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Abstract 
 
Humans can navigate flexibly to meet their goals. Here, we asked how the neural representation 
of allocentric space is distorted by goal-directed behaviour. Participants navigated an agent to 
two successive goal locations in a grid world environment comprising four interlinked rooms, 
with a contextual cue indicating the conditional dependence of one goal location on another. 
Examining the neural geometry by which room and context were encoded in fMRI signals, we 
found that map-like representations of the environment emerged in both hippocampus and 
neocortex. Cognitive maps in hippocampus and orbitofrontal cortices were compressed so that 
locations cued as goals were coded together in neural state space, and these distortions 
predicted successful learning. This effect was captured by a computational model in which 
current and prospective locations are jointly encoded in a place code, providing a theory of 
how goals warp the neural  representation of space in macroscopic neural signals. 
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Introduction 
 
Humans and other primates can use context to guide their decisions. During instantaneous 
choices, where stimuli evoke independent action-outcome mappings, contextual cues modulate 
the neural encoding of information in both sensory neocortex [1–3] and higher regions such as 
prefrontal cortex [4–8]. However, context can also influence sequential choices, where 
outcomes depend on a series of transitions between states and actions – for example, when 
navigating to a spatial goal. Many species can navigate flexibly to distinct goals based on 
contextual information that is unobservable or maintained in memory [9,10]. Humans can 
pursue different goals depending on the context: for example, a person might find their way to 
the local hairdresser or post office depending on the purpose of an errand. Flexible, context-
dependent navigation requires that space and goals are encoded in ways that avoid mutual 
interference, allowing the correct destination to be reached given the context. Here, we studied 
the neural and computational mechanisms that make this possible in humans. 
 
Recordings from the rodent hippocampus and connected structures have revealed much about 
the neural representation of allocentric space [11]. In the hippocampus, ‘place cells’ code for 
the current location of the animal via spatially  localised firing patterns called ‘place fields’. 
These cells collectively form an internal map of the local environment, with each cell firing at 
a slightly different spatial location [12]. Neural codes for space have also been identified using 
single-cell recordings in other species, including humans [13,14], and gross spatial location can 
be read out from fMRI signals [15–18]. In rodents, changes in context can lead place cells to 
form new fields in different locations, a phenomenon known as remapping. Global (and partial) 
remapping have been observed after physical changes to the local environment, such as the 
introduction of novel colours, textures or odours [19] or the repositioning of the testing 
apparatus in a new room [20]. However, remapping can also occur when the context is denoted 
by an unobservable variable, such as a latent task rule [21], a noisy inference about the 
environment-generating process [22], or a prospective pathway or destination [23–25]. 
Sometimes, remapping may occur along a single dimension aligned with the gain of neural 
activity, which is called rate remapping [26]. 
 
The context provided by a spatial goal can also distort the representation of space without 
provoking gross changes in the neural code. Place cells tend to over-represent behaviourally 
significant spatial locations, and can accumulate around [27–29] or fire excess spikes at [30] a 
rewarded position. Place cells may also encode information about prospective as well as current 
locations on the spatial trajectory [31–33], and information about future states has also been 
observed  in both hippocampal BOLD signals [34,35] and intracranial recordings from the 
human medial temporal lobe (MTL) [13,14,36]. It has also been claimed that spatial goals may 
be directly coded in the hippocampal formation [9,37]. One recent study has reported a small 
but dedicated population of CA1 neurons whose activity covaries with the location of a 
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rewarding stimulus. When changes to the environment cause global remapping, these cells 
show the same preserved activity pattern linked to reward proximity [38]. These could be 
“goal” cells, a putative class of neuron that codes directly for a location that the animal seeks 
to reach, rather than current spatial location [39]. Recent recordings from the rodent 
orbitofrontal cortex provide parallel evidence of goal coding where the future goal location is 
present in the neural population before the animal begins its navigation to the goal [40]. 
 
Decoding a mixture of place and goal locations could produce a spatial representation that is 
warped by the animal’s intended destination, with regions of space containing two prospective 
goal locations being coded with a more similar neural code, and thus appearing closer together 
in the internal spatial map (we call this “goal-based spatial compression”). Here, we report that 
while different neocortical areas encode goals and locations in heterogenous ways, strong goal-
based spatial compression is observed in the BOLD signal recorded from the human 
hippocampus and orbitofrontal cortex. 
 
Results 
 
Human participants (n = 27) performed a spatial navigation task that involved controlling an 
avatar as it moved through a partially observable grid world composed of four discrete and 
interconnected rooms (Fig. 1A). Participants saw a plan (birds’ eye) view of the currently 
occupied room (a single 4 x 4 grid of squares); other rooms were not visible (Fig. 1C). One 
grid square in each room contained a boulder, and across the entire environment, rewards were 
hidden under two of the four boulders. On each trial, the avatar spawned in a random room, 
and participants’ task was to move it (using buttons for up, down, left, right) to collide with the 
two boulders that yielded rewards (with the minimum number of steps and in any order), 
avoiding those that were empty. Successful trial completion required both goals to be visited 
within a fixed time period. 
 
At the start of each trial, participants viewed a contextual cue, which was a picture of one of 
two food items (Fig.1B). Unbeknownst to participants, each cue also revealed one reward 
location conditional on the other: half of the cues (‘cue H’) indicated that the rewards were in 
rooms lying in the same horizontal axis, while the other half (‘cue V’) indicated that the rewards 
were in the same vertical axis (with neither disclosing which specific rooms where rewards 
could be found). Interleaving cues from trial to trial thus ensured that a participant with perfect 
knowledge of the rules would on average display the same room occupancy probabilities across 
contexts. However, to ensure that participants also visited each room in each context, we also 
introduced a “robot control” phase in each trial in which participants relinquished control of 
the avatar to a game controller, typically moving it to a suboptimal location. This manipulation 
allowed us to measure BOLD signals from locations that were off the shortest path taken by 
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expert players [41], and ensured that room occupancy probabilities and transitions were well 
balanced across the experiment (Fig. 1D). 
 

After learning the task on an earlier day (see Methods, Fig. 1E and 1F left panels), participants 
performed 96 trials across 6 scanner runs. In the scanner, we used three sets of physically 
distinct cues (food items) on runs 1-2, 3-4, and 5-6 respectively, requiring participants to 
generalise their knowledge of task structure across these three phases of the task (Fig. 1B). We 
plot behavioural results in Fig. 1F. Although participants had no way of knowing whether the 
first boulder they encountered (the start boulder; in the room where the avatar spawns) was 
rewarded or not, a participant with knowledge of the task structure can use this outcome in 
combination with the cue identity to exit the first room in the correct direction. Accordingly, 
on day 2 participants explored the start boulder on 98% of trials, and their first-choice accuracy 
increased rapidly across the first two runs, stabilising at about 75% (lower panels), and was 
significantly above chance overall (t26 = 8.83, p < 0.001). Time taken to complete each (correct) 
trial continued to decrease across the experiment (Fig 1E upper panels). At the end of the 
scanning session, participants completed a short quiz in which they were asked which room/s 
contained reward/s, given the presence or absence of rewards in other rooms. For example, 
“You have just found a cheese in the top right room. Which room will the other cheese be in?”. 
The mean score across participants was 69% ± 12% (chance performance was 34%). Quiz 
score positively correlated with both the average trial score on day 2 (r = 0.445, p = 0.020), and 
average first-choice accuracy on day 2 (r = 0.813, p < 0.001), suggesting that sequential 
decisions were guided by explicit knowledge about the task’s latent reward covariance 
structure. 
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Figure 1. Hidden rewards covaried across four rooms. (A) An illustration of the four rooms environment and 
example reward locations under the vertical context. An example participant trajectory is shown overlaid in red. 
In this example, the agent starts in the south-west (SW) room, explores the start boulder and does not find a cheese 
reward. As cheese rewards covary vertically, the two cheese rewards must therefore be in the SE and NE rooms. 
(B) Different contexts signalled different reward covariances: one day 1 (training) martini rewards appeared in 
vertically adjacent rooms, while peanut rewards appeared in horizontally adjacent rooms. On day 2, three different 
pairs of rewards were shown, which mapped onto the same covariance structure, and the two contexts were 
interleaved within a run. An example ordering of runs is shown but this was balanced across participants. (C) 
Participant view of exploring in one of the rooms during training. The floors of all rooms were purple in the 
scanner. (D) Heatmaps of the average grid square occupancy per trial in each of the two contexts. Black arrows 
show the average transition vector from each grid square. (E) Participant scores on each trial on days 1 (left) and 
2 (right). With training, participants get faster at finding the rewards. On day 1, contexts were blocked across trials 
to facilitate learning, while on day 2 they were interleaved. (F) Participants learn to preferentially search in rooms 
suggested by the reward structure, and this behaviour generalises to new sets of rewards associated with each 
context on day 2. In panels D and E, data is shown smoothed across non-overlapping sets of 4 adjacent trials for 
visualisation. In panel E we show only the room choices made by human participants and exclude those made by 
the agent. Error bars show standard error of the mean across participants. Colour panels indicate different epochs 
with the same reward pairs.  
 
