
 373 

 When modelling the effects of typhoons and land use on spatial variability of acoustic indices 374 

through time, break-point models outperformed linear models in all cases (likelihood ratio tests: p < 375 

0.05). Following the typhoons, the spatial variability of NDSI increased (Fig. S5). This post-typhoon 376 

spatial divergence in NDSI was underlain by an increase in biophony, but not anthropophony (Fig. 3). 377 

Moreover, spatial variability in biophony increased among forested sites but not among developed 378 

ones following the typhoons (Fig. 3b). NDSIAnthro did not differ significantly through time (Fig. 3c) or 379 

between land use classes (Fig. 3d). 380 

 381 

 382 

Figure 3. Spatial variability of biophony [NDSIBio] and Anthropophony [NDSIAnthro] through time. Left panels show 383 

time series of NDSIBio (a,b) and NDSIAnthro (c,d) spatial variability across all sites (a,c), and across forest (green) 384 
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and developed (purple) sites separately (b,d). Dashed lines delineate the pre- and post-typhoon periods. Right 385 

panels show the 95% confidence intervals of spatial variability across all sites (a,c), and separated by land use 386 

(b,d), for the pre-typhoon (circles) and post-typhoon (triangles) periods. Significant (p < 0.05) pairwise contrasts 387 

are denoted with different subscript/superscript letters (e.g., “a” differs from “b” but not “ab”).  388 

 389 

Automated species detection results 390 

Species identity interacted with the typhoons, producing species-specific typhoon responses 391 

(Table S3). Detections of C. macrorhynchos and O. elegans were similar preceding and following the 392 

typhoons (Fig. 4a and 4c), whereas H. diphone was detected less often after the typhoons (Fig. 4b). 393 

We also found that, following the typhoons, species detections were more stable (less variable) 394 

through time, regardless of the species considered (Fig. 5; Table S3). We found no effect of land use 395 

on the mean number of daily species detections or the temporal stability of daily detections (Table 396 

S3). 397 

 398 

 399 

Figure 4. Comparison of mean daily species detections before and after the typhoons. Posterior distributions 400 

representing 90,000 post-convergence MCMC draws of the change from pre- to post-typhoon periods, where 401 

values below zero (grey) indicate a post-typhoon decline, and values above zero (blue) a post-typhoon increase 402 

in mean daily automated species vocalisation detections. Non-zero-spanning credible intervals are marked with 403 

*, while circles indicate zero-spanning credible intervals (no change based on the posterior distribution). Draws 404 

are shown per site, ordered from most forested (top) to most developed (bottom) based on principle 405 

component axis 1 of the land use dimensionality reduction (PCA; see Fig. S1). Panels represent changes in mean 406 

daily species detections for our three focal species: Corvus macrorhynchos (a), Horornis diphone (b), and Otus 407 
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elegans (c). Inferred posterior draws (automatically computed through the site random effect term) 408 

extrapolated to field sites where species were not present (Table S1) are shown as faded distributions. 409 

 410 

 411 

Figure 5. Comparison of temporal stability of species detections before and after the typhoons. Posterior 412 

distributions represent 90,000 post-convergence MCMC draws of the change from pre- to post-typhoon 413 

periods, where values below zero (grey) indicate a post-typhoon decline, and values above zero (blue) a post-414 

typhoon increase in the temporal stability of automated species vocalisation detections (all species). Non-zero-415 

spanning credible intervals are marked with *, while circles indicate zero-spanning credible intervals (no change 416 

based on the posterior distribution). Draws are shown per site, ordered from most forested (top) to most 417 

developed (bottom) based on principle component axis 1 of the land use dimensionality reduction (Fig. S1).  See 418 

Figure S6 for posterior draws of individual species.  419 

 420 

When modelling the effects of typhoons, land use, and species identity on spatial variability of 421 

bird detections through time, break-point models did not perform significantly better than models 422 

without break point terms based on likelihood ratio tests (Spatial variability across all sites: L.Ratio13,7 423 

