled capsid. Modeling this surface peptide (15 aa) is far less com-

putationally intensive than modeling the entire capsid or even an asymmetric capsid subunit

(500+ aa). In addition, compared to the latter, it may improve accuracy by eliminating

competing interactions of residues normally buried in inter-subunit interfaces.

To discriminate relatively small di↵erences in receptor binding propensities of candidate

peptides, we modeled the peptides pairwise in competition for the target receptor.26,41 To

evaluate the competition results e�ciently, we designed a score based on simple atom count-

ing as a rough estimate of the interface free energy between the peptide of interest (POI)

and the receptor in a structure model (Figure 2b). This score, which we term the energetic

binding score (BPOI

energetic
, simplified as B

POI

0 ), is a non-negative value calculated from the

numbers of contacting and clashing atoms at the interface (Eq. 1). We describe the detailed

rationale behind this score in the Methods.

B
POI

0 = B
POI

energetic
= max(NPOI

contact
� 103 ·NPOI

clash
, 0) (1)
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To take full advantage of the information encoded in the competitive binding models,

we further derived a “relative binding score” as inspired by the “specificity strategy” for

protein-protein interface design.42 The relative score by taking the di↵erence between the

absolute scores for the POI and competitor peptide (Eq. 2), rewarding POIs that destabilize

the binding of competing peptides.

�B
POI,competitor

0 = B
POI

0 � B
competitor

0 (2)

For an engineered protein to e↵ectively bind to a membrane receptor, it must meet certain

geometrical constraints (Figure 2c). In order to utilize this geometrical information, which is

likely unused by structure-prediction tools, we incorporated two constraints that are essential

for e↵ective binding: the binding angle and the binding depth (Figure 2c-e).

The first constraint comes from the angle a binding protein can make (Figure 2c,d).

In modeling a peptide-receptor complex using the extracellular domain of the membrane

receptor (e.g., LY6A), most structure predictors (e.g., AF2-multimer) would consider the

whole surface of the domain to be accessible by the peptide. However, in biological conditions,

the membrane-facing side of the receptor is inaccessible to the engineered peptide. This

polarity of accessibility is a general property of any receptor that is closely anchored to a

larger complex. To account for the potentially huge energy cost of an engineered peptide

binding these inaccessible locations, we used a steep polynomial term to penalize peptides

that bind to the anchor-facing part of the receptor (Figure 2d, defined in the Methods

by Eq. 5). B
POI

0 is adjusted by this geometrical constraint term, rectified to be non-

negative, and �B
POI,competitor

0 is also re-calculated accordingly, yielding new scores B
POI

1

and �B
POI,competitor

1 (Eq. 3).
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�B
POI,competitor

1 = B
POI

1 � B
competitor

1 (3)

= max(BPOI

energetic
+B

POI

angle
, 0)

�max(Bcompetitor

energetic
+B

competitor

angle
, 0)

The second constraint concerns the depth of the binding pocket (Figure 2c,e). Inspired

by a previous report that the peptide-receptor distance predicted by AlphaFold2 is correlated

with the IC50 of an inhibitor peptide,26 we hypothesized that peptides binding to a deeper

pocket on the receptor surface might benefit from longer receptor residence time, which

is vital for the e�cacy of many therapeutics.43 Based on this hypothesis, we included a

pocket depth consideration in APPRAISE. We used a relative pocket depth measurement,

as opposed to an absolute peptide-receptor distance measurement, to avoid possible bias

caused by the sizes of di↵erent receptors. We used an odd polynomial term to reward

peptides that insert into deep pockets on the receptor while penalizing peptides that attach

to surface humps (Figure 2e, defined in the Methods by Eq. 6). This gives us an adjusted

score that considers both the angle constraint and the depth constraint, �B
POI,competitor

2 (Eq.

4).

�B
POI,competitor

2 = B
POI

2 � B
competitor

2 (4)

= max(BPOI

energetic
+B

POI

angle
+B

POI

depth
, 0)

�max(Bcompetitor

energetic
+B

competitor

angle
+

B
competitor

depth
, 0)

8



We compared di↵erent versions of scoring methods based on competitive modeling re-

sults using AF2-multimer modeling (Figure 2g-i). Individual matching scores with statisti-

cal significance were used to determine wins and losses, and the total matching points in a

tournament were used to rank all candidate engineered proteins (Methods). We found that

simple atom-counting-based B
POI

0 can already di↵erentiate LY6A-binding peptides from non-

binders(Figure 2g, j). Compared to B
POI

0 alone, the relative score �B
POI,competitor

0 showed

improved prediction power, a ROC-AUC of 0.800 and an AUPRC of 0.756 for the training

dataset (Figure 2h, j, k). Adding both geometrical terms, Bangle and Bdepth, into considera-

tion indeed improved the prediction accuracy of the binding score (Figure 2i-k), yielding a

ROC-AUC of 0.838 and an AUPRC of 0.845 (Figure 2j, k). Importantly, the improvement in

ROC-AUC mainly came from the low-false-positive-rate segment of the ROC curve, which

is crucial for in silico screening of engineered proteins. We name the version of APPRAISE

that considers only the angle constraint (through score �B1) APPRAISE 1.1 (Figure S2a),

and the version that considers both angle and depth constraints (through score �B2) was

named APPRAISE 1.2 (Figure 2i).

We then compared AF2-multimer-based APPRAISE 1.2 with other structure-based pep-

tide a�nity ranking methods on the AAV dataset (Figure 2k). With this particular dataset,

the model confidence scores pLDDT, pTM, and interface pTM fail to di↵erentiate whether

an AAV variant is an LY6A binder, producing worse-than-random prediction (ROC AUC

< 0.5). This is possibly due to the dynamic nature of the interaction between LY6A-binding

AAV variants and the receptor,39,40 which causes the confidence scores of the complex models

to be generally low. APPRAISE 1.2 utilizing ESMFold as the structure prediction engine,

however, performed at a comparable level to AF2-multimer-APPRAISE 1.2 (Figure S2b),

with a ROC AUC of 0.895 and AUPRC 0f 0.818 (Figure 2k).

AF2-multimer-APPRAISE 1.2 ranking outperformed all other ranking methods at the
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low-false-positive-rate end of the ROC curve, with a true positive rate of 0.714 and no false

positive predictions. The performance with stringent cut-o↵ values is particularly relevant for

protein engineering applications, where the goal is typically to identify a few positive binders

from a large number of negative, non-binding candidates. The superiority of AF2-multimer-

APPRAISE 1.2 in dealing with this kind of imbalanced library is also evidenced by its highest

AUPRC. Because of this, we chose to characterize AF2-multimer-APPRAISE 1.2 further.