To formulate neural predictions, we built a computational model that encoded the location of 
the avatar via simulated Gaussian place fields tiling an internal representation of the four rooms 
environment (Fig. 2A). We read out the responses elicited across the neural population as each 
participant moved the avatar through the four rooms, by providing empirically observed 
trajectories (from yoked human behavioural data) as inputs to the model (Fig. 2B). This 
allowed us to compute simulated representational dissimilarity matrices (RDMs) for each room 
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and context (8 conditions), which were averaged before multidimensional scaling (MDS) was 
used to visualise their neural geometry. Without further elaboration, this model simply encodes 
the locations of the four rooms {Northeast (NE); Northwest (NW), Southeast (SE), Southwest 
(SW)} at the vertices of two perfectly parallel and aligned spatial maps, each visualised as a 
square plane denoting one context (Fig. 2C, upper left panel). This unbiased geometry was 
obtained with the observed human behavioural trajectories, implying that any deviations from 
this prediction observed in BOLD data cannot be explained by imbalance in occupancy 
probabilities or  transition frequencies. 
 

 
 
Figure 2. (A) Example simulated place fields in the model of the four rooms environment. Each panel is one 
neuron. White bars are walls. Red dots are boulders. The blue-yellow map shows neural tuning of a single neuron. 
(B) Example trajectories made by a participant performing the task in the scanner (black lines). Red dots are 
boulders. (C) Illustration of four representational hypotheses for different ways of separating 2D information by 
context. On the left of each subpanel are MDS plots. Red and blue lines and shading indicate the different contexts. 
The dots denote the rooms {NE, NW, SE, SW} in each context. On the right of each panel is the corresponding 
RDM. Colours are in units of correlation distance. The data were generated under the following parameters: no 
effect, 𝛽 = 0, 𝛾 = 0.1, 𝜔 = 0 (a small offset is introduced for ease of visualisation); planar separation, 𝛽 = 0, 
𝛾 = 0.5, 𝜔 = 0; orthogonalization, 𝛽 = 1, 𝛾 = 0, 𝜔 = 0; compression, 𝛽 = 0, 𝛾 = 0, 𝜔 = 0.9. 
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However, we additionally equipped the model with three free parameters, corresponding to the 
hypotheses that context is encoded by (1) orthogonalization, (2) separation or (3) compression 
of spatial representations in each context. Firstly, we allowed the fraction of cells 𝛽 that 
remapped (i.e., changed their preferred spatial location) between contexts to vary. Global 
remapping (𝛽 = 1) leads to full orthogonalization of the spatial map (remapping) in each 
context, and so it predicts that the two context-specific spatial representations (planes) should 
rotate to lie at 90° to one another (Fig. 2C, lower left panel). Secondly, we allowed a subset of 
cells to explicitly code for context along a dimension perpendicular to space and applied a 
freely varying gain factor	𝛾 to this neural activity, which creates a planar offset (or separation) 
between context representations (Fig. 2C, upper right panel). This model variant assumes that 
spatial and nonspatial variables are factorised within the neural code [10,42]. Finally, we 
assumed that the place cells jointly encoded the current position of the avatar and its 
prospective (goal) location at the goal positions on each trial, as proposed by [38]. This was 
achieved with a final free parameter encoding the relative mixture weight 𝜔 given to current 
and goal location. Increasing the goal weight (𝜔 > 	0) leads to compression, whereby goal 
locations in a shared context are neurally represented at lower distances than is warranted by 
their separation in physical space (i.e., the north and south rooms are closer together in the 
“vertical” context, and east and west in the “horizontal” context; Fig. 2C, lower right panel). 
This occurs as the neural representations of current room and future (goal) rooms are 
differentially mixed together in horizontal and vertical contexts. The goal weight parameter is 
designed to also allow the converse effect (anti-compression) when 𝜔 < 	0, which would be 
consistent with other recent observations [43]. Full details of the model are provided in the 
Methods. 
 
To test these hypotheses in humans, we estimated multivariate BOLD signals during navigation 
using a design matrix that modelled the presence of the avatar in each room (SW, NW, SE, 
NE) and context (H, V) during the movement period (alongside nuisance regressors) yielding 
an 8 x 8 RDM comparable to the model. All RDM analyses were conducted in cross-validation, 
comparing neural patterns between odd and even scanner runs. Goal-approach is known to be 
a powerful modulator of BOLD signals [41,44], and navigational choices are only made up 
until the point at which the goal room is entered, and so we begin by focussing separately on 
the movement phases in which participants are approaching a room containing a goal (pre-goal 
room period) and where they are inside a room that contains a goal (goal room period). We 
focus on anatomically defined neocortical regions of interest (ROIs) that have previously been 
implicated in goal-directed behaviour, including the prefrontal cortex (PFC), posterior parietal 
cortex (PPC), hippocampus (HC) and orbitofrontal cortex (OFC), as well as a control ROI in 
the visual cortex (shown inset in Fig. 3C). For each region we plotted RDMs (Fig. 3A) and 
then visualised the neural geometry in three dimensions, using multidimensional scaling 
(MDS; Fig. 3B). Finally, we complement this approach by presenting data from whole-brain 
searchlight analyses. 
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Visual inspection of the RDMs and MDS plots revealed that BOLD signals in these ROIs coded 
space and context in different ways (see also supplementary videos 1-3 for a clearer 
visualisation of the neural geometry in 3D). Firstly, the visual cortex represented each room 
with a distinct neural code, but the similarity structure was only weakly related to the overall 
spatial layout (e.g., NE and SW rooms appeared no less similar than NE and SE rooms) and no 
effect of context was observed (neural manifolds for cue H and cue V conditions were aligned 
and superimposed; Fig. 3B, far left panel). In PPC and (to a lesser extent) in PFC, however, 
rooms were encoded at the apices of two roughly parallel quadrilateral planes, one for each 
context, with the rotation of the planes aligned with respect to the cardinal directions of the 
four rooms environment (middle left and middle panels). In other words, in PPC and PFC, 
allocentric space was coded with a geometry roughly matching that of the external world, even 
though only a single room was visible to the participant at any one time. Finally, in HC and 
OFC, a different pattern was observed: the neural coding of space was compressed along the 
irrelevant axis, so that “north” and “south” rooms are coded as adjacent in neural state space in 
the vertical context, and “east” and “west” are represented as neurally adjacent in the horizontal 
context. This compression effect was accompanied by a weak context-dependent separation, in 
which the two contexts were divided along another neural dimension running perpendicular (at 
90°) to that encoding allocentric space (Fig. 3B, middle and far right panels). 
 
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.12.523762doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523762
http://creativecommons.org/licenses/by/4.0/


 10 

 
 
Figure 3. (A) Group average RDMs for each ROI. Each 8 × 8 RDM is ordered {SW,NW,SE,NE} for first the 
vertical and then the horizontal context. Warmer colours indicate greater dissimilarity, and cooler colours greater 
similarity. (B) MDS plots (from the group average RDM) for each region. Blue dots are rooms in the vertical 
context and red in the horizontal context. For legibility, cardinally adjacent rooms within a context are linked by 
lines, which collectively form a quadrilateral when allocentric space is coded in just 2 dimensions. (C) Violin 
plots showing coefficients for a competitive regression of model RDMs against each data RDM for the pre-goal 
room period. Each participant is an individual dot. Blue dots and shading (positive values) and light grey dots and 
shading (negative values) indicate p < 0.05. (D) Same as C but for the goal room period. (E) Visualisation of 
Model RDMs used for these analyses; lighter colours indicate greater dissimilarity. 
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To quantify these effects, we constructed model RDMs and regressed them against the neural 
data RDM in each ROI. We used 6 model RDMs in total and these were included competitively 
in the regression. The first two model RDMs related to the structure of the environment. The 
(i) room model encoded each individual room with a unique code; the (ii) map model encoded 
residual similarity structure that reflected the organisation of the four rooms into a regular 
quadrilateral. The remaining RDMs encoded bases for  (iii) separation between contexts as 
predicted by 𝛾 > 0; (iv) the additional effects of both compression and (v) anti-compression, 
as predicted by 𝜔 > 	0 and 𝜔 < 	0 respectively; and (vi) the effect of orthogonalization as 
predicted by 𝛽 > 0. The results are shown in Fig. 3C for the pre-goal room period and in Fig. 
3D for the goal room period (corresponding RDMs and MDS for the latter case are shown in 
Fig. S1). The relevant statistics are reported in Table 1 (pre-goal room period) and Table 2 
(goal room period); we use a threshold of p < 0.01 to correct across independent ROIs. The 
model RDMs are also depicted in Fig. 3E. 
 