= 6.98, p = 0.32; within land use categories: L.Ratio20,10 = 16.2, p = 0.093). Accordingly, there was no 424 

significant post-typhoon change in spatial variability of species detections either overall or when 425 

broken down by land use (Fig. 6). Before the typhoons, Otus elegans had highest spatial variability in 426 

detections, and after the typhoons its spatial variability remained higher than that of Corvus 427 
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macrorhynchos, but not of Horornis diphone (Fig. 6a). When further broken down by land use, species 428 

did not vary in their land use-specific spatial variability before the typhoons. However, after the 429 

typhoons, O. elegans had higher spatial variability in detections among forested sites than did C. 430 

macrorhynchos (Fig. 6b).  431 

 432 

 433 

Figure 6. Spatial variability of automated daily species detections through time. Left panels show time series of 434 

spatial variability of daily species detections across all sites (a), and across forest (green) and developed (purple) 435 

sites separately (b), for each of Corvus macrorhynchos (darkest), Horornis diphone, and Otus elegans (lightest). 436 

Dashed lines delineate the pre- and post-typhoon periods. Right panels show the 95% confidence intervals of 437 

spatial variability of daily species detections across all sites (a) or separated by land use (b) for the pre-typhoon 438 

(circles) and post-typhoon (triangles) periods. Significant (p < 0.05) pairwise contrasts are denoted with 439 

different subscript/superscript letters (e.g., “a” differs from “b” but not “ab”). 440 

 441 

Discussion 442 

This study leverages high-resolution acoustic monitoring data from an island-wide sensor 443 

array to record ecological responses to extreme weather events in the form of two large typhoons. 444 

We found no land use effects on most dimensions of stability measured. However, we found post-445 

typhoon increases in the spatial variability of biophony (NDSIBio) and the normalised difference 446 

soundscape index (NDSI) among forested sites, indicating that the typhoons elicited divergent 447 

ecological responses among Okinawa’s forests. Moreover, we detected no such change in spatial 448 
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variability in response to the typhoons among Okinawa’s developed urban and agricultural sites. The 449 

observed divergence in biophony responses to typhoons among forest sites, but not developed urban 450 

or agricultural sites, suggests that land use and habitat change can hinder the reactive capacity of 451 

ecological communities and their associated soundscapes. The observed variation in typhoon 452 

responses among forest community soundscapes may indicate a greater variety of pathways through 453 

which biotic communities in forests can respond to disturbance (Vogel et al., 2019). Such response 454 

diversity is increasingly recognised as a potentially key driver of stability and statistical portfolio 455 

effects, owing to its effects on asynchrony and spatial community dynamics (Mori et al., 2013; Ross et 456 

al., 2022). In contrast, those communities in developed urban or agricultural sites showed more 457 

homogenous responses to the typhoons, perhaps as a direct consequence of land use change per se, 458 

or of its effect on local biodiversity. We did not directly measure local biodiversity in this study, 459 

instead estimating the activity of some key focal bird species using automated species detections. 460 

However, previous work in this system provided evidence for a loss of rare and endemic birds under 461 

land use development, producing communities that are a nested subset of forest bird communities in 462 

Okinawa’s developed south (Ross et al., 2018). Despite generally aligning well with acoustic index 463 

results for other response measures, the species surveyed here did not exhibit responses that 464 

diverged in space following the typhoons, as might have been expected based on biophony results. 465 

This suggests that the spatial divergence in the biotic component of soundscapes recorded here may 466 

be better explained by other species (of birds or other taxa) not targeted in this study. Future work 467 

expanding on these analyses to provide a more holistic view of the Okinawan biota should therefore 468 

prove fruitful for identifying individual species contributions to typhoon responses. If our biophony 469 

results are indeed a product of biotic responses to typhoons as would be expected from theory 470 

(Kasten et al., 2012), then a post-typhoon increase in spatial variability may reflect changes to species’ 471 

patchiness. For example, Willig and Camilo (1991) described an increase in spatial patchiness of the 472 

snail Caracolus caracol following Hurricane Hugo in Puerto Rico, caused by a thinning of populations 473 

due to post-hurricane mortality.  474 

 Soundscape composition after the typhoons saw an increase in anthropophony, but not a 475 

decline in biophony as might be expected were populations impacted negatively by typhoon 476 

disturbance (e.g., Cely, 1991; Pavelka et al., 2007). In contrast, the observed post-typhoon increase in 477 

spatial variability in NDSI was driven by biophony rather than anthrophony. This suggests that, while 478 

biophony may not have been affected substantially by typhoon disturbance at the individual site level, 479 

variation in biotic responses at larger scales across field sites nonetheless manifested as changes in 480 

the spatial variability of biophony after the typhoons. That we did not detect particularly strong site-481 

level typhoon impacts, but rather saw spatial divergence in ecological responses to typhoons across 482 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.11.523682doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523682
http://creativecommons.org/licenses/by-nd/4.0/


multiple sites, underscores the necessity of monitoring at scale. Multi-site acoustic sensor arrays such 483 

as ours thus provide opportunity to monitor both local and regional biodiversity change, in turn 484 

providing critical new insight for conservation management (Roe et al., 2021; Sethi et al., 2020a; Van 485 

