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ABSTRACT 36 

Understanding phenotype-to-genotype relationships is a grand challenge of 21st century biology with 37 

translational implications. The recently proposed “omnigenic” model postulates that effects of genetic 38 

variation on traits are mediated by core-genes and -proteins whose activities mechanistically 39 

influence the phenotype, whereas peripheral genes encode a regulatory network that indirectly 40 

affects phenotypes via core gene products. We have developed a positive-unlabeled graph 41 

representation-learning ensemble-approach to predict core genes for diverse diseases using 42 

Mendelian disorder genes for training. Employing mouse knockout phenotypes for external 43 

validation, we demonstrate that our most confident predictions validate at rates on par with the 44 

Mendelian disorder genes, and all candidates exhibit core-gene properties like transcriptional 45 

deregulation in diseases and loss-of-function intolerance. Predicted candidates are enriched for drug 46 

targets and druggable proteins and, in contrast to Mendelian disorder genes, also for druggable but 47 

yet untargeted gene products. Model interpretation suggests key molecular mechanisms and 48 

physical interactions for core gene predictions. Our results demonstrate the potential of graph 49 

representation learning and pave the way for studying core gene properties and future drug 50 

development. 51 

  52 
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MAIN 53 

Understanding phenotype-to-genotype relationships is one of the most fundamental problems of 54 

current biological research with profound translational implications for questions ranging from human 55 

healthcare to biotechnological crop improvement. Genome-wide association studies (GWAS) 56 

statistically associate phenotypes with specific variants in genomic loci. This approach has been 57 

immensely successful and led to the identification of thousands of variants affecting diverse 58 

physiological, molecular, and even psychological phenotypes. The problem of identifying likely 59 

causal variants within haplotype blocks is increasingly solved by advanced modeling approaches 60 

that integrate GWAS and functional genomic data to identify the genetic variants and genes that are 61 

likely causal for the observed phenotypic manifestation1,2. However, after solving this issue recent 62 

analyses still indicate that even simple traits can have thousands of causal variants3 distributed 63 

uniformly across the genome, and many without obvious connection to the known molecular 64 

mechanisms regulating the respective trait4–9. This insight raises the conceptual question which 65 

molecular mechanisms could give rise to such a highly polygenic architecture and the practical 66 

question about how to prioritize proteins as interventional and diagnostic targets. The recently 67 

proposed “omnigenic” model postulates that the effects of genetic variation on a trait are mediated 68 

by core genes, encoding core proteins (hereafter used interchangeably depending on context), 69 

whose expression, and ultimately function, directly and mechanistically influences the phenotype, 70 

whereas peripheral genes and proteins constitute a regulatory network that propagates the effects 71 

of genetic variants on the phenotype by modulating core gene expression and function10,11. The 72 

model postulates that the effects of peripheral proteins converge on relatively few core proteins that 73 

have a major influence on the trait12; consequently many functional mutations in core genes remain 74 

at low frequency in the adult population8, making their detection in GWAS challenging. While the 75 

original authors propose trans-eQTLs to infer the underlying genetic network for all diseases12,13, 76 

they admit that the required cohort sizes make this approach impractical11. Rare variant sequencing, 77 

alternatively suggested to associate core genes to diseases10, similarly requires very large cohorts 78 

and has been criticized as a suboptimal strategy14.  79 

Conceptually, the impact of peripheral genes and proteins is transmitted to core proteins via 80 

‘regulatory networks’ that encompass all layers of biological regulation10, and which we more 81 

generically refer to as molecular networks to include biochemical modes of regulation. Thus, to 82 

identify core disease genes, here we propose an advanced machine learning (ML) approach that 83 

utilizes physical and regulatory molecular network information to identify core genes using Mendelian 84 

disorder genes as a positive training set. Mendelian disorder genes not only “clearly fulfill the core 85 

gene definition”14, but are examples towards the extreme end of the distribution of core genes, as a 86 

single Mendelian disorder gene can cause the disease14. Moreover, for nearly all modes of biological 87 

regulation increasingly complete reference networks are available that describe biochemical 88 

interactions and regulatory effects, e.g. protein-DNA contacts and transcriptional regulation15–17, 89 

protein-protein interactions18,19 and signaling pathways20, and human metabolism21. While similar 90 
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information is also available from aggregated small-scale studies and predictions20,22–24, these are 91 

affected by a heavy inspection bias of hypothesis driven approaches and therefore not ideal for 92 

reliable identification of hitherto unknown core genes18,25,26 (Extended Data Fig. 1, Supplementary 93 