 RDM 

 room map separation compress anti-compress orthogonalize 

VIS 17.3*** 10.7*** 4.75*** -1.04 0.31 -5.44 

PPC 9.34*** 11.5*** 3.06** 4.68*** -3.95 -3.61 

PFC 3.50** 3.72*** 1.50 1.13 0.72 -1.44 

HC 0.22 -0.02 1.83 2.92** 0.24 -0.75 

OFC 2.04 -0.42 1.94 5.70*** 0.43 -0.24 

 
Table 1. Statistics on regression coefficients from pre-goal room period. T-values for a test of each model 
RDM against zero for the data RDM from the pre-goal room period. Each row is a brain region, and each column 
is a predictor. Asterisks: ** p < 0.01, *** p < 0.001. 
 

 RDM 

 room map separation compress anti-compress orthogonalize 

VIS 18.3*** 0.32 4.45*** -0.80 -3.69 -4.46 

PPC 6.77*** 5.25*** 4.61*** -2.42 2.13 -4.49 

PFC 3.62*** 2.60** 1.43 2.57** -0.81 -1.67 

HC 0.72 0.09 1.88 0.57 -0.47 -1.40 

OFC -0.47 0.22 0.23 2.66** -0.84 -0.20 

 
Table 2. Statistics on regression coefficients from goal room period. T-values for a test of each model RDM 
coefficient against zero for the data RDM from the goal room period. Each row is a brain region, and each column 
is a predictor. Asterisks: ** p < 0.01, *** p < 0.001. 
 
Encoding of spatial  layout. We first considered how the spatial layout of the environment 
was coded in BOLD signals. Our model RDMs included predictors based on unstructured room 
identity (room) and residual structure indicating the geometry of the environment (map). The 
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first observation was that layout was coded most reliably in PPC and PFC. There was also a 
tendency for room to be more robustly encoded than map in visual cortex, especially during 
the goal room period (where map accounted for no residual variance in visual cortex) but even 
during the pre-goal room period room explained numerically more variance than map in visual 
cortex BOLD signals. This can also be seen in the MDS plots in Fig. 3C, where the 
representation of the four rooms are roughly planar in PPC but in visual cortex are folded into 
a tetrahedron (on a 3D simplex) to accommodate the equal similarity between rooms. Thus, 
there appears to be a rough progression from a more unstructured, high-dimensional 
representation of the spatial layout (in visual cortex) to one in which rooms lie on quadrilateral 
planes in neural space, mirroring the layout of the four rooms environment (in PPC). 
 
Goal-based spatial compression. In HC and OFC, we did not observe a neural representation 
of the veridical spatial layout of the environment. Rather, we saw a strong effect of goal-based 
compression, whereby rooms that were linked by virtue of shared goals were coded together. 
This is the pattern predicted by parameterisations of our model in which 𝜔 > 	0, i.e., where the 
agent’s location and goal are jointly coded in BOLD signals. This is clearly visible in the MDS 
plots, where (for both HC and OFC) the north and south rooms are more proximal in the vertical 
context, and east and west rooms more proximal in the horizontal context (Fig. 3C). 
Compression regressors were significant in both periods for OFC and in the pre-goal room 
period for the HC, whereas effects of planar separation are weak or marginal in these ROIs (t-
values < 2 in HC and OFC) and effects of orthogonalization are not significant.  We also saw 
an effect of compression in the PFC during both periods; this is less marked in the neural 
geometry but was highly reliable in the regression-based analysis.  
 
Model-free analyses. To complement these analyses based on a regression model, which can 
be difficult to interpret especially when there is partial collinearity between predictors, we 
adopted an approach that involved averaging selected distances (vertex pairs) across data 
RDMs to ask targeted questions about the neural geometry. To achieve this, we constructed 
“score matrices” indicating which pairs of vertices were compared with each other; these are 
shown in Fig. 4A.  
 
First, we asked whether the planes for each context were roughly quadrilateral (reflecting the 
spatial layout of the environment). Here, we compared distances between rooms that were 
spatially adjacent (e.g., NE and NW) to those that were not (e.g., NE and SW), yielding a single 
map score which was zero under the null, but for which positive scores provided evidence for 
quadrilateral structure. In Fig. 4B (see also Table 3) we can see that there is a significant map 
score in all regions except HC during the pre-goal room period, and in PPC and PFC during 
the goal room period. Secondly, we computed a separation score by comparing neural 
distances between each room and every other room within and between contexts. Whilst the 
effect of separation was only marginal in the regression analysis, the separation score was 
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reliable during the pre-goal room period for both HC and OFC. Finally, we computed a 
compression score by comparing distances between N and S and E and W rooms in each 
context; this score was positive if E and W rooms were neurally more proximal in the horizontal 
context and N and S rooms were more proximal in the vertical context, and negative for the 
converse.  
 
The results largely mirrored those for regression analyses, with strong compression observed 
in HC and OFC during the pre-goal room period, and in OFC only during the goal-room period, 
with additional compression observed in PPC and PFC during only one of these periods. For 
each of these tests, statistics are shown in Table 3. This implies that the compression observed 
in HC and OFC was not an artifact of the other predictors included in our regression analysis. 
We also used the place cell model to create model RDMs based on the best-fitting variants of 
models in which each of the three parameters 𝛽, 𝛾 and 𝜔 were allowed to vary (or none of the 
three). This also confirmed that the neural data was best explained by a compression-based 
account in both HC and OFC (Fig. S2). 
 

 Score matrix (pre-goal room) Score matrix (goal room) 

 Map Separation Compression Map Offset Compression 

VIS 6.56*** 0.16 -1.00 -3.13 0.30 2.27 

PPC 10.82** 1.19 7.05*** 3.44** 1.62 -4.33 

PFC 4.45*** 0.98 0.58 3.27** 0.39 4.33*** 

HC 2.11 2.66** 4.81*** -0.30 1.18 1.54 

OFC 3.01** 3.08** 7.84*** 1.37 0.35 5.98*** 

 
Table 3. Scores for map structure, planar separation, and compression. T-values for a test of each score in 
each period. Each row is a brain region. Asterisks: ** p < 0.01, *** p < 0.001. 
 
Correlations between behaviour and brain activity. Next, we examined how across-cohort 
variation in compression scores for each brain region related to individual differences in 
behaviour. One way to characterise individual participant performance is transition bias, which 
is the relative fraction of transitions made horizontally and vertically between rooms in the H 
and V contexts (a player that understands the structure should make proportionally more 
horizontal transitions in H context and vertical in the V context). An alternative measure is first 
choice accuracy, which indexes whether participants’ first transition reveals that they 
understand the correlation structure of the spatial goals in each context. For completeness, we 
correlated these behavioural measures with compression, separation and map scores, although 
our main prediction was that compression would covary with performance in HC and OFC. 
 
We observed that in the hippocampus, compression score from the pre-goal room period 
positively predicted both transition bias (r = 0.45, p = 0.019) and first choice accuracy (r = 
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0.43, p = 0.025). By contrast, in the OFC, compression score from the goal room period 
positively predicted transition bias in the goal room period (r = 0.41, p < 0.032). We plot the 
results of this correlation for HC and OFC in Fig. 4C; results for other regions are shown in 
Fig. S3. 
 