In the following text, ’APPRAISE’ will be used to refer to AF2-multimer-APPRAISE 1.2

unless otherwise specified.
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Figure 2: Binary classification of receptor-binding AAV capsids using physical
and geometrical principles. See the next page for the caption.
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Figure 2: Binary classification of receptor-binding AAV capsids using physical
and geometrical principles. a, a structure model of AAV-PHP.eB, highlighting the site
for inserting the displayed peptide (orange) and the peptide used for APPRAISE modeling
(yellow or orange). The left image shows the whole AAV capsid made of 60 structurally
identical subunits. The two images on the top right show a top view and a side view around
the 3-fold axis, respectively. The three subunits that make the trimer are colored blue, cyan,
and white. The sequence corresponding to the peptides is shown in the bottom right. b, An
example showing the calculation process of a relative energetic binding score. The number
of contacting atoms (< 5 Å) and the number of clashing atoms (< 1 Å) for each peptide
in the competition are counted, and an absolute energetic binding score is calculated based
on the counts according to Eq. 1. A di↵erence between the two numbers, or the relative
energetic binding score, is then calculated. The competition result between two peptides
is determined using the average of relative binding scores across 10 replicates. The matrix
of the mean scores is then used to rank the peptides of interest (POIs). c, A simplified
geometrical representation of a peptide-receptor model, where the hull of the receptor is
represented by an ellipsoid (blue). Point O: the center of mass of the receptor. Point
A: the terminus of the receptor that is attached to an anchor. Segment OB: the minor
axis of the ellipsoid receptor hull. Point C: the deepest point on the candidate peptide
(orange). ✓: the binding angle of the peptide. d: the binding pocket depth of the peptide. d,
The angle constraint function. Three representative scenarios with di↵erent binding angles
are highlighted. e, The depth constraint function. Three representative scenarios with
di↵erent binding depths are highlighted. f, Comparison of the averaged relative binding
energy scores before geometry-based adjustments vs. after adjustments. g-i Heatmaps
representing the matrix of mean scores 22 AAV9-based capsid variants, including g mean
absolute binding scores, h mean relative binding scores, and i mean relative binding scores
that have considered both angle and depth constraints. All heatmap matrices were sorted
by point-based round-robin tournaments (Methods). Bracketed numbers in the row labels
are LY6A-binding profiles of the capsids inferred from experimental evidence (Figure S1).
Each block in the heatmap represents the mean score measured from 10 independent models.
j-k, comparison of di↵erent ranking methods used as binary classifiers to predict the LY6A-
binding profile of 22 AAV9-based capsid variants.j, comparison between rankings given by
di↵erent versions of APPRAISE scores using AF2-multimer as the structure prediction tool.
k, comparison between rankings given by confidence scores of AF2-multimer versus rankings
given by APPRAISE 1.2 using either AF2-multimer or ESMFold as prediction engines. The
sequence and shape parameters of LY6A used for the modeling and analyses are included in
Table S1.
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Figure 3: AF2-multimer-APPRAISE 1.2 accurately ranks binding propensities of
di↵erent classes of engineered proteins. a-d, APPRAISE 1.2 ranking of transferrin
receptor-binding peptides and non-binding control peptides.4 a, Pairwise score matrix and
ranking of a panel of 12-aa peptides given by APPRAISE 1.2. Bracketed numbers in the
row labels are experimentally determined transferrin receptor-binding profiles of each pep-
tide.4 b, A representative AF2-multimer model result of a binding peptide (blue) competing
against a non-binding peptide (red) for binding to transferrin receptor. c-d, APPRAISE
1.2 ranking of PD-L1-binding peptides and non-binding control peptides.7 c, Pairwise score
matrix and ranking of a panel of 47-aa peptides given by APPRAISE 1.2. Bracketed num-
bers in the row labels show the PD-L1-binding profile of each peptide determined either
experimentally (for MNPD-1, MOPD-1, and sca↵old protein) or by expectation (for AAV9
and PHP.eB)..7 d, A representative AF2-multimer model result of MNPD-1 (blue), a de-
signed binding peptide, competing against a non-binding sca↵old peptide (red) for binding
to PD-L1. e-g, APPRAISE 1.2 ranking of SARS-CoV-2-S RBD-binding miniproteins.5 e,
Pairwise score matrix and ranking given by APPRAISE 1.2. Bracketed rankings in the row
labels are determined based on experimentally measured IC50 of each miniprotein to neu-
tralize live SARS-CoV-2.5 f, A representative AF2-multimer model result of LCB1 (blue),
a SARS-CoV-2-S RBD-binding miniprotein, competing against an influenza virus-binding
miniprotein6 (red). g, A scatter plot showing the correlation between APPRAISE-predicted
ranking and experimentally-measured IC50 ranking of all miniproteins tested. Blue points
highlight binders that showed the capability of complete neutralization of the SARS-CoV-2
virus in the tested range of concentration in vitro. h-j, APPRAISE 1.2 ranking of �2 adrener-
gic receptor-binding nanobodies.3 h, Pairwise score matrix and ranking given by APPRAISE
1.2. Bracketed numbers in the row labels are rankings of experimentally measured binding
of each nanobody.3i, A representative AF2-multimer model result of Nb6B9 (blue), the
strongest evolved binder to active �2AR, competing against Nb80 (red), the nanobody used
for the evolution. j, A scatter plot showing the correlation between APPRAISE-predicted
ranking and experimentally-measured ranking by �2AR binding of all nanobodies tested.
Sequences and shape parameters of all receptors are included in Table S1. Each block in the
heatmap represents the mean score measured from 10 independent models. For compari-
son, rankings given by AF2-multimer-APPRAISE 1.0, ESMFold-APPRAISE 1.2, and inter-
face pTM of SARS-Cov2-S RBD binding miniproteins and �2 adrenergic receptor-binding
nanobodies are shown in Figure S3.
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APPRAISE is generally applicable to diverse classes of engineered

proteins

To determine the applicability of APPRAISE to di↵erent classes of engineered proteins, we

applied the method to four classes of engineered protein binders targeting four representative

receptors for therapeutics.