Parijs et al., 2015). The observed post-typhoon increase in anthropophony on the other hand, likely 486 

reflects a change in sound propagation driven by vegetative structural damage and thinning of 487 

previously dense habitats, as is often documented following large storms (Abbas et al., 2020; Elliott & 488 

Nino, 1960). We did not measure habitat structure directly, and so the causes of increases to 489 

anthropophony following typhoons Trami and Kong-Rey cannot be demonstrated empirically. We did, 490 

however, observe significant damage and alterations to habitat structure of forested field sites (T. 491 

Yoshida & M. Yoshimura, pers. obs.). Automated bird species detections were, conversely, more 492 

stable through time after the typhoons, suggesting disturbance may affect the consistency of species 493 

vocalisations in Okinawa (see also Fraterrigo & Rusak, 2008), or perhaps that typhoon-induced 494 

changes to habitat structure allow vocalisations to travel further without attenuation, and hence be 495 

more reliably detected by our sensors. 496 

 The focal bird species considered here generally differed in their responses to typhoons. 497 

Automated vocalisation detections of the Japanese bush warbler (Horornis diphone) declined after 498 

the typhoons, while those of the large-billed crow (Corvus macrorhynchos) and Ryukyu scops owl 499 

(Otus elegans) did not. Given that acoustic surveys cannot differentiate between cases where a 500 

species is not producing sound and those where that species is not present (Toth et al., 2022), we 501 

cannot say with certainty that H. diphone populations declined following the typhoons. Regardless, 502 

our detected post-typhoon declines in H. diphone vocalisations—either through behavioural changes, 503 

distributional shifts, or local mortality—were consistent across >80% of the field sites in which this 504 

species was detected. Habitat specialism may explain the observed species-specific differences in 505 

vocalisation changes following the typhoons; H. diphone relies on undergrowth and bushes for 506 

foraging (Haneda & Okabe, 1970) and typhoon disturbance has the potential to alter the structure of 507 

this habitat (Abbas et al., 2020; Elliott & Nino, 1960), in turn affecting the invertebrate communities 508 

on which H. diphone feeds (Azuma et al., 1997). In contrast, the forest specialist O. elegans was not 509 

detected less frequently after the typhoons, suggesting that its habitat and/or foraging were 510 

unaffected by the typhoons, or perhaps that cavity nesting reduced typhoon impact by reducing 511 

exposure to extreme weather (Inoue et al., 2019). Such species-specific responses to disturbance may 512 

more generally reflect differences in life history and other functional response traits (Suding et al., 513 

2008), which can be useful predictors of community dynamics, disassembly, and stability in birds (e.g., 514 

Ausprey et al., 2022; Burivalova et al., 2015; Hordley et al., 2021; Zhang et al., 2016). Similarly, 515 

different vocalisation typhoon responses among field sites may reflect differences in underlying 516 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.11.523682doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523682
http://creativecommons.org/licenses/by-nd/4.0/


vegetative changes as determined by plant functional response traits. For example, Craven et al. 517 

(2016) found that functionally diverse Canadian forests were dominated by trees with response traits 518 

that promoted resilience to recurrent anthropogenic disturbance through rapid regrowth, rather than 519 

resistance to projected climate change through drought or flood tolerance. The response traits of 520 

plants may then, in turn, determine the structural habitat change experienced by birds and other 521 

vocalising animals (e.g., Abbas et al., 2020), as well as directly influencing sound propagation (Morton, 522 

1975).  523 

 Though we and others have demonstrated the capacity for passive acoustic monitoring 524 

methods to capture unpredictable extreme weather events (Gottesman et al., 2021; Simmons et al., 525 

2021), such methods are often limited in their ability to accurately reflect biodiversity patterns. A 526 

recent meta-analysis reports a generally positive link between acoustic indices and biodiversity 527 