 
 
Figure 4. (A) Matrices used to compute scores. White entries are positive values (+1), black entries are negative 
values (-1) and grey entries are zeros (ignored). Each matrix was multiplied elementwise with the data RDM, and 
the resulting values summated to compute the corresponding score. The score matrices for compression, 
separation and map are fully orthogonal. (B) Violin plots showing scores (map, separation and compression) for 
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the pre-goal room period in each region. Each dot is an individual participant. Blue dots and shading (positive 
values) and light grey dots and shading (negative values) indicate p < 0.05. (C) Same as A but for the goal room 
period. Below, the (C) Left: correlations between each score (see plot title) and transition bias for the HC (upper 
panels) and OFC (lower panels). Right: the same plots for transition bias. Blue dots denote significant (p < 0.05) 
correlation. (D) Correlations between neural scores (map, separation and compression) and behavioural measures 
(transition bias and first choice accuracy) for HC and OFC in the pre-goal room period (upper panels) and goal 
room period (lower panels). Each dot is a single participant, and the line is the best linear fit. Blue colouring is 
used to highlight significant correlations (p < 0.05). 
 
Inverted neural geometry across periods. Having examined the geometries for the pre-goal 
room and goal-room periods, a natural next step is to explore how they relate to one another. 
The RDMs and corresponding MDS plots for the full period x room x context analysis are 
shown in Fig. 5A-B. In the MDS plots, the pre-goal room period is now shown in cyan (cue 
V) and orange (cue H), and the goal room period in blue (cue V) and red (cue H). As can be 
seen, the brain powerfully encodes whether the agent is currently occupying a room with a goal 
or not, visible as the checker pattern in the RDMs and the resulting one-dimensional offset 
between periods that lies along a neural dimension perpendicular to that coding allocentric 
space. These results are confirmed by regressing model RDMs against the full 16 x 16 data 
RDM (Fig. S4); the effect of period was highly significant in each region (all t-values > 13, all 
p-values < 0.001), with other effects mostly mirroring those described above. Note that all 
analyses are conducted in cross-validation, so this is unlikely to be spuriously driven by 
temporal autocorrelation in BOLD signals. It is however consistent with previous reports that 
BOLD signals are powerfully modulated on the approach to a goal [41,44]. We can see that the 
effects of spatial layout (with or without compression) are thus represented in two parallel 
planar geometries, with a large offset coding whether the agent is currently occupying the goal 
room or is still navigating towards it. Interestingly, in the MDS plots for OFC and HC the 
orientation of the planes for contexts H and V appears flipped between the two contexts, such 
that the coding of space and context is inverted when it is held in memory (during the pre-goal 
room period) and when it is being executed.  
 

 RDM 

 room map period separation compression 
(goal room) 

compression 
(pre-goal 
room) 

orthogonalize 

VIS 18.35*** 2.84** 20.6*** 0.60 2.28 -1.00 -4.50 

PPC 9.52*** 8.76*** 20.7*** 0.63 -4.33 7.06*** -1.39 

PFC 3.90*** 5.08*** 16.7*** 1.04 4.33 0.58 -0.21 

HC -0.30 -1.47 13.0*** 2.91** 1.53 4.82*** 1.90 
OFC -1.91 -7.46 14.45*** 1.76 5.97*** 7.85*** 3.98*** 

 
Table 4. Statistics on regression coefficients from a regression modelling both pre-goal and goal room 
periods. T-values for a test of each model RDM coefficient against zero for the data RDM from the goal room 
period. Each row is a brain region, and each column is a predictor. Asterisks: ** p < 0.01, *** p < 0.001. 
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Figure 5. (A) Group average RDMs for the full period × room × context analysis in each region. Each RDM 
comprises the nested variables period {goal room, pre-goal room}, room {SW, NW, SE, NE} and context 
{vertical, horizontal}. Warmer colours signal greater dissimilarity. (B) MDS plots from the corresponding group 
average RDM. Colours denote period / context combinations: dark blue = vertical, pre-goal room; red = horizontal, 
pre-goal room; cyan = vertical, goal room; orange = horizontal, goal room. (C) Stylised model of the MDS plots 
in B, to illustrate those edges predicted to be parallel (left panel, orange lines), orthogonal (middle panel, purple 
lines) and inverted (right panel, cyan lines). (D) cosine angle between neural vectors for all predicted parallel, 
orthogonal and inverted edges, rendered onto a single plot. Dots are individual participants, and the line shows 
the average for each region. (E) Searchlight analyses: whole-brain effects of compression score and map score 
for the pre-goal room period, rendered onto a template brain at a threshold of p < 0.0001 uncorrected. All regions 
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shown contain voxels significant at p < 0.05 after familywise error correction. (F) Same as (E) but for goal room 
period. 
 
Cosine similarity of neural vectors within and between periods. To quantify this latter 
effect, we computed the angle of the high dimensional neural vector between each 
room/context and every other, both within periods (e.g., goal room to goal room period) and 
across periods (e.g., goal room to pre-goal room period). Assuming a stylised model in which 
the contexts were represented as compressed planes that were offset and inverted between 
periods (Fig. 5C), we averaged angles for those edges that the model predicted by this model 
to be parallel (e.g., common directions within a context; orange lines), orthogonal (e.g., 
perpendicular directions within a context; purple lines) and inverted (e.g., common directions 
within a context, but across periods; cyan lines). Note that this analysis was conducted in the 
high-dimensional space of neural activity, not its compression to 3D in the MDS plots. In Fig. 
5D we plotted the resulting angles for each ROI, which range from fully parallel (0) to fully 
orthogonal (𝜋/2) to inverted (𝜋). The results show that across regions (but especially for HC 
and OFC) there is a bias for edges within a context (e.g., NE-SE) to be parallel with edges 
denoting a common direction in space (e.g., NW-SW); and that by contrast those edges were 
more orthogonal to those denoting a perpendicular direction in space (e.g., NE-NW); and that 
edges that denoted a common direction across periods (e.g., NE-SE in pre-goal room period 
and NW-SW in goal room period) had an even greater angular separation. We observed a main 
effect of region (F3.6, 93.6 = 9.91, p < 0.001) and a region × pair type interaction (F5.9,153.0 = 20.8, 
p < 0.001), with the strongest separation of angle between edge pair types in the HC and OFC 
relative to other regions. These results thus confirm that the neural vectors respect the geometry 
of the environment within each period, but are inverted between periods, especially in HC and 
OFC. 
 
These analyses all rely on 5 ROIs which we chose a priori given their previously described 
involvement in context-sensitive decision-making, navigation and planning. However, to study 
these effects at the whole-brain level, we combined the score analysis with a whole-brain 
searchlight approach, allowing us to render the map, separation and compression effects onto 
a template brain. The results are consistent with our ROI analyses, and all regions described 
here contain searchlights which reach significance at the whole-brain family-wise error-
corrected [FWE] level. During the pre-goal room period, significant correlations with 
compression score were observed in the posterior parietal cortex (peak [-20 68 50], t = 8.47, 
FWE p < 0.001), the right inferior temporal gyrus (peak [52 -63 -3], t = 4.83, FWE p = 0.003), 
the orbitofrontal cortex (peak [-38 36 -12], t = 4.79, FWE p = 0.005); the right putamen (peak 
[30 3 6], t = 5.45, FWE p = 0.024), the right hippocampus (peak [24 -39 -6], t = 5.36, FWE p 
= 0.032), and the right middle temporal gyrus (peak  [-20 57 -18], t = 5.23 FWE p = 0.045). 
Significant correlations with map score were observed bilaterally in occipital and parietal 
cortices (peak [18 -84 6], t = 12.14, FWE p < 0.001), the precentral gyrus (peak [18 -84 6], t = 
6.44, FWE p = 0.007), and the right insula (peak [48 3 -9], t = 6.08, FWE p = 0.015). During 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.12.523762doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523762
http://creativecommons.org/licenses/by/4.0/


 18 

the goal room period, significant correlations with compression score were observed only in 
the medial portion of the visual cortex (peak [-8 -90 6], t = 8.42, FWE p < 0.001), and 
significant correlations with map score in bilateral visual and parietal cortices (peak [18 -66 
51], t = 6.55, FWE p < 0.001). No significant correlations with separation score were observed 
in either period at the chosen statistical threshold. Fig 5F shows a visualisation of the 
searchlight results for the pre-goal room period at a slightly more liberal statistical threshold 
(p < 0.0001, uncorrected) to facilitate illustration of smaller clusters.  
 
Neural geometry of current and prospective locations. Finally, we asked how spatial goals 
were represented in each ROI, and how their geometry related to that representing the current 
location in space. To ensure sufficient trial counts for this analysis, we collapsed over context, 
and modelled the BOLD data at the first level GLM with regressors coding for the currently 
occupied room and the location of the current goal, in a 4 × 4 factorial design. This allowed us 
to construct model RDMs that encoded allocentric space as individual rooms or as a map (room 
and map, exactly as above) alongside new model RDMs that encoded current goal locations as 
individual rooms or as a map (goalroom and goalmap; Fig. 6A). Regression against the 16 x 
16 data RDM revealed that goalmap was significant in visual cortex, PPC and PFC, in addition 
to map.  No effects were significant in HC or OFC, presumably because collapsing over 
orthogonal contexts removed the relevant subspaces in which rooms and goals are represented.  
 