Note 1).  94 

With the uptake of graph representation learning in biomedicine27, novel options exist to process 95 

networks alongside the input features in a joint ML model, thus approaching an in silico 96 

representation of biological regulation. First implementations based on random-walks28–37or graph 97 

neural networks (GNN)38–43 show promise in predicting ‘disease genes’, but are often disease 98 

specific, depend on hard-coded and partially biased input data, and do not further explore the 99 

properties of predicted (core) genes (Extended Data Fig. 2). Moreover, in many machine learning 100 

applications ensemble approaches outperform individual models44,45. 101 

Here we present Speos, an extensible and generalizable positive-unlabeled (PU) ML framework that 102 

integrates information from biological networks and multiple biological modalities including gene 103 

expression and GWAS data to predict core gene candidates for five common complex diseases. For 104 

this, we developed an ensemble-based machine learning classifier. Systematic evaluation of the 105 

predicted candidate genes using six external datasets demonstrates that these exhibit key core gene 106 

characteristics, impact phenotypic manifestations to a similar extent as Mendelian genes, and are 107 

enriched for potential new drug targets.  108 

As Mendelian genes display all characteristics of ‘strong’ core genes14 we use these as positive 109 

labels for a positive unlabeled graph representation learning27 ensemble. Tissue-specific gene 110 

expression and gene-level GWAS summary statistics will be used as input features10,3. To identify 111 

suitable base classifiers, we first conducted a hyperparameter optimization on the full data set 112 

assuming negative labels for unlabeled genes. 113 

 114 

Performance of Base Classifiers 115 

Although Speos uses an ensemble-approach to achieve a consensus, the performance of the base 116 

classifier is expected to be indicative for the performance of the ensemble. We therefore explored 117 

the performance of different commonly used base classifiers (Fig. 1a, Extended Data Fig. 3). Since 118 

it is unknown by which regulatory modalities the effects of peripheral genes are transmitted to core 119 

proteins and if these differ among diseases, we tested 35 biological networks (Fig. 1b) selected for 120 

their unbiased, systematic construction or strict curation approach. Among several GNN base 121 

classifiers, the widely used GCN46 layer, which is limited to one network at a time, convolutes the 122 

features of each gene with a nonlinear projection of its immediate (1-step) neighborhood in a given 123 

network. The TAG47 layer is similar to GCN but considers higher-order neighborhoods (3-steps) of 124 

any node and can block out unhelpful information. RGCN48, is the relational equivalent of GCN and 125 

can consider multiple networks simultaneously. Lastly, FiLM49 is similar to RGCN, but uses feature-126 

wise linear modulation50 to exclude and even override unhelpful neighborhood features based on the 127 

center node and the connecting edge. Additional GNN layers performed worse during 128 
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hyperparameter optimization and were not further included (Extended Data Fig. 4, 5, 6, 129 

Supplementary Note 2). Lastly, we included Node2Vec51 (N2V), which uses random walks on the 130 

network and techniques developed for natural language processing to embed the network topology 131 

into vector space in an unsupervised setting. These N2V-generated vectors can then be used as 132 

input features by methods that cannot ingest networks directly like multilayer perceptrons (MLP), 133 

logistic regression (LR) and random forests (RF).  134 

We compared the ability of these base classifiers to identify Mendelian disorder genes using a 4-fold 135 

cross-validation analysis, and quantified performance on the holdout set using area under the 136 

receiver operator curve (AUROC) (Fig. 1a). AUROC is suitable for model comparison in PU learning 137 

as known positives receive higher predictions than the average unlabeled gene, even though the 138 

unlabeled (actual) positives reduce the optimal AUROC score. While many classifiers perform 139 

similarly, most methods strongly depend on the input features and the network used. In line with the 140 

omnigenic model10,11, removing tissue-specific gene expression from the input features reduces the 141 

performance. The “direct” annotated interaction network from IntAct22 works well with single-network 142 

layers, while the FiLM layer performs well using the union of all networks (Fig. 1b). However, not all 143 

networks improve the performance compared to an MLP that does not use any network, likely 144 

reflecting the different importance of biological modalities and tissues for different diseases. With 145 

GCN, many networks have a detrimental effect on the performance; using TAG, this effect is less 146 

pronounced. Equivalently, the FiLM layer improves the performance compared to the RGCN layer 147 

when all networks are used simultaneously and tends to predict genes with very high GWAS Z-148 

scores as core genes of cardiovascular disease, consistent with the omnigenic model (Extended 149 

Data Fig. 7). As TAG and FiLM, but not GCN or RGCN, can ignore unhelpful neighborhood 150 

information, their increased performance could reflect the fact that not the complete reference 151 

network is relevant for disease manifestation and prediction. Intriguingly, in this benchmarking the 152 

best performing method (Fig. 1a), N2V+MLP, does not use graph convolutions but embeds all 153 

networks simultaneously into vector space using Node2Vec51 and then feeds these vectors 154 

alongside the GWAS and gene expression features into an MLP (Supplementary Note 3). 155 

Based on these results we selected five methods as base classifiers for our nested cross-validation 156 

ensemble: N2V+MLP, which had the best overall performance, FiLM trained on all networks, and 157 

TAG trained on IntAct Direct Interaction as best performing GNN-based methods. Despite the lower 158 

performance we decided to also include MLP as a baseline classifier that does not use relational 159 

network information, and GCN46, which is regularly used in graph-based problems to ensure 160 

comparability with other studies. 161 

 162 

Ensemble training and external validation of candidate genes 163 

We used the selected base classifiers to train the ensembles, which takes the form of a nested cross 164 

validation with m = 11 outer folds, each comprised of n = 10 (inner fold) models (Fig. 2a). Within 165 

each outer fold we statistically assess the agreement of the 10 inner models. Using the outer fold 166 
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hold-out set we select an inner threshold at which the agreement among the 10 inner models on 167 

held out Mendelian genes surpasses random expectation (FDR < 0.05; Student’s t-test, Fig. 2b, 168 