(Alcocer et al., 2022), but one with diminishing effect sizes over time as studies increasingly forego 528 

appropriate validation, and as study designs incorporate yet wider varieties of non-target sounds, 529 

which can hinder the interpretability of those acoustic indices aiming to reflect biodiversity (Ross et 530 

al., 2021a). Though our acoustic indices and automated species vocalisation results were not a perfect 531 

match, their joint use provides two separate lines of evidence for typhoon-induced soundscape 532 

change; such species and soundscape methods are still rarely used in combination despite their clear 533 

potential to provide complementary information on ecological dynamics (e.g., Ferreira et al., 2018; 534 

Ross et al., 2018). That said, building reliable vocalisation recognition algorithms remains a challenge, 535 

particularly when aiming for transferability to different habitats or seasons, which provide a range of 536 

non-target sounds beyond those on which algorithms may have been trained. Increasing application 537 

of deep learning to such problems will likely help provide a solution (e.g., Sethi et al., 2020b) as will 538 

continued efforts to build labelled sound libraries from which automated species detection algorithms 539 

can be trained (Deichmann et al., 2018). Moreover, soundscape dynamics are frequently 540 

characterised by strong seasonal cycles (e.g., Vokurková et al., 2018), presenting a challenge when 541 

attempting to disentangle disturbance responses from seasonal soundscape change (Ross et al., 542 

2023). For example, our focal species differ in their seasonality and phenology, meaning that natural 543 

phenological differences may in part be responsible for the differences in species’ typhoon responses 544 

we observed here. Our moving average detrend aimed to remove as much seasonal signal as possible, 545 

though longer time series are needed for more sophisticated approaches to deseasonalisation (e.g., 546 

wavelet decomposition) to be effective (Cazelles et al., 2008). Our k-means clustering approach to 547 

distinguish field sites by their dominant land use identified an optimal split of two clusters, separating 548 

primarily forested sites from those dominated by developed urban or agricultural land use. However, 549 

these developed land uses can act on ecological dynamics and stability in different ways. For example, 550 
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Olivier et al. (2020) used citizen science data from across France to show that agricultural 551 

intensification directly affected population, and, in turn, community stability of birds, while 552 

urbanisation acted only indirectly on community stability through changes to diversity and population 553 

asynchrony. Our study design, which was based on unsupervised (k-means) site clustering by 554 

dominant land use consequently did not allow us to directly compare urban and agricultural field 555 

sites, despite their potential for contrasting effects on ecological stability.  556 

 Our study tested the capacity for land use and climate change in the form of extreme 557 

weather events to jointly shape ecological stability. Using passive acoustic monitoring data from a 558 

landscape-scale sensor network across Okinawa Island, we found that land use rarely modified 559 

ecological responses to typhoons. However, soundscapes diverged across the landscape following the 560 

typhoons, contrary to the expected typhoon-induced soundscape homogenisation. This post-typhoon 561 

spatial divergence occurred among forested but not developed urban and agricultural field sites, 562 

suggesting that forest sites exhibited a wider variety of pathways through which soundscapes could 563 

respond to typhoon disturbance. That is, land use intensification may produce ecological communities 564 

that are more homogeneous in how they respond to disturbance (Vogel et al., 2019), while forest 565 

sites harbour communities with greater potential for collective resilience to future disturbance 566 

through patch dynamics and rescue effects among different local forest communities (Leibold et al., 567 

2004). Such spatial insurance effects have the potential to contribute to landscape-scale stability and 568 

spatial portfolio effects by affecting population and community asynchrony (Loreau et al., 2003; Wang 569 

et al., 2021), and our results suggest that land use development can degrade the natural insurance 570 

capacity of Okinawa’s forests. This study draws on prior knowledge of Okinawan biodiversity (Inoue et 571 

al., 2019; Itô et al., 2000; McWhirter et al., 1996), the performance of passive acoustic methods in 572 

this system (Ross et al., 2018, 2021a), and the characteristics of typhoons and land use intensification 573 

across Okinawa Island (Elliott & Nino, 1960; Takeuchi et al., 1981). Such baseline data provides a 574 

critical backdrop against which our results stand, allowing us to infer species and soundscape 575 

responses to the joint threats of climate change and land use intensification from acoustic recordings 576 

of typhoons (Altwegg et al., 2017). As longer and higher-resolution acoustic data is amassed through 577 

multi-site acoustic sensor arrays (e.g., Roe et al., 2021; Sethi et al., 2020a; Van Parijs et al., 2015), the 578 

utility of passive acoustic monitoring to document ecological responses to extreme weather events 579 

across the globe will become ever clearer, particularly in light of the increasing frequency and 580 

destructive potential of extreme events in the Anthropocene. 581 
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