The full data from the regression analysis are shown in Fig. 6B, and RDMs for this analysis 
are shown in Fig. 6C, and the MDS plots in Fig. 6D. To increase legibility, we invert the 
plotting convention of the previous analysis and now plot different rooms (in allocentric space) 
in different colours (blue = SW, red = NW, cyan = SE, orange = NE), and the labels on the plot 
now refer to goals (where the agent is headed). In PPC and PFC, goals are represented on 4 
rough quadrilaterals, one within each room that the agent could occupy, though the 
representation of goals is smaller in area than the representations of room in allocentric space. 
There is thus a clear hierarchical representation, whereby a neural map of the current goal is 
represented within a neural map of the current location. In PPC, the quadrilateral is visibly 
elongated so that the goal room condition is represented on a common plane separated from 
the non-goal room conditions. The pattern in visual cortex is harder to discern. In PPC and 
PFC, thus, spatial goals are represented in a geometric format similar to physical space itself. 
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Figure 6 (A) Model RDMs used to test the neural geometry of room and goal representations. RDMs are 
constructed from nested goal {SW, NW, SE, NE} and room {SW, NW, SE, NE} variables. (B) Violin plots 
showing parameter estimates for each model RDM regressed competitively against the data RDM. Each dot is an 
individual participant. Blue dots and shading (positive values) and light grey dots and shading (negative values) 
indicate p < 0.05. (C) Group average data RDMs for visual cortex, PPC and PFC (HC and OFC showed no 
significant effects). (D) MDS plots constructed from corresponding group average RDM for each region. Colours 
denote room (blue = SW, red = NW, cyan = SE, orange = NE). Rooms are organised into an approximate 
quadrilateral, and goals (within each room) are similarly arranged approximately quadrilaterally. 
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Discussion 
 
In the current study, participants learned that contextual cues determined the pattern of spatial 
goals (horizontal or vertical relationship between rewarded locations) to which an avatar should 
be moved in a structured “four rooms” environment [45]. One major observation from our 
study was that the neural geometry of BOLD signals broadly reflects the allocentric spatial 
layout of the environment, especially in neocortical regions such as PPC and PFC. This finding 
complements previous reports that spatial location (in a single context) can be decoded from 
BOLD signals in both hippocampus and neocortex using nonlinear pattern classification 
methods [15–18]. We note that this encoding of spatial layout occurred even though 
participants were provided with a bird’s eye (grid world) rather than a first-person view of the 
environment, unlike in previous studies. 
 
Our major question was how context modulates the neural representation of allocentric space 
in human BOLD signals. We considered three major hypotheses. Firstly, we asked whether 
context would lead to remapping (or “orthogonalization”) whereby population codes for space 
change their tuning preferences between contexts (where the rule for finding goals changes). 
This is implied by previous work in rodents showing that changes to the physical nature of the 
environment (for example by changing the shape of the testing environment, or varying the 
textures or odours encountered during navigation), or even changes in internal variables (such 
as thirst or hunger), can cause the spatial preferences of place cells to randomly remap [19–
22,26]. One salient observation in the current report is that whilst context provoked 
representational changes in BOLD signals in both hippocampus and neocortex, none of these 
changes resembled those expected if neural codes for space randomly remap, either partially 
or in full. The neural geometry implied by random remapping is that spatial representations 
become “orthogonal” or uncorrelated. By contrast, we observed that neural manifolds 
representing space were highly aligned across contexts in most brain regions. This resembles 
the “neural structure alignment” that has recently been reported to accompany decision tasks 
in both humans and monkeys, whereby contexts sharing common structure are represented with 
parallel neural geometries, potentially because this allows a decoder trained in one context to 
be generalised to the other [46–51]. 
 
The second hypothesis we considered was that context is represented as an independent, 
nonspatial dimension in neural state space. This is implied by recent findings emphasising that 
multiple task-relevant variables, such as location and evidence for progress towards a goal, are 
multiplexed in neurons with spatial selectivity, for example in the rodent hippocampal CA1 
area [42]. Whilst participants were navigating towards a room containing a goal, we did see 
evidence for a nonspatial representation of context in both hippocampus and OFC, as evidenced 
by a reliable offset or “separation” between contexts in the neural manifolds for space. 
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However, this effect was less prominent and statistically weaker than the other effects reported 
here, did not survive whole-brain correction, and did not persist in either HC or OFC once 
participants entered the goal room. 
 
Instead, in our study, the most salient way that context influenced neural coding was by 
compressing spatial codes so that prospective locations signalled by the context lay closer 
together in neural state space. Thus, when the contextual cue indicated that goals were found 
on the horizontal axis (H context), the dimension of neural state space representing east-to-
west was compressed; similarly, when the cue disclosed that  goals lay on the vertical axis (V 
context), the north-to-south dimension was compressed. Compression effects were visible in a 
number of brain regions, but they were most prominent in the OFC and hippocampus, where 
the rooms lying along the relevant dimensions were coded with a highly correlated neural code. 
Using a spatial encoding model loosely based on the properties of hippocampal place cells in 
the rodent, we show that it is possible to elicit compression of this sort via a simple assumption: 
that both current and prospective locations are encoded jointly in population vectors for 
allocentric space, i.e., the place code reflects participants’ estimates of both where they are, 
and where they expect to be. This occurs because jointly encoding prospective locations (the 
two spatial goals) that lie on a common axis leads to correlated neural signals along this axis, 
which in turn are visible in compressions of the neural geometry for space. 
 
The compression in HC and OFC was sufficiently prominent that in our context-dependent 
navigation task, neither region naively reliably encoded the full spatial layout, as might be 
expected from a pure place code. This might seem curious, given that the hippocampus encodes 
a spatial representation of the environment in rodents. However, there are a number of possible 
explanation for this. Firstly, it seems likely that compression is incurred by the need to keep 
representations of possible spatial plans separate: to ensure that horizontal and vertical goals 
are not confused. In which case it is possible that compression does not occur in standard 
navigation paradigms where goals are not flexibly cued from trial to trial, and that there the 
HC and OFC maps resemble more closely those observed in PPC. Secondly, it is possible that 
there are variations in the extent to which current and goal locations are decodable from human 
BOLD signals relative to neuronal recordings in rodents. Indeed, prospective information 
seems to be a prominent component of human BOLD responses in a variety of settings 
[9,17,34,52,53]. It is also possible that this is due to differences in recording methods; there is 
considerable debate about how to jointly understand effects recorded at the micro-, meso- and 
macroscopic levels during spatial navigation [54]. 
 
Our results are thus consistent with the finding that both hippocampus [9,13,34,37,38] and 
orbitofrontal cortex [40,55] explicitly code for future goal locations, including in human 
recordings made with both BOLD [34] and intracranial electrodes [13,14]. Our model suggests 
that the representation of space in the BOLD signal in hippocampus and OFC can be explained 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.12.523762doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523762
http://creativecommons.org/licenses/by/4.0/


 22 

by the simple principle that current and prospective (goal) locations are encoded in temporal 
proximity, but our recording methods do not have the resolution in space or time to detail 
exactly how that might occur. For example, prospective locations or goals may be represented 
through dedicated cell types [38] or may be evoked during forwards or backwards simulation 
occurring via replay mechanisms [56,57], which has also been observed in humans [58]. More 
generally, our results are consistent with the view that the OFC (and to a lesser extent HC) 
represents the “task space”, that is it encodes states in a format that is optimised for reward-
guided action and planning [59,60]. This could explain the context dependent compression of 
vertical / horizontal rooms, which represent the reward-relevant axes of our task. 
 
We observed another curious effect by which the neural geometry of the environment was 
“flipped” between periods in which (i) navigation was ongoing, and (ii) where the goal room 
had been reached.  It is not clear to us what purpose is served by this aspect of the geometry, 
which was most prominent in HC and OFC. However, it is reminiscent of recent reports that 
memory traces are rotated in neural state space to prevent them from interfering with perceptual 
information [61].  In fact, other reports have emphasised a related effect: that retrieval induces 
spatial memories to be mutually repulsed, perhaps so that they can become more 
distinguishable [43]. It seems possible that retrieval-based repulsion (between periods) and 
context-based compression (or attraction) of spatial memories can co-exist; this may be an 
interesting avenue for future research. 
 