Supplementary Table ST1). All genes with higher agreement than this inner threshold are 169 

considered candidate genes of this outer fold. Since each outer fold predicts one set of candidate 170 

genes, the overlap among these sets can be used to assign confidence to each candidate gene 171 

using a consensus score (CS) (Fig. 2c), which indicates the number of outer folds which predict a 172 

given gene to be a candidate. Genes receiving a CS of 0 are non-candidates, while genes with the 173 

highest CS of 11 are the most confident predictions. We aimed to validate the model and our 174 

predictions using systematic, orthogonal functional data.  175 

 176 

Mouse knockout data 177 

Since core genes are defined as directly contributing to a disease phenotype10–12, genetic deletion 178 

of core genes in mice should cause mouse phenotypes related to the human disease. We therefore 179 

investigated if genetic deletion of mouse orthologs of predicted core genes across the different 180 

convergence scores led to relevant phenotypes more often than expected by chance (Fig. 3a, 181 

Supplementary Table ST2). Mendelian genes of all five disorders show a significant enrichment, 182 

serving as a positive control and benchmark for this validation. From the least conservative (CS ≥ 1) 183 

to the most stringent bin (CS = 11) the odds ratio (OR) of mouse knockout genes among the 184 

candidate genes increases for all five disease groups. This indicates that, indeed, Speos’ CS 185 

identifies gene sets of increasing biological relevance and thus can serve as a measure of the quality 186 

of predictions. Overall, FiLM and TAG predicted gene sets show the highest enrichment and only 187 

when all methods show a low performance, as for diabetes, the gap between the methods narrows. 188 

For other diseases, represented by cardiovascular diseases and body mass disorder, FiLM and/or 189 

TAG perform consistently better while GCN, N2V+MLP and MLP remain at the tail end of the 190 

distribution. This contrasts with the initial benchmark (Fig. 1a), where N2V+MLP performed best. 191 

This discrepancy is likely due to a distribution shift referred to as probabilistic gap52, which here is 192 

the consequence of differences between strong Mendelian genes used for training and the additional 193 

core genes we aim to predict, for which only genetic variants with weaker effects are commonly 194 

observed in the population. Because of these differences, (Fig. 3b), the decision boundary that is 195 

best suited to recover the ‘extreme’ Mendelian core genes, i.e. our labeled positives (Fig. 3c), is ill-196 

suited to discover the ‘normal’ core genes, i.e. unlabeled positives, we aim to discover (Fig. 3d). 197 

Importantly, we noticed that the inspection bias of hypothesis-driven small-scale studies present in 198 

the body of literature, and reflected in curated interaction datasets, is amplified in predictions relying 199 

on these (Extended Data Fig. 8). Removing the affected networks resolves the bias in the results, 200 

yet especially FiLM predictions still validate at similar rates even after removal of the IntAct datasets 201 

(Extended Data Fig. 9a, Supplementary Note 4, Supplementary Table ST3). Furthermore, gene 202 

set enrichment analysis for gene ontology (GO) biological processes highlights relevant terms, such 203 
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as muscle contraction for cardiovascular disease and immune response for immune dysregulation 204 

(Supplementary Table ST4). 205 

The strong performance in predicting genes with relevant mouse phenotypes clearly demonstrates 206 

that Speos identifies disease relevant (core) genes. Importantly, at high CS scores, the orthogonal 207 

KO validation rates for sets from all methods except MLP are statistically indistinguishable from the 208 

positive control benchmarks for the majority of disease groups (FDR > 0.05, z-test, Supplementary 209 

Table ST5). Thus, biologically, our predictions are on par with strong Mendelian core genes. 210 

However, even in the lowest bin (CS ≥ 1) genes with disease-relevant mouse phenotypes are 211 

enriched for every disorder and every method (FDR < 0.05, Fisher’s exact test, Supplementary 212 

Table ST2), indicating that these sets are meaningful and disease-specific. We therefore include all 213 

genes with CS ≥ 1 as candidate genes for the remainder of this work.  214 

 215 

Differential Gene Expression 216 

Variation in gene expression can translate into altered enzyme activities and network dynamics and 217 

is therefore an important mechanism by which core genes contribute to disease10,53. Thus, in disease 218 

conditions both Mendelian and predicted core genes are expected to be enriched among 219 

differentially expressed genes. Indeed, for all disease groups Mendelian genes show a strong 220 

enrichment among differentially expressed genes and, again, serve as the reference. The predicted 221 

core genes are similarly enriched among differentially expressed genes, although the enrichment is 222 

weaker for many diseases (Fig. 4a, Supplementary Table ST6). This difference is consistent with 223 

the notion of ‘extreme’ and ‘normal’ core genes and reinforces the idea that both Mendelian genes 224 