We first applied APPRAISE 1.2 to other short peptide binders (Figure 3a-d). In the first

trial, the method successfully ranked a peptide selected by phage display to bind human

transferrin receptor,4 a well-characterized BBB receptor, over non-binding counterparts of

the same length (Figure 3a). In the second trial, evaluating two 47aa-long, rationally-

designed PD-L1 binding peptides7) against the sca↵old and length-matched AAV variable

region segments, both designed PD-L1 binding peptides were clear winners (3c).

We next tested whether APPRAISE 1.2 can be used to evaluate larger proteins, for ex-

ample, computationally designed miniproteins (50-90 aa) that bind to the receptor-binding

domain (RBD) of SARS-CoV-2 spike protein5 (Figure 3e-g). Among the designed minipro-

teins, 5 can neutralize live SARS-CoV-2 virus in vitro with IC50 from 20 pM to 40 nM.5

The APPRAISE 1.2 rankings of the 5 neutralizing miniproteins matched well with their

IC50 rankings (Spearman’s ⇢ = 0.90, p = 0.037, Figure 3g). The predictive accuracy of AP-

PRAISE decreased when non-neutralizing miniproteins were included (Spearman’s ⇢ = 0.88,

p < 0.001, Figure 3g); nevertheless, the top 4 binders still remained on the top.

Finally, we used APPRAISE to rank 6 nanobodies (120 aa) that were evolved experimen-

tally3 to bind to an activated conformation of �2 adrenergic receptor (�2AR), a G-protein-

coupled receptor (GPCR) (Figure 3h-j). APPRAISE 1.2 correctly found the strongest

evolved binder and placed the parent (the weakest binder among all candidates) at the

bottom (Figure 3h). The overall predicted ranking correlated well with the ranking from ex-

perimentally determined binding readouts3 (Spearman’s ⇢ = 0.89, p = 0.02, Figure 3j). The

ability of APPRAISE to predict the binding a�nity of nanobodies, a widely-used therapeutic

modality, expands its value for drug design and development.
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We also tested the performance of alternative ranking methods on the miniprotein dataset

and the nanobody dataset. AF2-multimer-APPRAISE1.2 again yielded the most accurate

predictions when compared to AF2-multimer-APPRAISE 1.0, ESMFold-APPRAISE 1.2, or

interface pTM scores given by AF2-multimer (Figure S3), reflected by higher Spearman’s

correlation to experimental rankings. It is worth noting that ESMFold-APPRAISE 1.2 failed

completely with the miniprotein dataset (Figure S3b). Upon further inspection, we found

that the failure can be explained by the unfolded SARS-Cov-2-S RBD in ESMFold-generated

complex models.

Without any fine-tuning, AF2-multimer-APPRAISE 1.2 demonstrated consistent pre-

diction ability for ranking all four classes of proteins, including experimentally-selected and

rationally-designed peptides, computationally-designed miniproteins, and nanobodies.

HT-APPRAISE screening can identify novel receptor-dependent

capsid variants

We next attempted to adapt APPRAISE 1.2 for in silico screening. The computational cost

of the original pairwise competition grows quadratically with the number of input variants,

which is unsuitable for high-throughput screening. To address this scalability issue, we de-

signed a two-stage screening strategy we named high-throughput (HT)-APPRAISE (Figure

4a). The first stage aims to shrink the size of the variant library using a less accurate yet

simpler modeling method. Variants are randomly pooled into groups of 4 and compete within

each group. To reduce grouping bias, at least two sets of competitions with di↵erent group-

ings are performed in parallel. The variants are then ranked by their B
POI

2 . The number of

competitions required for the first stage of HT-APPRAISE grows linearly with the number

of variants in the starting library, making this stage highly scalable. In the second stage,

the top variants selected from the first stage are subjected to standard pairwise competition

with APPRAISE 1.2, yielding a matrix of �B
POI,competitor

2 and a more accurate ranking.

We tested our HT-APPRAISE in silico screening method for LY6A binding with a library
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of 100 capsid variants (Figure 4b-c). This library is composed of 97 capsid variants randomly

chosen from a list of 9,000 variants showing superior brain enrichment in C57BL/6J mice

compared to the wild-type AAV9 capsid2 as well as three spiked-in capsids: the variants

PHP.B and PHP.D, and the wild-type AAV9 (Table S2). PHP.D is a brain-transducing

capsid identified in a recent directed evolution campaign in our lab, the relevant receptor for

which was unknown.

We completed the HT-APPRAISE screening within 24 hours using 3 parallel Google

Colaboratory GPU sessions and a laptop computer. In both stages of the screening process,

the most time-consuming step was the structural prediction, which took approximately 0.1-1

GPU minute per peptide-LY6A model (a complex made of 114 aa total). The time cost for

structural analysis was negligible in comparison, taking less than 1 second per model on a

CPU. After the first stage of screening, both PHP.D and PHP.B appeared in the top 15% of

the library (ranked by B
POI

2 ) (Figure 4b). ). In the second stage, the top 18 capsids were

ranked using pairwise APPRAISE 1.2 (Figure 4c). PHP.D and PHP.B were the 1st and the

4th in the final ranking.

The most intriguing aspect of PHP.D’s result is that its variable region bears little se-

quence similarity to any of the LY6A-dependent variants used to develop the APPRAISE

method (Figure 4d-e). To confirm this prediction result, we experimentally tested PHP.D’s

LY6A dependency. An in vitro viral infection assay showed that PHP.D indeed exhibits

LY6A-enhanced transduction of HEK293T cells (Figure 4f). In addition, in vivo systemic

delivery of PHP.D packaging a ubiquitously-expressed fluorescent protein revealed that the

brain transduction capability of this capsid variant is restricted to LY6A-expressing mouse

strains (Figure 4g). The ability of HT-APPRAISE to identify binders with distinct sequences

highlights the generalizability of the physics-informed, sequence-structure/structure-function