We also examined how the agent’s current location and the location of the navigational goal 
were jointly represented. Remarkably, we observed that the representation of agent location 
and goal location is nested, especially in PPC; there is a prominent quadrilateral representation 
of the currently occupied room, but nested within each room representation is another 
quadrilateral representation of the current navigational goal. Consistent with the strong effect 
of period, we see that (in PPC at least) this representation is distorted so that the goal 
corresponding to the current room is represented distinctly from all other goals.  This 
hierarchical representation of goals and space was not observed in HC or OFC in our study, 
presumably because averaging over contexts removes the subspace in which location is 
represented. 
 
How context biases the encoding of sensory signals has been extensively studied in tasks that 
require a single action to be taken to elicit an outcome, such as visual categorisation. In these 
tasks, different computational mechanisms have been proposed for preventing interference 
between different tasks (or goals) that are required in different contexts. For example, when 
the task requires monkeys to classify stimuli into common groups, single neurons or 
populations of neurons in PFC code for stimuli associated with a given class [6,62–64], echoing 
the compression of target information reported here. Other reports, however, argue that during 
categorisation, neural signals coding for different groups are offset by a one-dimensional 
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signal, giving rise to a neural “separation” similar to that tested here [65,66]. Where there are 
explicit contextual cues signalling the task, context-irrelevant information can be compressed 
in BOLD signals [7] and is often coded along a perpendicular dimension in neural state space, 
for example to avoid catastrophic interference [6,7]. Thus, orthogonalization, separation and 
compression are candidate mechanisms for mediating the contextual modulation of sensory 
codes in both instantaneous and sequential decision tasks. 
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Methods 
 
Participants 
 
Thirty-one human participants were recruited for the experiment through the recruitment 
system at the Max Plank Centre for Human Development (Berlin).  One participant was omitted 
from the analysis due to a neural structural abnormality and another three participants were 
omitted due to technical difficulties with the MRI equipment. All analyses were performed on 
the remaining 27 participants (11 male, 16 female; age 27.3 ± 4.4 years). Participants were 
compensated for their time at a base rate of €10/hour, plus an extra €10 for participating in an 
MRI experiment, and finally an additional bonus of up to 10€ (5€ per session) depending on 
their performance. Informed consent was given before the start of the experiment. The study 
was approved by the Department of Education and Psychology at the Freie Universität Berlin 
and the Medical Science Inter-Divisional Research Ethics Committee (R49432/RE001) at the 
University of Oxford. 
 
Design, task and procedures 
 
The experiment involved two sessions undertaken on different days. In both sessions, 
participants performed a computerised task that was built and delivered in the Unity 3D games 
environment. The task involved navigating an avatar through a grid world to collect rewards. 
On day 1 participants performed a training task outside of the scanner, using the arrow keys on 
a laptop computer to move the avatar through the environment (see Fig. 1A). On day 2 (32.0 ± 
3.6 hours later) they performed the task lying supine in an MRI scanner, viewing the screen 
through a mirror and using an MRI-compatible button box to respond. 
 
On both days, the grid world environment was composed of four adjoining rooms arranged in 
a square. We refer to the rooms as southwest (SW), northwest (NW), southeast (SE) and 
northeast (NE) rooms. Each room was composed of 4 x 4 grid squares and was connected to 
the two cardinally adjacent rooms (e.g., SW was connected to SE and NW but not NE) via a 
single “bridge” square. It thus mirrored the classic “four rooms” environment commonly used 
in AI research [67]. At each point in the trial, participants could only see the 4 x 4 squares of 
the currently occupied room, plus the two additional bridge squares; the other rooms were 
offscreen. One square of each room contained a boulder, and two of the four boulders in the 
environment were associated with a reward (the reward was revealed when the avatar collided 
with the boulder). During training, the grid squares were differently coloured in each of the 
four rooms; during test, they were all purple. Traversing a bridge square incurred a variable 
delay during which the full map was briefly shown. This was to encourage participants to 
consider their room choices carefully before moving between rooms, and later on day 2, to 
more easily separate the BOLD response pertaining to the occupation of different rooms. 
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On both days task was divided into blocks of 16 trials (n = 4 during day 1; n = 6 during day 2. 
In the scanner, these constituted 6 independent scanner runs). On each trial, participants began 
in the inner corner of a randomly chosen room (they could identify the room by the locations 
of the visible bridge squares). Before navigation began, participants were shown a contextual 
cue, which was a picture of one of two food items (Fig. 1C). Unbeknownst to participants, each 
cue disclosed one reward location conditional on the other for that trial. For example, in scanner 
run 1, cue A (a martini icon) indicated that the rewards were in rooms lying in the same 
horizontal axis, and cue B (a peanut icon) that the rewards were in the same vertical axis (with 
neither disclosing which specific rooms). Different pairs of food items were chosen on day 1, 
and then on blocks 1-2, 3-4, and 5-6 of day 2 (4 pairs total) so that participants had to generalise 
the structure to previously unseen items. Food icons used for the day 2 (scanner) task included 
watermelon, cheese, mushroom, avocado, pineapple and banana. 
 
Participants navigated freely (up, down, left, right) using buttons, causing the avatar to move 
within the environment (the background grid remaining fixed). When participants alighted on 
a boulder that was associated with a reward, the reward was revealed by showing the food item 
that had been cued on that trial, before navigation could recommence. Participants were 
instructed to find the two rewards as quickly as possible and received a trial score that was 
equal to the number of seconds the participant had remaining on their timer at the end of each 
trial. If participants took longer than the timer deadline to find both rewards, 20 points were 
deducted from their total trial score. The task was calibrated so that a participant that ignored 
the cues and navigated to boulders in any order would only meet the deadline on approximately 
50% of trials, set to be 40s on day 1 and 50s in the scanner on day 2. Aggregate trial score was 
converted to a financial bonus at the end of the experiment. 
 
The timing of events within each trial were as follows. Each trial started with the controls 
disabled, and the location of the avatar in the start room was shown for 2.5s. The contextual 
cue was then displayed enlarged in the centre of the screen for 1.5s. After a further 1s the 
controls were enabled, and participants were able to move the avatar through the environment 
by pressing arrow keys (day 1) or button box keys (day 2). At this point, the timer (visible in 
the top right hand corner of the screen) started ticking down from a deadline value (40s on day 
1, 50s on day 2). On day 2, participants could move the avatar at a maximum speed of 1 grid 
square every 0.4s (increased from 0.25s on day 1, to ensure participants remained in each room 
long enough to obtain a clear per-room neural signal). When moving through a hallway, 
controls were disabled for a period of time before players were able to move again, where this 
period was drawn from a truncated exponential distribution (mean 2s; min 1.5s; max 7s). When 
the avatar collided with a boulder, the controls were again disabled for a period (sampled from 
truncated exponential with mean 2s; min 1s; max 5s) while either a reward or no reward was 
shown. At the end of the trial a message saying “well done” appeared on the screen and the 
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participant’s total score was visibly updated using the remaining seconds left on the timer, 
which corresponded to additional points. After each trial participants were shown a black 
screen for a period before the next trial began (ITI sampled from truncated exponential 
distribution with mean 2.5s, min 1.5s, max 7s). 
 
In our design we consider the cues to be “contexts” signalling whether rewards were found on 
the horizontal or vertical axes of the four rooms environment. However, because rewards could 
be in any room (i.e., in a vertical condition they could be in the SW and NW or the SE and 
NE), occupancy probabilities were closely matched across contexts. Nevertheless, to ensure 
good coverage of the environment, and to attempt to match transitions as well as occupancy, 
we also introduced a “robot control” phase in every trial, in which either the robot or the 
participant began by controlling the avatar. If the robot controlled the avatar, it moved at 
approximately the same pace as an average participant, and typically to a non-rewarded room, 
where it made a beeline for the boulder. Every time the computer (participant) reached a 
boulder, the control was passed back to the participant (computer) until the next boulder was 
reached. On average, the amount of time spent per trial under control of the robot was 11.7 
seconds, compared to 14.3 seconds under participant control. 
 
The behavioural training session (day 1) began with two practice trials, which used different 
contextual cues, which did not signal the location of one cue conditional on the other. During 
the training session (day 1), cues were blocked so that participants alternated between 
horizontal and vertical contexts in an ABAB design. During day 2 in the scanner, contexts were 
interleaved from trial to trial, so that different contexts were not associated with distinct, 
prolonged temporal episodes. 
 