and core genes underlying the genetic architecture of complex traits can cause phenotypes by loss 225 

of function or expression mediated change of activities. 226 

FiLM and TAG predict gene sets with the strongest enrichment in differentially expressed genes with 227 

average odds ratios (ORAV) of 5.4 and 5.0, respectively. Although TAG shows a stronger enrichment 228 

of cardiovascular disease subtypes and predicted differential expression-enriched gene sets for 21 229 

out of 22 disease subtypes, FiLM shows the highest ORAV of all methods with especially strong 230 

performance in immune dysregulation. The candidate genes produced by GCN show a lower 231 

enrichment (ORAV of 4.0), reflecting its initial inclusion as the weakest of the selected GNNs. As 232 

before, the performance of N2V+MLP in predicting unknown core genes is worse compared to TAG 233 

and FiLM. While showing high ORs for some subtypes (ORAV of 3.6), for 5 of 22 disease subtypes 234 

the predicted candidate sets show no enrichment for differential expression in disease conditions 235 

(FDR > 0.05). The MLP without the Node2Vec node embeddings shows a substantially weaker 236 

performance (ORAV = 2.1), indicating the importance of network information. Using hypothesis-driven 237 

curated interaction datasets differentially impacts the enrichment of predictions for differentially 238 

expressed genes for different diseases (Extended Data Fig. 9b, Supplementary Table ST7, 239 

Supplementary Note 4). 240 
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Overall, these results indicate that the Mendelian genes tend to be differentially expressed in 241 

disease, likely contributing to disease etiology, and that optimized graph convolutional methods such 242 

as FiLM and TAG are best suited to generalize this pattern to identify non-Mendelian candidate core 243 

genes. 244 

 245 

Loss of Function and Missense Intolerance 246 

Because core genes directly influence disease phenotypes, these are expected to accumulate 247 

protein-function impairing mutations at a lower frequency than regulatory peripheral genes8,10. Using 248 

ExAc cohort Z-scores54, we examined this conjecture for two types of functional mutations: loss-of-249 

function (LoF) and missense (Fig. 4b, c, Supplementary Tables ST8, ST9). Consistent with the 250 

omnigenic model, Mendelian genes are enriched for LoF intolerant genes in four out of five disorders. 251 

Similarly, candidate core genes identified by FiLM and TAG are significantly different from the non-252 

candidates in four out of five disorders. All significant candidate sets are enriched for LoF intolerance, 253 

except FiLM predictions for cardiovascular disease genes. For missense mutation intolerant genes 254 

we observed overall similar trends (Fig. 4c). Interestingly, the signal from the Mendelian genes is 255 

less pronounced and does not reach significance in three of the five diseases. Correspondingly, for 256 

four disease groups the signal of the FiLM and TAG predicted core genes exceed that of the 257 

Mendelian genes and thus presenting the inverse picture than loss-of-function intolerance. Different 258 

biological and clinical properties of LoF and non-LoF mutations are well recognized55 and the 259 

observed differences between Mendelian and predicted core genes demonstrate that Speos 260 

identifies genes with different biological properties than the training set. For cardiovascular diseases, 261 

the FiLM predictions again show a significant depletion indicating a potentially interesting, but at this 262 

point unexplained phenomenon.  263 

Taken together, all our analyses strengthen the view of Mendelian genes as ‘extreme’ core genes, 264 

and demonstrate that Speos reliably identifies phenotypically relevant genes with key core genes 265 

properties.  266 

 267 

Examples and Model interpretation 268 

After demonstrating that Speos predicts bona fide core genes, we were interested in exploring 269 

specific predicted examples to assess plausibility and to understand which aspects of the known 270 

biology reflected in the model were most relevant for their prediction as core genes (Supplementary 271 

Note 5). We selected genes with high CS, which are differentially expressed in at least one disease 272 

subtype (Fig. 4a). To explore translational potential, we filtered for genes encoding yet untargeted 273 

but druggable56 proteins and applied model interpretation techniques to investigate gene- and 274 

network-level patterns underlying their prediction as candidates. Both TNFSF15 and IL18RAP are 275 

predicted as candidate genes for immune dysregulation by FiLM (CS 11 & 9); the former also by 276 

TAG (CS 5) (Fig. 5).  277 
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TNFSF15 is differentially expressed in Crohn’s disease and ulcerative colitis and its protein product 278 

TL1A is part of the tumor necrosis factor superfamily and a ligand for two receptors: DR3 encoded 279 

by TNFRSF25, which activates pro-inflammatory signaling, and soluble TR6 encoded by 280 