strategy.
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Figure 4: An in silico HT-APPRAISE screening of a medium-sized AAV library
identifies a LY6A-dependent variant with a distinct sequence. See the next page
for the caption.
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Figure 4: An in silico HT-APPRAISE screening of a medium-sized AAV library
identifies a LY6A-dependent variant with a distinct sequence. a, A schematic
showing the two-stage strategy for e�cient in silico screening of a variant library. In the
first stage, M variants of interest are grouped into groups of 4 and compete against one
another for receptor binding. At least two di↵erent groupings are used in parallel to reduce
the grouping bias. Each peptide’s mean absolute binding score is used for selecting the top N
variants. In the second stage, the N variants compete pairwise using standard APPRAISE to
get a more accurate ranking. b-c, Results from a proof-principle screening with 100 AAV9-
based variants, including the wild-type control and variants with 7aa insertions. 97 variants
were randomly chosen from a list of 9000 variants2 that showed higher brain enrichment
than the wild-type AAV9 after one round of screening in C57BL/6J mice. PHP.B and
PHP.D, two known strong brain transducers, as well as wild-type AAV9, are spiked into
the library. Peptide sequences used for the screening can be found in Table S2. b, Results
from stage 1. Each variant’s absolute binding scores from 10 separate models are shown
as individual dots. The mean score is printed below the dots and shown as a horizontal
bar. Scores of PHP.D (ranked 3rd), PHP.B (ranked 13th), and AAV9 (ranked 100th) are
highlighted. c, Results from stage 2. Rows corresponding to Scores of PHP.D (ranked 1st),
PHP.B (ranked 4th) are highlighted. Each block in the heatmap represents the mean score
measured from 10 independent models. d-g, Characterization of PHP.D, a variant that
tops the in silico screening. d, Sequence alignment and phylogenetic tree of known LY6A-
dependent brain transducing variants. The sequence of PHP.D is very di↵erent from all other
variants. The alignment and sequence distances were generated with Clustal Omega.44 The
colored alignment is plotted with Snapgene software. Blue: conserved hydrophobic residues;
green: conserved hydrophilic residues; orange or yellow: conserved unique residues (glycine or
proline). e, Sequence identity matrix of the LY6A-dependent variants. f, In vitro infectivity
assay in HEK293T cells. PHP.D and PHP.eB showed LY6A-enhanced transduction, while the
negative control PHP.C2 did not show LY6A-enhanced transduction. AAV capsids carrying
a fluorescent protein expression cassette were applied to HEK293T cells either transfected
with Ly6a or not at 5 ⇥ 108 vg per well in a 96-well plate. Images were taken 24hr after
transduction. n=3 per condition. Scale bar, 250 µm g, In vivo brain transduction of PHP.D
vs. AAV9 in two di↵erent mice strains. PHP.D showed strain-restricted transduction in only
the LY6A+ strain, C57BL/6J. Viruses carrying a fluorescent protein expression cassette were
injected intravenously at 3⇥ 1011 vg per animal, and the tissues were harvested and imaged
3 weeks after injection. n=3 per condition. Scale bar, 2mm.
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Discussion

Here we describe APPRAISE, a structure-based, physics-informed method that accurately

ranks receptor binding propensities of engineered proteins. APPRAISE uses a competitive,

pairwise modeling strategy to capture a�nity di↵erences between even proteins with similar

sequences and takes into account biophysical and geometrical principles. Using state-of-the-

art structure prediction tools like AF2-multimer, we show that APPRAISE’s predictions are

accurate and generalizable across five di↵erent classes of engineered proteins.

The competition-based structure modeling strategy addresses the challenge of assessing

small di↵erences in binding a�nity with high accuracy. This challenge was highlighted by

a recent benchmarking study using AF2 models for molecular docking of small-molecule

antibiotic candidates. The authors reported that the prediction power of the direct physics-

based scoring is no better than a random model.45 By contrast, a competition-based modeling

strategy might have helped cancel the shared noise and amplify the signal arising from

the small a�nity di↵erences. The competition setup forces the structure-prediction neural

network to put only the more probable binder close to the receptor (Figure 3b, d, f, i),

converting a small probabilistic di↵erence into a binary output.

A key feature of APPRAISE is that its analysis module uses only information stored

in the 3D coordinates, making it potentially compatible with other computational tools for

protein engineering. For example, the structure-prediction tool used in APPRAISE can, in

theory, be replaced by any current or future structure-prediction tools. In addition, the scores

generated by APPRAISE are complementary to confidence scores generated by structure-

prediction neural networks that also predict binding.12,14,17,46 Moreover, APPRAISE can be

an orthogonal validation tool for structure-based protein design methods,47–49 particularly

those that rely on optimization of predicted confidence scores.50

The scalable, two-stage HT-APPRAISE strategy we designed allows in silico screening of

protein candidates for receptor binding (Figure 4). Such screening can help prioritize leading

candidates during drug discovery, reducing the huge time, financial, and environmental costs
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of experimental validation. For example, the computational tasks needed for the screening

of 100 AAV variants that we presented here (Figure 4) could be completed within 24hr

with research-grade computational resources. Similar scaled in vivo characterization of the

capsids would have taken several months. In addition, the scale of a similar screening could

be dramatically expanded in an industry setting with high-performance computing resources.

APPRAISE has several limitations that are a result of competition-based ranking. One

such limitation is that APPRAISE only outputs the relative, not the absolute, probability

of binding. Therefore, a variant’s position at the top of the final ranking does not, in and

of itself, indicate that the variant has experimentally detectable binding a�nity unless there

are positive controls with known binding to compare against. Another limitation is that

APPRAISE assumes that the binding of candidate proteins is mutually exclusive, though

this can be proven false in some instances when the proteins bind to separate, far-apart

epitopes.

Other limitations of APPRAISE may arise from the protein structure prediction engine

that it relies on. For example, ESMFold-APPRAISE fails when the protein-language based

prediction tool cannot fold the protein in a complex properly (Figure S3b), while AF2-

multimer-APPRAISE results can possibly be biased by the specific selection of multiple-

sequence alignments due to the dependence on co-evolutionary information by AF2-multimer.

Moreover, the accuracy and speed of APPRAISE may be compromised when the modeled

proteins contain long disordered regions or large domains that are unnecessary for binding.

As a result, pre-screening of several truncated protein constructs for minimal folding domains

with the particular structure prediction tool (similar to the common practice in structural

biology) may sometimes be needed. Additionally, the APPRAISE method is not as e↵ective

in ranking very weak binders in a pool (e.g., Figure 3g), perhaps because the predicted

structures do not o↵er many opportunities for meaningful interaction with the receptor in

a competitive setting, resulting in near-zero B
POI

2 values. Fortunately, this should not be a

practical concern for most protein engineering applications since the most valuable candidates
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are usually those that bind with higher a�nities.

While APPRAISE has proven to be successful in ranking the binding propensities of

di↵erent classes of protein variants, its accuracy and speed could be further improved. For

example, the parameters of APPRAISE 1.2’s scoring function have only been minimally

tuned to proper orders of magnitudes to decrease the risk of over-fitting (Methods). With

further fine-tuning of parameters and the ever-growing power of protein structure prediction,

the APPRAISE method promises to streamline the process of engineering protein-based

therapeutics.