Each run contained 16 trials. Trials were balanced across pairs of runs which had the same 
reward cues. Trials were balanced across the two cues (32 trials / 2 cues = 16), starting rooms 
(16 trials per cue / 4 rooms = 4), whether the start room was rewarded or not (4 trials per room 
per cue  / 2 = 2), and whether the participant foraged first or the robot foraged first (2 trials 
rewarded per room per cue /2 = 1). Trial ordering was randomised across participants. 
 
At the end of the scanning sessions participants responded to a situational quiz which examined 
their explicit understanding of the reward covariance rules. They were asked four questions of 
the form “You have just found a cheese in the top right room. Which room will the other cheese 
be in?”, and four questions which tested their counterfactual understanding, such as "You were 
looking for a cheese and did NOT find one in the bottom right room. Which rooms will contain 
the two cheeses?". Each participant was assessed with a version of the quiz that mentioned the 
reward pair that they had most recently observed (those in the final two runs). The maximum 
possible score was 8. We examined the correlation across participants between these quiz 
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scores and (1) the average first room choice accuracy in the scanning session, and (2) the mean 
trial score in the scanning session. 
 
Behavioural analysis 
 
We computed three behavioural metrics. Firstly, we considered the trial score, which is roughly 
proportional to the average time taken to complete a trial. Secondly, we computed the transition 
bias, which is the relative fraction of transitions between horizontal and vertical rooms in the 
appropriate context (H or V): 
 

𝑝(ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙|𝐻) + 𝑝(𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙|𝑉) − 𝑝(ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙|𝑉) + 𝑝(𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙|𝐻) 
 
Thirdly, we computed first choice accuracy, which is the probability that participants made an 
optimal transition from the first room occupied to the second. This measure is particularly 
sensitive because a participant who perfectly understand the meaning of the contextual cues 
can always head to the correct 2nd room, on the basis of whether the 1st (starting) room contains 
a reward or not. First choice accuracy was quite highly correlated with transition bias (r = 0.86). 
 
Computational model 
 
We defined a simulated environment corresponding to the four rooms arena, in which locations 
were denoted by values in the range [-1,1] in both the 𝑥 and the 𝑦 dimension. We rescaled 
participants’ observed movement trajectories through the grid environment so that they mapped 
onto this simulated environment and located the boulders at their approximately corresponding 
positions. This allowed us model neural responses using an encoding model that consisted of 
simulated place cells. The place cells exhibited bivariate Gaussian response fields that regularly 
tiled the arena on a 10 × 10 square lattice (but the results we describe were very similar, albeit 
but more variable, if we drew their tuning preferences from random uniform distributions). We 
assume that there are 200 place cells in each context (two cells coding for each location).  
 
In this simple model, we define the place field of neuron 𝑖 in context 𝑐 as peaking at an [𝑥, 𝑦] 
location 𝜃!(𝑐). We note that the vector of place fields in the two contexts 𝜃(𝑐 = 𝑉) and 𝜃(𝑐 =
𝐻) may be the same, or partially or fully different. This is controlled by the parameter 𝛽, which 
determines the fraction of cells for which 𝜃(𝑐 = 𝐻) 	≠ 𝜃(𝑐 = 𝑉). Thus if 𝛽 = 0 then all cells 
code for the same location regardless of context (no remapping), if 𝛽 = 0.5 then 50/100 cells 
exhibit overlapping place fields between contexts (partial remapping), and if 𝛽 = 1 then all 
cells change their tuning between contexts (full remapping). 
 
Thus, in any given context we can estimate the neural response of neuron 𝑖 on time step 𝑡 as 
being 
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𝑅",! = |𝜔| × 𝑓(𝑠"|𝜃!(𝑐), Σ) + (1 − |𝜔|) × 𝑓(𝑔"|𝜃!(𝑐), Σ) + 𝛾 × ℎ(𝑐) 

 
In the expression above, 𝑓(∙ |𝜃! , 𝜎) is the bivariate normal distribution evaluated at the 
preferred [𝑥, 𝑦] tuning location (place field) for neuron 𝑖 in context 𝑐, and Σ = [0.25, 0; 0	0.25]. 
We define the current [𝑥, 𝑦] location of the agent as 𝑠", whereas 𝑔" is the [x, y] coordinate 
location of the goal to which the agent is headed on the current timestep. Finally, ℎ(𝑐) is a 
context-specific neural signal, which depends uniquely on the current context (H or V) active 
on that timestep and not on the location of the agent or goal. 
 
In addition to orthogonalization (controlled by 𝛽), separation and compression are controlled 
via two further free parameters. The gain parameter 𝛾 determines the relative influence of ℎ(𝑐), 
the (place-insensitive) signal coding for context, which has the effect of neural separation 
between neural manifolds for space in each context. Finally, the mixing parameter 𝜔 
determines the relative influence of the current (𝑠") and prospective (𝑔") location on the neural 
population response. Where 𝜔 = 0, only the participant’s current location is encoded, as in a 
“classical” place field model. Where 𝜔 > 0, the model encodes a mixture of the current 
location and the prospective (goal) location. We also allow for 𝜔 < 0; in this case, we use the 
closely related expression 
 

𝑅",! = |𝜔| × 𝑓(𝑠"|𝜃!(𝑐), Σ) + (1 − |𝜔|) × 𝑓(𝑔′"|𝜃!(𝑐), Σ) + 𝛾 × ℎ(𝑐) 
 
Where 𝑔′" is a fictitious goal location that is swapped on the horizontal / vertical axis, as if 
participants were prospectively encoding horizontal locations in the V conditions and vertical 
locations in the H condition. This entails that space is compressed along the dimension 
perpendicular to the axis on which the two goals can be found. We call this anti-compression. 
 
We use the observed individual trajectories, and the actual prospective goals (i.e., where 
participants were genuinely headed) at each time point to evaluate the model for each agent. 
This provides us with a neural response matrix of size 200 × 𝑡 in each of 48 trials in context 
H and 48 trials in context V. We then average those timepoints in which the avatar was in the 
SW, NW, SE and NE rooms for each context, yielding a 200 × 8 matrix, which we use to 
generate an 8 × 8 RDM (expressing correlation distance) for each simulated participant. For 
visualisation, we average these RDMs across the simulated cohort, and plot them using 
multidimensional scaling (e.g., Fig. 2C). 
 
fMRI data collection and pre-processing 
 
Anatomical MRI data 
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MRI data were acquired at the Max Planck Institute for Human Development in Berlin using a 
32-channel head coil on a 3T Siemens Magnetom Triotrim MRI scanner (Siemens, Erlangen, 
Germany). At the start of the scanning session, a T1-weighted (T1w) high-resolution 
anatomical image was obtained using a Magnetization Prepared Rapid Gradient Echo 
(MPRAGE) sequences (sequence parameters: repetition time (TR) = 2500 ms, echo time (TE) 
= 4.77 ms, flip angle = 7°, field of view (FOV) = 256 mm; voxel size = 1 x 1 x 1 mm).  
 
Data were processed within the fMRIPrep framework. The T1w image was corrected for 
intensity non-uniformity with N4BiasFieldCorrection [68], distributed with ANTs 2.2.0, and 
used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped 
with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid, white 
matter and gray matter was performed on the brain-extracted T1w using fast (FSL 5.0.9). Brain 
surfaces were reconstructed using recon-all (FreeSurfer 6.0.1), and the brain mask estimated 
previously was refined with a custom variation of the method to reconcile ANTs-derived 
and FreeSurfer-derived segmentations of the cortical gray matter of Mindboggle [69]. Volume-
based spatial normalization to MNI space (MNI152NLin2009cAsym) was performed through 
nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions of 
both T1w reference and the T1w template.  
 
Functional MRI data 
Functional MRI data were acquired using a T-2-weighted (T2w) echo planar imaging (EPI) 
pulse sequence sensitive to BOLD contrast (sequences parameters: TR = 2000 ms, TE = 30 
ms, FOV = 192 x 192 mm, flip angle = 80°, voxel size = 3 x 3 x 3 mm). The task was divided 
into 6 functional runs, each lasting between 10 and 15 minutes, depending on participant 
performance.  
  