TNFRSF6B, which acts as a non-functional decoy-receptor57,58. Increased binding of TL1A to DR3 281 

results in gut inflammation59,60 and endothelial dysfunction61, while neutralization of TL1A by TR6 282 

down-regulates apoptosis62. This ability of TL1A/TNFSF15 to tip the balance of inflammation is 283 

mirrored in findings that different genetic variants in- or decrease the risk for Crohn’s disease63–65, 284 

ulcerative colitis64 and inflammatory bowel disease66. We investigated influential network-level 285 

patterns by assigning importance values to edges using integrated gradients67. Model interpretation 286 

for TNFSF15 shows that the receptor-ligand relationships with the protein products of TNFRSF25 287 

and TNFRSF6B are among the strongest influences (Fig. 5a) illustrating that Speos’ predictions 288 

point towards biologically relevant and actionable mechanisms. The model interpretation further 289 

suggests that drugs mimicking TR6 can alleviate inflammation by competitively sequestering TL1A 290 

and thereby reducing binding of TL1A to DR3. Indeed, monoclonal antibody treatments leveraging 291 

this mechanism are in clinical testing and initial results demonstrate a reduction of free TL1A and 292 

normalization of pathologically dysregulated gut mucosa68. 293 

IL-18RAcP encoded by IL18RAP is an accessory protein for the receptor of the proinflammatory 294 

interleukin 18 (IL-18) and greatly increases its affinity to its ligand69. As such, it can increase the pro-295 

inflammatory effect of IL-18, exacerbating inflammation via the Interferon-𝛾 pathway. IL18RAP is 296 

differentially expressed in ulcerative colitis, its expression modulates treatment response in 297 

rheumatoid arthritis70 and it is considered a risk factor for celiac disease71 and autoimmune thyroid 298 

diseases72. FiLM’s prediction of IL18RAP is highly influenced by its connection to PIGH (Fig. 5b), 299 

which is crucial for the first step of the glycosylphosphatidylinositol (GPI) biosynthesis73. The GPI 300 

glycan supports complex formation between IL-18RAcP and IL-18 receptor which increases 301 

proinflammatory signaling74. Thus, model interpretation suggests that interfering with the IL-18RAcP 302 

- IL-18 receptor interaction reduces dysregulated inflammatory signaling. Indeed, it has recently been 303 

demonstrated that cleaving IL-18RAcP using specific antibodies effectively reduces inflammation in 304 

human blood cell cultures75. 305 

Both gene’s predictions are strongly influenced by the GWAS input features for the complex forms 306 

of the phenotype (Fig. 5c, d). For IL18RAP, high gene expression in whole blood, plasmacytoid 307 

dendritic cells (DC) and the spleen are among the strongest influences, which is expected for a factor 308 

contributing to autoimmunity76,77. This combination of GWAS and disease-specific gene expression 309 

are gene-level patterns expected for core genes by the omnigenic model10-12. Beyond this, further 310 

analyses and examples indicate that Speos finds core gene patterns along the entire continuum of 311 

evidence combinations, from relying mostly on GWAS features (Fig. 5c), a combination of GWAS 312 

and gene expression features (Fig. 5d) to almost exclusively utilizing gene expression features as 313 

for obscurin and ITGA7 (Extended Data Fig. 10, Supplementary Note 6). 314 
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These examples showcase that Speos candidate genes constitute strong core gene hypotheses that 315 

are consistent with the omnigenic model. Moreover, model interpretations suggest biochemically and 316 

pharmaceutically plausible mechanisms for their impact on disease.  317 

 318 

Speos-candidates are potential drug targets 319 

Since core proteins are defined to directly and causally influence disease phenotypes, countering 320 

the respective perturbations with pharmaceutical interventions should improve disease severity and 321 

symptoms. To test this prediction systematically, we gathered drug-target-gene interactions from the 322 

drug repurposing knowledge graph (DRKG)78 and assessed the proportion of drug-target encoding 323 

genes among the Mendelian and predicted core gene sets. Mendelian genes for all five disorders 324 

are significantly enriched for genes encoding drug targets (DT), druggable proteins (Dr), and average 325 

number of drugs targeting their products (xDC) (Fig. 6, FDR < 0.05, DT and Dr: Fisher’s exact test, 326 

xDC: U-test, Supplementary Table ST7). The enrichments of drug targets (DT) and of the average 327 

number of drugs targeting the encoded proteins (xDC) both suggest that Mendelian genes have 328 

been in the focus of drug development. The enrichment of druggable gene products (Dr) among 329 

Mendelian genes and predicted candidates could be due to selection biases in the drug discovery 330 

process, or may indicate that proteins with binding pockets for substrates or ligands are more likely 331 

to be core disease genes that can directly cause disease phenotypes (Fig. 6). Crucially, Speos’ 332 

predicted candidate core genes are similarly enriched in all categories. In contrast to the analyses 333 

of biological properties above, the observed enrichments are more varied among the methods with 334 

each method predicting highly enriched subsets in one or two diseases, except for the network-335 

independent MLP. 336 

In light of the retrospective confirmation of core gene products as suitable drug targets, core gene-337 

encoded proteins that are not drug-targets yet, are attractive candidates for future drug development. 338 

However, proteins encoded by Mendelian genes are not enriched for druggable proteins once the 339 

established drug targets have been removed (Fig. 6, Dr-), which indicates that the innovative 340 

potential of Mendelian gene-products as drug targets has been largely exhausted. In contrast, 341 

candidate genes produced by TAG and FiLM, as well as N2V+MLP jointly show a significant 342 

enrichment for druggable proteins among the non-drug-targets in all five diseases (Fig. 6, FDR < 343 