Methods

APPRAISE Methodology

The code and demos for APPRAISE are available through a public Github repository:

https://github.com/GradinaruLab/APPRAISE.

Modeling of peptide-receptor complexes using AF2-multimer

Peptide-receptor models are modeled using Colabfold (Python package index: alphafold-

colabfold 2.1.14), an implementation of integrated multiple-sequence alignment generation

with MMseqs2 and structure modeling with AF2-multimer-v2.14,15,51–54 First, batches of

*.fasta files containing combined receptor sequences (Table S1) and peptide sequences for the

pairwise competition or pooled competition, where the protein chains are separated by the ”:”

symbol, are prepared using a customized Python function (appraise.input fasta prep.get complex fasta).

Second, the *.fasta files are used as input files for the ”batch” Jupyter notebook in the Co-

labfold package, and the notebook is run on Google Colaboratory using a V100 SXM2 16GB

GPU or an A100 SXM4 40GB GPU. The settings used for the modeling are listed below:

msa_mode = "MMseqs2 (UniRef+Environmental)"
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num_models = 5

num_recycles = 3

stop_at_score = 100

use_custom_msa = False

use_amber = False

use_templates = True

model_type = "auto" #or "AF2-multimer-v2"

Modeling of peptide-receptor complexes using ESMFold

To model the peptide-receptor complexes using ESMFold, a process analogous to the one

employed for AF2-multimer modeling is implemented. First, batches of *.fasta files contain-

ing combined receptor sequences (Table S1) and peptide sequences for the pairwise com-

petition or pooled competition, where the protein chains are separated by a poly-glycine

linker (30 glycine residues), are prepared using the same customized Python function (ap-

praise.input fasta prep.get complex fasta()). Second, the *.fasta files are used as input files

for a custom Jupyter notebook with codes adapted from the Colabfold package for batch

modeling using ESMFold, and the notebook is run on Google Colaboratory using an A100

SXM4 40GB GPU. The custom Colab notebook is included in the APPRAISE package:

ColabFold_ESMFold_batch_run.ipynb.

Physics-informed analysis of individual structure models

The output folder containing *.pdb files generated by alphafold-colabfold is downloaded to a

local computer for processing. Key parameters in a predicted structure model are measured,

and the measurements are used to generate binding scores for each peptide in a model.
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Automated quantification of the peptide-receptor models

The structure models are analyzed using PyMOL 2.3.3 using a custom PyMOL script.

Briefly, the script loads all *.pdb models in a directory, extracts metadata from the file

names, and measures the relevant contact atom numbers, angles, and distances. The mea-

surements are saved as a *.csv file. The custom PyMOL script is included in the APPRAISE

package: pymol_quantify_peptide_binding.py.

Measurement of the Rminor of the receptor hull

The receptor shape parameter Rminor, which is necessary for APPRAISE 1.2, is obtained by

measuring the shape parameters of an AlphaFold-modeled receptor structure. Briefly, the

monomeric receptor (Table S1) is modeled using Colabfold (Python package index: alphafold-

colabfold 2.1.14). The top model is then analyzed using HullRad v8.155 to obtain its major

axis diameter Dmax and aspect ratio P . Rminor is then calculated using the formula Rminor =

Dmax/P/2. Before the analysis, Rminor measurement is manually added as a column to

pandas dataframe storing PyMOL measurements with a column title ”R minor”.

Construction and calculation of Benergetic

We defined a contact atom to be a non-hydrogen atom of either the receptor or the peptide

that is within 5Å of the binding partner in the peptide-receptor model since atoms within

this distance cuto↵ are responsible for most protein-protein interactions.56 We defined a

clashing term to be the number of non-hydrogen atoms in the peptide that are within 1Å

of the receptor since this distance is smaller than the typical diameter of an atom and can

cause a huge Van der Waals strain. To find the suitable weight for the clashing term, we

estimated the relative energy scales using Lennard-Jones potential and concluded that an

order of magnitude of 103 should be proper (Eq. 1). Since most interfaces between the

engineered peptide and the receptor have up to a few hundred of non-hydrogen atoms (tens

of residues) in the interface, this heavy weight for the clashing atom practically sets the
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B
POI

0 of any peptide with steric clashing against the receptor to 0. In other words, Eq. 1 is

practically equivalent to:

B
peptide

energetic
=

8
>><

>>:

N
peptide

contact , if Npeptide

clash
= 0

0, if Npeptide

clash
>= 1

Construction and calculation of geometrical scores

The binding angle ✓ is defined as the angle between the vector from receptor center of mass

to receptor anchor
�!
OA and the vector from receptor center of mass to peptide center of mass

��!
OC

0 (Figure 2f. Note that the peptide center of mass C 0 is usually very close to the deepest

point C, and therefore point C and point C 0 are undi↵erentiated in this schematic). A steep

function is used to penalize inaccessible binding angles that are close to the anchor point:

B
peptide

angle
=

8
>><

>>:

�103 · (1� ✓
⇡
2
)10, if ✓ <

⇡

2

0, if ⇡

2 <= ✓ <= ⇡

(5)

The definition of binding depth d is a simplification of previously defined travel depth:57

we first calculate the hydrodynamic radius of the hull of the receptor at the minor axis

(Rminor) using HullRad,55 and then take the di↵erence of the distance between the “closest

point on the peptide” to the receptor center and Rminor. The ratio between the di↵erence

and Rminor is defined as the depth. In other words, binding depth d = kOBk�kOCk
kOBk where

kOBk is the minor axis radius (in Å) of the receptor hull when considering it as an ellipsoid

(Figure 2f), and kOCk is the distance (in Å) between the center of mass of the receptor and

the closest point on the peptide (Figure 2f). An odd polynomial function is used to construct

the score to reflect both the positive e↵ect of a deep binding pocket and the negative e↵ect

of a convex binding site:
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B
peptide

depth
= 102 · d3 (6)

Calculation of scores for each peptide in a model

The total binding scores for each peptide in a model are calculated using Eqs. 1-4 in the

main text.

Generation of the score matrix and a ranking

The total binding scores of a POI vs. a competitor across 10 replicate models are averaged

to get �B
POI,competitor

(�B
POI,competitor

0 for APPRAISE 1.0, �B
POI,competitor

1 for APPRAISE

1.1, or �B
POI,competitor

2 for APPRAISE 1.2). These individual scores are then used to create

a matrix and are plotted as a heatmap.

In the final score matrix, the POIs are ranked using a point-based round-robin tournament

system58 to avoid the bias caused by individual competitions with unusually high scores.