For each of the size scanning runs, the following pre-processing steps were performed. 
Initially, a reference volume and its skull-stripped version were generated using a custom 
methodology of fMRIPrep. A B0-nonuniformity map was estimated based on two 
EPI references with opposing phase-encoding directions, with 3dQwarp (AFNI 20160207). 
Based on the estimated susceptibility distortion, a corrected EPI reference was calculated for a 
more accurate co-registration with the anatomical reference. The BOLD reference was then co-
registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-
based registration [70]. Co-registration was configured with six degrees of freedom. Head-
motion parameters with respect to the BOLD reference (transformation matrices, and six 
corresponding rotation and translation parameters) are estimated before any spatiotemporal 
filtering using mcflirt (FSL 5.0.9). BOLD runs were slice-time corrected using 3dTshift from 
AFNI 20160207 and the time-series were resampled to their original native space as well as 
to the standard MNI space. BOLD data were moreover smoothed with a 6 mm full-width half-
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maximum Gaussian kernel.  A reference volume and its skull-stripped version were generated 
using a custom methodology of fMRIPrep. Several confounding time-series were calculated 
based on the pre-processed BOLD: framewise displacement, DVARS and three region-wise 
global signals. FD and DVARS are calculated for each functional run, both using 
their implementations in Nipype (following the definitions by [71]).  
 
fMRI analysis: first level GLMs and ROI definition 
 
The pre-processed BOLD timeseries data were modelled with general linear models (GLMs) 
that contained regressors for different task events. The first GLM contained he following 
regressors: the contextual cue, the movement period of each trial before the first feedback when 
subjects had no knowledge about the locations of the reward, the subsequent movement periods 
when the agent was occupying a room without a reward (pre-goal room period), the subsequent 
movement periods when the agent was occupying a room with a reward (goal room period), 
those periods when the agent occupied a hallway between adjacent rooms, the feedback periods 
when a reward was presented, and the feedback periods when no reward was presented. We 
modelled data from both the self-directed and robot control periods together to ensure adequate 
coverage of space in both contexts. Note that we defined separate regressors for pre-goal room 
periods and goal room periods for each of the four rooms of the grid world (SW, NW, NE, SE) 
and each behavioural context (vertical vs. horizontal goal alignment), resulting in 16 regressors 
for movement periods after the first feedback. The GLM also contained nuisance regressors 
pertaining to participants’ head motion (three rotation parameters and three translation 
parameters), the global signal in the white matter, and the framewise displacement. All 
regressors were modelled with variable durations from start to finish and convolved with a 
canonical haemodynamic response function. To ensure sufficient trial counts, we concatenated 
the BOLD time-series data across odd and even scanning runs (using the 
spm_fmri_concatenate function). We conducted a second GLM that defined movement periods 
in terms of the current location of the agent (SW, NW, NE, SE) and the prospective location 
of the navigational goal (SW, NW, NE, SE). This GLM collapsed events across behavioural 
contexts (i.e., trials with vertical vs. horizontal goal alignment), thereby also resulting in 16 
regressors for movement periods after the first feedback.  
 
Five regions-of-interest (ROIs) were defined based on existing atlases. We used the Wake 
Forest University Pickatlas (integrated into SPM) to define ROIs for the hippocampus (bilateral 
areas labelled Hippocampus), orbitofrontal cortex (bilateral areas labelled Frontal_Inf_Orb; 
Frontal_Mid_Orb, Frontal_Sup_Orb), and visual cortex (bilateral areas labelled 
Occipital_Mid). ROIs for prefrontal and posterior parietal cortices were defined based on an 
atlas provided by Fedorenko et al. (2013) that delineates frontoparietal brain areas implicated 
in cognitive control across a variety of cognitive domains (the whole atlas is available for 
download at http://imaging. mrc-cbu.cam.ac.uk/imaging/MDsystem).  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.12.523762doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523762
http://creativecommons.org/licenses/by/4.0/


 37 

 
fMRI analysis: neural geometry  
 
To compute the neural geometry, we obtained the multivariate pattern evoked by each of the 
16 predictors (in either GLM1 or GLM2) for each participant in each scanner run. Thus, for 
each region (or searchlight) this yielded a 𝑛(𝑣$) × 16 × 6 data array, where 𝑛(𝑣$) is the 
number of voxels in region 𝑟. We collapsed over odd and even runs, giving us two 𝑛(𝑣$) × 16 
arrays. We began by identifying eligible voxels for multivariate analysis (feature selection) by 
correlating, in each individual voxel, the pattern of activity over the 16 conditions between odd 
and even runs. Voxels with Pearson’s 𝑟 > 0 were included in all multivariate analysis. To 
verify that this did not bias our analysis in any way, we reran all analyses in the paper on 
shuffled data to which we applied the same feature selection methods; we observed no 
deviation from the expected null distribution in this case. Next, we used singular value 
decomposition to reduce the dimensionality to 𝑑 dimension within the ROI; for all statistical 
analyses, we used 𝑑 = 10 (we did not apply this step for MDS visualisation).  
 
At this stage (where required, i.e., for Fig. 3 and Fig. 4) we separated the ROIs into pre-goal 
room and goal room periods. This was desirable because of the large offset in behaviour 
between these periods, but we obtain very similar results when we analyse all the data together 
(Fig. 5). In each case, we computed RDMs (8 × 8 or 16 × 16) in cross-validation; this means 
that we computed 𝑅𝐷𝑀!% which is the dissimilarity between the neural pattern from the 𝑖"& 
condition in odd scanner runs to the 𝑗"& condition in even scanner runs. We then averaged these 
RDMs about the diagonal and regressed lower triangle of the RDM against that of a predictor 
matrix composed of one or more (standardised) model RDMs, obtaining beta coefficients for 
their competitive fit. The diagonal is not zero for our data RDMs because of the cross-validation 
step, so we set it to zero for MDS visualisation only; note that this has no impact on our 
statistical analysis.  
 
For the “scores” analysis, we generated three perfectly orthogonal matrices that we call 
compression, separation and map. Each of these score matrices is the same size as the RDM 
and comprises binary values (+1 and -1) for key condition pairs; each sums to zero. Each score 
matrix is multiplied elementwise with the data RDM for each participant and averaged, 
yielding a score that is > 0 if matrix values set to 1 are more dissimilar than those set to -1 and 
< 0 otherwise. This allows us to do group-level one-sample t-tests (against zero) to test for 
these three effects.  
 
The compression matrix tests whether the east and west rooms are more similar in the H 
condition, and the north and south rooms in the V condition, than the converse (it is thus the 
subtraction of the compression and anti-compression matrices shown in Fig. 3E). The 
separation matrix sets values between contexts to +1 and those within contexts to -1, excluding 
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the minor diagonals (i.e., the dissimilarity between each room and itself across contexts). The 
map matrix tests whether each plane is shaped like a quadrilateral, mirroring the geometry of 
the four rooms environment. To this end, the scores matrix has values of +1 for the diagonals 
(e.g., SE to NW) and -1 for the cardinals (e.g., SE to NE; this is done in subsets to ensure the 
matrix sums to zero). The resulting vector of scores across the participant cohort is correlated 
with behavioural measures, including first choice accuracy and transition bias, using Pearson’s 
correlation. 
 
In the angle analysis, we assess the angle between the north-south and east-west vectors within 
contexts, across contexts, and across contexts and goal room period. We do this using the full 
16 × 16 matrix. We first compute the difference in high-dimensional vector coding for each 
room in each context and period, leading to a data matrix of size 𝑛(𝑣$) × 16 × 16. We 
manually compute the angle between those edges predicted to be parallel, orthogonal or 
inverted in the model in Fig. 5C and plot these in Fig. 5D. 
 
To detect potential signals outside of the chosen ROIs, we repeated the “scores” analysis, 
described above, in a whole-brain searchlight approach, where RSA was conducted at each 
voxel with a group of surrounding voxels (spherical searchlight radius = 12 mm). Analogously 
to the ROI analyses, we conducted separate analyses for pre-goal room period and goal room 
period. For each voxel within the searchlight, we extracted the 8 beta coefficients from the 
GLM corresponding to the regressors for each room (SW, NW, NE, SE) and context (vertical, 
horizontal). We next applied voxel selection and dimensionality reduction, as described above, 
and computed cross-validated RDMs (8 x 8), which were multiplied elementwise with each 
predictor matrix, yielding three whole-brain maps with regression coefficients for each subject. 
These maps were smoothed using an 8 mm FWHM Gaussian kernel. Statistical significance 
was established separately for each voxel by testing the regression coefficients against zero 
using one-sample t-tests. Correction for multiple comparison was conducted via family-wise 
error correction (p < 0.05) as implemented in SPM 12. 
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