0.05, Fisher’s exact test, Supplementary Table ST10) highlighting potential targets for development 344 

of therapeutics for these epidemic disease groups. Removing the IntAct networks results in 345 

prediction of significantly more not-targeted druggable (Dr-) genes for immune dysregulation 346 

(Extended Data Fig. 9c, ST11, Supplementary Note 4b).  347 

 348 

Discussion 349 

Speos is a graph-representation learning framework that predicts novel core genes with high external 350 

validation rates and properties predicted for core disease genes. In developing this framework, we 351 

show that all investigated modalities of molecular networks carry relevant information to identify core 352 
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genes (Fig. 5a, b). At the same time, despite the strong GNN performance in the external biological 353 

validation (Fig. 3), we were surprised by the moderate gain from including network information in the 354 

initial prediction of held out Mendelian genes (Fig. 1a). This is mirrored by the finding that a 355 

substantial part of the information that Speos extracts from molecular networks is encoded in the 356 

topology and less so in features of neighboring genes (Supplementary Note 3). This is unexpected 357 

as both the omnigenic model as well as the underlying biological thinking predict that the regulatory 358 

and biochemical network surrounding a node modulates and impacts its function and activation. The 359 

fact that the extensive network information we use does not result in an even greater gain in 360 

performance may have a variety of possible reasons that could point towards future improvements. 361 

Obvious shortfalls are imperfect SNP to gene mappings, and residual false-positives and the 362 

incompleteness of all network maps18,79,80. Similarly, models built on any single network are limited 363 

by only accessing a small part and single modality of regulatory links explaining their weak 364 

performance. Noteworthy, however, is the observation that learning methods that can selectively 365 

ignore link information perform better than those that always consider the complete network 366 

neighborhood. We also noticed that the average shortest path between all genes in the union of all 367 

networks is close to 2 and many nodes have degrees exceeding 300 (Extended Data Fig. 6c) 368 

indicating a very high network density. Likely, in any specific (patho-) physiological setting only few 369 

of these interactions are responsible for dysregulated core protein activity, whereas others matter in 370 

other conditions, other tissues, or for processes that do not influence disease etiology. We therefore 371 

think that, in addition to a lack of relevant interactions, especially the abundance of disease-context-372 

irrelevant interactions constitute a challenge for learning algorithms and, in fact, for our 373 

understanding of network function. For future implementations it may be helpful to include 374 

directionality of signaling links for example based on systematic perturbation screens81–84 and include 375 

tissue specificity of edges as explicit features. Therefore, even in the absence of new systematic 376 

experimental data, future iterations of this type of work are expected to jointly learn the network and 377 

gene representations, thereby improving our understanding of network functioning.  378 

In summary, we show that Speos is able to produce candidate core gene sets for different common 379 

and complex diseases using Mendelian disorder genes as training examples (Supplementary Table 380 

ST12). By building on properties predicted by the omnigenic model, we have further shown that 381 

these candidate genes are enriched for mouse KO genes, differentially expressed genes, genes 382 

intolerant of functional mutations and drug targets, all characteristics that are expected of core 383 

genes. Furthermore, we show examples of candidate genes that have already been selected for 384 

drug development and demonstrate that the model relies on similar data as domain experts. As such, 385 

Speos is the first attempt at translating the omnigenic model into an ML framework for predicting and 386 

prioritizing core genes across several disease areas. We anticipate that our results open the door 387 

for a better understanding of core gene attributes and network functioning, and open possibilities for 388 

future drug development. 389 

  390 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.13.523556doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523556
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

REFERENCES 391 

1. Ghoussaini, M. et al. Open Targets Genetics: systematic identification of trait-associated 392 

genes using large-scale genetics and functional genomics. Nucleic Acids Res. 49, D1311–393 

D1320 (2020). 394 

2. Mountjoy, E. et al. An open approach to systematically prioritize causal variants and genes at 395 

all published human GWAS trait-associated loci. Nat. Genet. 53, 1527–1533 (2021). 396 

3. Sinnott-Armstrong, N., Naqvi, S., Rivas, M. & Pritchard, J. K. GWAS of three molecular traits 397 

highlights core genes and pathways alongside a highly polygenic background. eLife 10, 398 

e58615 (2021). 399 

4. Loh, P.-R. et al. Contrasting genetic architectures of schizophrenia and other complex 400 

diseases using fast variance-components analysis. Nat. Genet. 47, 1385–1392 (2015). 401 