Briefly, each �B
POI,competitor

in the matrix is considered as the match result between a POI

and a competitor. A POI gains 1 point for winning over each match and loses 1 point for

losing each match. (In the cases when |�B
POI,competitor| does not reach the threshold of

p < 0.05 using a one-sample, two-sided, Student’s t test (degree of freedom=9), the match

is called a tie, and the POI gets 0 points from the match.)

Demo

A Jupyter notebook demonstrating the procedures of APPRAISE, using the HT-APPRAISE

screening (Figure 4) as an example, is included in the APPRAISE package:

demo/HT-APPRAISE_demo.ipynb

Additional demo notebooks for other applications can be found under the additional_misc_demos

folder.
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Experimental Validations

In vitro infectivity assay

HEK293T cells were seeded in 6-well plates at 80% confluency and maintained in Dulbecco’s

Modified Eagle Medium (DMEM) supplemented with 5% fetal bovine serum (FBS), 1%

non-essential amino acids (NEAA), and 100 U/mL penicillin-streptomycin at 37°C in 5%

CO2. Cells were transiently transfected with 2.53 µg plasmid DNA encoding an expression

cassette for the LY6A receptor. The following day, receptor-expressing cells were transferred

to black, clear bottom 96-well plates at 20% confluency and maintained in FluoroBrite™

DMEM supplemented with 0.5% FBS, 1% NEAA, 100 U/mL penicillin-streptomycin, 1x

GlutaMAX, and 15 µM HEPES at 37°C in 5% CO2. Engineered AAV variants packaging a

CAG-mNeonGreen transgene were dosed in triplicate at 5E8 vg per well once the cells were

attached. Plates were imaged 24 hours after AAV was introduced to cells with a Keyence

BZ-X700 using a 4x objective and NucBlue™ Live ReadyProbes™ Reagent (Hoechst 33342)

to autofocus each well.

In vivo mouse experiment

For all the experiments performed in this study, the animals were randomly assigned, and the

experimenters were not blinded while performing the experiments unless mentioned other-

wise. All animal procedures in mice were approved by the California Institute of Technology

Institutional Animal Care and Use Committee (IACUC), Caltech O�ce of Laboratory Ani-

mal Resources (OLAR) and were carried out in accordance with guidelines and regulations.

For the profiling of the novel AAVs in mice (C57BL/6J and BALB/cJ), the AAV vectors

were injected intravenously via the retro-orbital route to 6-8 week old adult mice at a dose

of 3⇥ 1011 vg per mouse. Retro-orbital injections were performed as described previously.59

To harvest the tissues of interest after 3 weeks of expression, the mice were anesthetized

with Euthasol (pentobarbital sodium and phenytoin sodium solution, Virbac AH) and tran-
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scardially perfused using 50 mL of 0.1 M phosphate bu↵ered saline (PBS) (pH 7.4), followed

by 50 mL of 4% paraformaldehyde (PFA) in 0.1 M PBS. The organs were collected and

post-fixed 24 h in 4% PFA at 4°C. Following this, the tissues were washed with 0.1 M PBS

and stored in fresh PBS-azide (0.1 M PBS containing 0.05% sodium azide) at 4°C. Before

imaging, the 100µm slices of tissue were cut using a Leica VT1000S. Brain images were

acquired with a Zeiss LSM 880 confocal microscope using a Plan-Apochromat 10× 0.45 M27

(working distance 2.0 mm) objective. Zen Black 2.3 SP1 was used to process the images.

Ethical approval

All animal procedures in mice were approved by the California Institute of Technology In-

stitutional Animal Care and Use Committee (IACUC), Caltech O�ce of Laboratory Animal

Resources (OLAR) and were carried out in accordance with guidelines and regulations.
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Supplementary Figures

a

Variant 
name Ref.

Modeled peptide 
sequence

C57BL/6J 
brain?

BALB/c 
brain?

Inferred LY6A 
dependency

PHP.B Deverman et al. AQTLAVPFKAQAQTG ✓ ✕ True*

PHP.eB Chan et al. DGTLAVPFKAQAQTG ✓ ✕ True**

PHP.B2 Deverman et al. AQSVSKPFLAQAQTG ✓ ✕ True*

PHP.B3 Deverman et al. AQFTLTTPKAQAQTG ✓ ✕ True*

PHP.N Kumar et al. AQTLAVPFSNPAQTG ✓ ✕ True
PHP.V1 Kumar et al. AQTALKPFLAQAQTG ✓ ✕ True
PHP.V2 Kumar et al. AQTTLKPFLAQAQTG ✓ ✕ True
PHP.C1 Kumar et al. AQRYQGDSVAQAQTG ✓ ✓ False
PHP.C2 Kumar et al. AQWSTNAGYAQAQTG ✓ ✓ False
PHP.C3 Kumar et al. AQERVGFAQAQAQTG ✓ ✓ False
AAV9 Gao et al. AQ-------AQAQTG ✕ ✕ False**

MacPNS1 Chen et al. AQPHEGSSRAQAQTG ✕ - False
MacPNS2 Chen et al. AQPNASVNSAQAQTG ✕ - False
NB-1 Kumar et al. AQSLDTTKGAQAQTG ✕ - False
NB-2 Kumar et al. AQESRGLSLAQAQTG ✕ - False
NB-3 Kumar et al. AQMIRGLDTAQAQTG ✕ - False
NB-4 Kumar et al. AQNGDLTRSAQAQTG ✕ - False
NB-5 Kumar et al. AQTKREIDYAQAQTG ✕ - False
NB-6 Kumar et al. AQMHHGMEIAQAQTG ✕ - False
NB-7 Kumar et al. AQTPRMDTFAQAQTG ✕ - False
NB-8 Kumar et al. AQVHRDLNFAQAQTG ✕ - False
NB-9 Kumar et al. AQTARKEEFAQAQTG ✕ - False

* LY6A binding had been confirmed by cell binding assay
** LY6A dependency had been biochemical and genetic assays

c

b

Figure S1: Prior experimental studies revealing the receptor dependency of some
brain-transducing AAV variants. a, A schematic showing an AAV capsid binding to
a blood-brain barrier receptor (BBB) receptor that is only expressed at a high level on the
endothelial cells of certain mouse strains.36–38 b, A schematic showing how we can infer
whether an AAV capsid can use LY6A, a mouse BBB receptor, by characterizing its brain
transduction across di↵erent strains. A capsid that has strain-restricted brain transduction
in C57BL/6J mice is likely LY6A-dependent, while a capsid that has cross-strain brain
transduction or does not transduce the brain is not LY6A-dependent. c, A table summarizing
all 22 capsids used in Figure 2 with their source literature, sequence, brain transduction
profile, and inferred LY6A dependency.
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a b