5. Shi, H., Kichaev, G. & Pasaniuc, B. Contrasting the Genetic Architecture of 30 Complex Traits 402 

from Summary Association Data. Am. J. Hum. Genet. 99, 139–153 (2016). 403 

6. Zhang, Y., Qi, G., Park, J.-H. & Chatterjee, N. Estimation of complex effect-size distributions 404 

using summary-level statistics from genome-wide association studies across 32 complex 405 

traits. Nat. Genet. 50, 1318–1326 (2018). 406 

7. Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex 407 

traits beyond genetic correlation. Nat. Commun. 10, 2417 (2019). 408 

8. O’Connor, L. J. et al. Extreme Polygenicity of Complex Traits Is Explained by Negative 409 

Selection. Am. J. Hum. Genet. 105, 456–476 (2019). 410 

9. O’Connor, L. J. The distribution of common-variant effect sizes. Nat. Genet. 53, 1243–1249 411 

(2021). 412 

10. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An Expanded View of Complex Traits: From Polygenic 413 

to Omnigenic. Cell 169, 1177–1186 (2017). 414 

11. Boyle, E. A., Li, Y. I. & Pritchard, J. K. The Omnigenic Model: Response from the Authors. J. 415 

Psychiatry Brain Sci. 2, (2017). 416 

12. Liu, X., Li, Y. I. & Pritchard, J. K. Trans Effects on Gene Expression Can Drive Omnigenic 417 

Inheritance. Cell 177, 1022-1034.e6 (2019). 418 

13. Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and 419 

polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021). 420 

14. Wray, N. R., Wijmenga, C., Sullivan, P. F., Yang, J. & Visscher, P. M. Common Disease Is 421 

More Complex Than Implied by the Core Gene Omnigenic Model. Cell 173, 1573–1580 422 

(2018). 423 

15. Gerstein, M. B. et al. Architecture of the human regulatory network derived from ENCODE 424 

data. Nature 489, 91–100 (2012). 425 

16. Fuxman Bass, J. I. et al. Human gene-centered transcription factor networks for enhancers 426 

and disease variants. Cell 161, 661–673 (2015). 427 

17. Zhu, X., Duren, Z. & Wong, W. H. Modeling regulatory network topology improves genome-428 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.13.523556doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523556
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

wide analyses of complex human traits. Nat. Commun. 12, 2851 (2021). 429 

18. Luck, K. et al. A reference map of the human binary protein interactome. Nature 580, 402–408 430 

(2020). 431 

19. Huttlin, E. L. et al. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the 432 

Human Interactome. Cell 184, 3022-3040.e28 (2021). 433 

20. Fabregat, A. et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 46, D649–434 

D655 (2018). 435 

21. Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human 436 

metabolism. Nat. Biotechnol. 36, 272–281 (2018). 437 

22. Orchard, S. et al. The MIntAct project—IntAct as a common curation platform for 11 molecular 438 

interaction databases. Nucleic Acids Res. 42, D358–D363 (2014). 439 

23. Szklarczyk, D. et al. The STRING database in 2021: customizable protein-protein networks, 440 

and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 441 

49, D605–D612 (2021). 442 

24. Oughtred, R. et al. The BioGRID database: A comprehensive biomedical resource of curated 443 

protein, genetic, and chemical interactions. Protein Sci. Publ. Protein Soc. 30, 187–200 444 

(2021). 445 

25. Yu, H. et al. High Quality Binary Protein Interaction Map of the Yeast Interactome Network. 446 

Science 322, 104–110 (2008). 447 

26. Edwards, A. M. et al. Too many roads not taken. Nature 470, 163–165 (2011). 448 

27. Li, M. M., Huang, K. & Zitnik, M. Graph representation learning in biomedicine and healthcare. 449 

Nat. Biomed. Eng. 1–17 (2022) doi:10.1038/s41551-022-00942-x. 450 

28. Köhler, S., Bauer, S., Horn, D. & Robinson, P. N. Walking the Interactome for Prioritization of 451 

Candidate Disease Genes. Am. J. Hum. Genet. 82, 949–958 (2008). 452 

29. Li, Y. & Patra, J. C. Genome-wide inferring gene-phenotype relationship by walking on the 453 

heterogeneous network. Bioinforma. Oxf. Engl. 26, 1219–1224 (2010). 454 

30. Xie, M., Xu, Y., Zhang, Y., Hwang, T. & Kuang, R. Network-based Phenome-Genome 455 

Association Prediction by Bi-Random Walk. PloS One 10, e0125138 (2015). 456 

31. Zhao, Z.-Q., Han, G.-S., Yu, Z.-G. & Li, J. Laplacian normalization and random walk on 457 

heterogeneous networks for disease-gene prioritization. Comput. Biol. Chem. 57, 21–28 458 

(2015). 459 

32. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous Network Edge Prediction: A Data 460 

Integration Approach to Prioritize Disease-Associated Genes. PLOS Comput. Biol. 11, 461 

e1004259 (2015). 462 

33. Huang, J. K. et al. A systematic evaluation of molecular networks for discovery of disease 463 

genes. Cell Syst. 6, 484-495.e5 (2018). 464 

34. Valdeolivas, A. et al. Random walk with restart on multiplex and heterogeneous biological 465 

networks. Bioinformatics 35, 497–505 (2019). 466 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.13.523556doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523556
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

35. Joodaki, M., Ghadiri, N., Maleki, Z. & Lotfi Shahreza, M. A scalable random walk with restart 467 

on heterogeneous networks with Apache Spark for ranking disease-related genes through 468 

type-II fuzzy data fusion. J. Biomed. Inform. 115, 103688 (2021). 469 

36. Zhong, Y., Shen, C., Wu, H., Xu, T. & Luo, L. Improving the Prediction of Potential Kinase 470 

Inhibitors with Feature Learning on Multisource Knowledge. Interdiscip. Sci. Comput. Life Sci. 471 