Figure S2: Heatmaps representing score matrices of AF2-multimer-APPRAISE
1.1 and ESMFold-APPRAISE 1.2.

a b

d e

c

f

Figure S3: Ranking protein binders using alternative methods. Rankings of two
groups of peptides analyzed in Figure 3g, j based on a, d) AF2-multimer-APPRAISE 1.0,
b, e) ESMFold-APPRAISE 1.2, and c, f) interface pTM given by AlphaFold-multimer.
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Supplementary Tables

Table S1: Receptor sequences and parameters used for APPRAISE analysis

Receptor
name

Organism Uniprot
accession
ID

Domain
used for
modeling

Residue
indices
(start-end)

Dmax

(Å)
*

Axial
ratio
*

Rminor

(Å)
Anchor
site

Sequence used for modeling

Ly6a Mus
musculus
(Mouse)

P05533 Mature
protein

27-110 46.68 1.74 13.4 C-term LECYQCYGVPFETSCPSITCPYPDGV
CVTQEAAVIVDSQTRKVKNNLCLPIC
PPNIESMEILGTKVNVKTSCCQEDLC
NVAVP

PD-L1 Homo
sapiens
(Human)

Q9NZQ7 V domain 18-132 46.50 1.51 15.4 C-term AFTVTVPKDLYVVEYGSNMTIECKFP
VEKQLDLAALIVYWEMEDKNIIQFVH
GEEDLKVQHSSYRQRARLLKDQLSLG
NAALQITDVKLQDAGVYRCMISYGGA
DYKRITVKVNA

Beta-2
adrenergic
receptor

Homo
sapiens
(Human)

P07550 TM1-TM7 29-342 93.8 2.23 21.0 N-term DEVWVVGMGIVMSLIVLAIVFGNVLV
ITAIAKFERLQTVTNYFITSLACADL
VMGLAVVPFGAAHILMKMWTFGNFWC
EFWTSIDVLCVTASIETLCVIAVDRY
FAITSPFKYQSLLTKNKARVIILMVW
IVSGLTSFLPIQMHWYRATHQEAINC
YANETCCDFFTNQAYAIASSIVSFYV
PLVIMVFVYSRVFQEAKRQLQKIDKS
EGRFHVQNLSQVEQDGRTGHGLRRSS
KFCLKEHKALKTLGIIMGTFTLCWLP
FFIVNIVHVIQDNLIRKEVYILLNWI
GYVNSGFNPLIYCRSPDFRIAFQELL
CL

Transferrin
receptor 1

Homo
sapiens
(Human)

P02786 Ectodomain 122-760 86.50 1.47 29.4 N-term LYWDDLKRKLSEKLDSTDFTGTIKLL
NENSYVPREAGSQKDENLALYVENQF
REFKLSKVWRDQHFVKIQVKDSAQNS
VIIVDKNGRLVYLVENPGGYVAYSKA
ATVTGKLVHANFGTKKDFEDLYTPVN
GSIVIVRAGKITFAEKVANAESLNAI
GVLIYMDQTKFPIVNAELSFFGHAHL
GTGDPYTPGFPSFNHTQFPPSRSSGL
PNIPVQTISRAAAEKLFGNMEGDCPS
DWKTDSTCRMVTSESKNVKLTVSNVL
KEIKILNIFGVIKGFVEPDHYVVVGA
QRDAWGPGAAKSGVGTALLLKLAQMF
SDMVLKDGFQPSRSIIFASWSAGDFG
SVGATEWLEGYLSSLHLKAFTYINLD
KAVLGTSNFKVSASPLLYTLIEKTMQ
NVKHPVTGQFLYQDSNWASKVEKLTL
DNAAFPFLAYSGIPAVSFCFCEDTDY
PYLGTTMDTYKELIERIPELNKVARA
AAEVAGQFVIKLTHDVELNLDYERYN
SQLLSFVRDLNQYRADIKEMGLSLQW
LYSARGDFFRATSRLTTDFGNAEKTD
RFVMKKLNDRVMRVEYHFLSPYVSPK
ESPFRHVFWGSGSHTLPALLENLKLR
KQNNGAFNETLFRNQLALATWTIQGA
ANALSGDVWDIDNEF

Spike SARS-CoV-2 P0DTC2 RBD 331-529 67.93 1.87 18.2 C-term NITNLCPFGEVFNATRFASVYAWNRK
RISNCVADYSVLYNSASFSTFKCYGV
SPTKLNDLCFTNVYADSFVIRGDEVR
QIAPGQTGKIADYNYKLPDDFTGCVI
AWNSNNLDSKVGGNYNYLYRLFRKSN
LKPFERDISTEIYQAGSTPCNGVEGF
NCYFPLQSYGFQPTNGVGYQPYRVVV
LSFELLHAPATVCGPKK
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Table S2: Peptides used for in silico screening

Peptide name Peptide sequence (residues 587-594 in
VP1)

Original source

AAV9 AQ-------AQAQTG Gao et al., 2002
PHP.B AQTLAVPFKAQAQTG Deverman et al. 2016
PHP.D AQWKNMGLQAQAQTG Unpublished in vivo selection
SRK-1 AQLYHGGSTAQAQTG Kumar et al. 2020
SRK-2 AQNNSVRQLAQAQTG Kumar et al. 2020
SRK-3 AQVNSTRNVAQAQTG Kumar et al. 2020
SRK-4 AQGNMTKFTAQAQTG Kumar et al. 2020
SRK-5 AQTAIQPPKAQAQTG Kumar et al. 2020
SRK-6 AQITTDQPFAQAQTG Kumar et al. 2020
SRK-7 AQDTANTARAQAQTG Kumar et al. 2020
SRK-8 AQTHDAQAWAQAQTG Kumar et al. 2020
SRK-9 AQQPLAEEAAQAQTG Kumar et al. 2020
SRK-10 AQTALANQKAQAQTG Kumar et al. 2020
SRK-11 AQTGTERLSAQAQTG Kumar et al. 2020
SRK-12 AQNGVTQSKAQAQTG Kumar et al. 2020
SRK-13 AQWTEQRLVAQAQTG Kumar et al. 2020
SRK-14 AQDTGLNNRAQAQTG Kumar et al. 2020
SRK-15 AQPLPPTSIAQAQTG Kumar et al. 2020
SRK-16 AQSDPGKFMAQAQTG Kumar et al. 2020
SRK-17 AQTTMGTMLAQAQTG Kumar et al. 2020
SRK-18 AQKQTQDSSAQAQTG Kumar et al. 2020
SRK-19 AQLAHNSALAQAQTG Kumar et al. 2020
SRK-20 AQVVPSTYRAQAQTG Kumar et al. 2020
SRK-21 AQFRHLTGAAQAQTG Kumar et al. 2020
SRK-22 AQSANLLSSAQAQTG Kumar et al. 2020
SRK-23 AQFSNTHALAQAQTG Kumar et al. 2020
SRK-24 AQFNSKLQLAQAQTG Kumar et al. 2020
SRK-25 AQFKTNISAAQAQTG Kumar et al. 2020
SRK-26 AQYPVPLKQAQAQTG Kumar et al. 2020
SRK-27 AQHVNHMAPAQAQTG Kumar et al. 2020
SRK-28 AQIVSNQMSAQAQTG Kumar et al. 2020
SRK-29 AQPRPERMYAQAQTG Kumar et al. 2020
SRK-30 AQNMKIQHVAQAQTG Kumar et al. 2020
SRK-31 AQNTNVPAMAQAQTG Kumar et al. 2020
SRK-32 AQSAQLRSSAQAQTG Kumar et al. 2020
SRK-33 AQSHHEQVSAQAQTG Kumar et al. 2020
SRK-34 AQGATGHLTAQAQTG Kumar et al. 2020
SRK-35 AQHNLRDSIAQAQTG Kumar et al. 2020
SRK-36 AQGPGTSFKAQAQTG Kumar et al. 2020
SRK-37 AQSPPVQGLAQAQTG Kumar et al. 2020
SRK-38 AQTLYNAIHAQAQTG Kumar et al. 2020
SRK-39 AQLGDITGFAQAQTG Kumar et al. 2020
SRK-40 AQGFNSMKPAQAQTG Kumar et al. 2020
SRK-41 AQSNGLNGLAQAQTG Kumar et al. 2020
SRK-42 AQVRIPGALAQAQTG Kumar et al. 2020
SRK-43 AQDMGTDNLAQAQTG Kumar et al. 2020
SRK-44 AQNYATKSQAQAQTG Kumar et al. 2020
SRK-45 AQSVTTSHVAQAQTG Kumar et al. 2020
SRK-46 AQTSGTDGIAQAQTG Kumar et al. 2020
SRK-47 AQARTAHGYAQAQTG Kumar et al. 2020
SRK-48 AQHSANMSKAQAQTG Kumar et al. 2020
SRK-49 AQHDERANMAQAQTG Kumar et al. 2020
SRK-50 AQNNFNASLAQAQTG Kumar et al. 2020
SRK-51 AQSASLVSHAQAQTG Kumar et al. 2020
SRK-52 AQAPRIDNAAQAQTG Kumar et al. 2020
SRK-53 AQLTSSNALAQAQTG Kumar et al. 2020
SRK-54 AQTLNSIRAAQAQTG Kumar et al. 2020
SRK-55 AQSGTGRQQAQAQTG Kumar et al. 2020
SRK-56 AQKTTLASGAQAQTG Kumar et al. 2020
SRK-57 AQMRVNTEEAQAQTG Kumar et al. 2020
SRK-58 AQFETLHKTAQAQTG Kumar et al. 2020
SRK-59 AQTQHRFEMAQAQTG Kumar et al. 2020
SRK-60 AQHTAEKAPAQAQTG Kumar et al. 2020
SRK-61 AQNHMVRELAQAQTG Kumar et al. 2020
SRK-62 AQRFQPSSAAQAQTG Kumar et al. 2020
SRK-63 AQRSVANVPAQAQTG Kumar et al. 2020
SRK-64 AQVFQATRTAQAQTG Kumar et al. 2020
SRK-65 AQEQRTPSPAQAQTG Kumar et al. 2020
SRK-66 AQGSSTASLAQAQTG Kumar et al. 2020
SRK-67 AQQVPHLHSAQAQTG Kumar et al. 2020
SRK-68 AQPSQPYTKAQAQTG Kumar et al. 2020
SRK-69 AQTHTRDQGAQAQTG Kumar et al. 2020
SRK-70 AQINPGITLAQAQTG Kumar et al. 2020
SRK-71 AQLQPTKSSAQAQTG Kumar et al. 2020
SRK-72 AQQDAKVTTAQAQTG Kumar et al. 2020
SRK-73 AQGASTHNAAQAQTG Kumar et al. 2020
SRK-74 AQIPVSIQAAQAQTG Kumar et al. 2020
SRK-75 AQVTSAHPVAQAQTG Kumar et al. 2020
SRK-76 AQTASLIASAQAQTG Kumar et al. 2020
SRK-77 AQDRGTRTVAQAQTG Kumar et al. 2020
SRK-78 AQTAYLEVKAQAQTG Kumar et al. 2020
SRK-79 AQATTQMSSAQAQTG Kumar et al. 2020
SRK-80 AQKYDASQSAQAQTG Kumar et al. 2020
SRK-81 AQTGTSHLHAQAQTG Kumar et al. 2020
SRK-82 AQTMTPSGIAQAQTG Kumar et al. 2020
SRK-83 AQTPSSSGNAQAQTG Kumar et al. 2020
SRK-84 AQKDVVNSNAQAQTG Kumar et al. 2020
SRK-85 AQRSPATMLAQAQTG Kumar et al. 2020
SRK-86 AQYDQKSLAAQAQTG Kumar et al. 2020
SRK-87 AQMGARNLPAQAQTG Kumar et al. 2020
SRK-88 AQLPISATEAQAQTG Kumar et al. 2020
SRK-89 AQTRHTSLTAQAQTG Kumar et al. 2020
SRK-90 AQNKLTANGAQAQTG Kumar et al. 2020
SRK-91 AQNGDSHSHAQAQTG Kumar et al. 2020
SRK-92 AQVRTDMDMAQAQTG Kumar et al. 2020
SRK-93 AQSVSTPRGAQAQTG Kumar et al. 2020
SRK-94 AQVSRQFEPAQAQTG Kumar et al. 2020
SRK-95 AQSANNVRGAQAQTG Kumar et al. 2020
SRK-96 AQIGTKSTNAQAQTG Kumar et al. 2020
SRK-97 AQGSELRTGAQAQTG Kumar et al. 2020
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