14, 775–785 (2022). 472 

37. Wang, L., Shang, M., Dai, Q. & He, P.-A. Prediction of lncRNA-disease association based on a 473 

Laplace normalized random walk with restart algorithm on heterogeneous networks. BMC 474 

Bioinformatics 23, 5 (2022). 475 

38. Vanunu, O., Magger, O., Ruppin, E., Shlomi, T. & Sharan, R. Associating Genes and Protein 476 

Complexes with Disease via Network Propagation. PLOS Comput. Biol. 6, e1000641 (2010). 477 

39. Yang, P., Li, X., Chua, H.-N., Kwoh, C.-K. & Ng, S.-K. Ensemble Positive Unlabeled Learning 478 

for Disease Gene Identification. PLOS ONE 9, e97079 (2014). 479 

40. Schulte-Sasse, R., Budach, S., Hnisz, D. & Marsico, A. Integration of multiomics data with 480 

graph convolutional networks to identify new cancer genes and their associated molecular 481 

mechanisms. Nat. Mach. Intell. 3, 513–526 (2021). 482 

41. Choi, W. & Lee, H. Identifying disease-gene associations using a convolutional neural 483 

network-based model by embedding a biological knowledge graph with entity descriptions. 484 

PLOS ONE 16, e0258626 (2021). 485 

42. Du, J. et al. Graph Embedding Based Novel Gene Discovery Associated With Diabetes 486 

Mellitus. Front. Genet. 12, 779186 (2021). 487 

43. Zhang, Y., Chen, L. & Li, S. CIPHER-SC: Disease-Gene Association Inference Using Graph 488 

Convolution on a Context-Aware Network With Single-Cell Data. IEEE/ACM Trans. Comput. 489 

Biol. Bioinform. 19, 819–829 (2022). 490 

44. Breiman, L. Bagging Predictors. Mach. Learn. 24, 123–140 (1996). 491 

45. Rokach, L. Ensemble-based classifiers. Artif. Intell. Rev. 33, 1–39 (2010). 492 

46. Kipf, T. N. & Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. 493 

ArXiv160902907 Cs Stat (2016). 494 

47. Du, J., Zhang, S., Wu, G., Moura, J. M. F. & Kar, S. Topology Adaptive Graph Convolutional 495 

Networks. Preprint at http://arxiv.org/abs/1710.10370 (2018). 496 

48. Schlichtkrull, M. et al. Modeling Relational Data with Graph Convolutional Networks. 497 

ArXiv170306103 Cs Stat (2017). 498 

49. Brockschmidt, M. GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation. 499 

Preprint at http://arxiv.org/abs/1906.12192 (2020). 500 

50. Perez, E., Strub, F., de Vries, H., Dumoulin, V. & Courville, A. FiLM: Visual Reasoning with a 501 

General Conditioning Layer. Preprint at http://arxiv.org/abs/1709.07871 (2017). 502 

51. Grover, A. & Leskovec, J. node2vec: Scalable Feature Learning for Networks. in Proceedings 503 

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 504 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.13.523556doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523556
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

- KDD ’16 855–864 (ACM Press, 2016). doi:10.1145/2939672.2939754. 505 

52. Bekker, J. & Davis, J. Learning from positive and unlabeled data: a survey. Mach. Learn. 109, 506 

719–760 (2020). 507 

53. Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past 508 

successes for mendelian disease, future approaches for complex disease. Nat. Genet. 33, 509 

228–237 (2003). 510 

54. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–511 

291 (2016). 512 

55. Gerasimavicius, L., Livesey, B. J. & Marsh, J. A. Loss-of-function, gain-of-function and 513 

dominant-negative mutations have profoundly different effects on protein structure. Nat. 514 

Commun. 13, 3895 (2022). 515 

56. Finan, C. et al. The druggable genome and support for target identification and validation in 516 

drug development. Sci. Transl. Med. (2017) doi:10.1126/scitranslmed.aag1166. 517 

57. Migone, T. S. et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell 518 

costimulator. Immunity 16, 479–492 (2002). 519 

58. Zhan, C. et al. Decoy strategies: the structure of TL1A:DcR3 complex. Struct. Lond. Engl. 520 

1993 19, 162–171 (2011). 521 

59. Furfaro, F. et al. TL1A: A New Potential Target in the Treatment of Inflammatory Bowel 522 

Disease. Curr. Drug Targets 22, 760–769 (2021). 523 

60. Jin, S. et al. TL1A/TNFSF15 directly induces proinflammatory cytokines, including TNFα, from 524 

CD3+CD161+ T cells to exacerbate gut inflammation. Mucosal Immunol. 6, 886–899 (2013). 525 

61. Della Bella, S. et al. Pathologic up-regulation of TNFSF15-TNFRSF25 axis sustains 526 

endothelial dysfunction in unprovoked venous thromboembolism. Cardiovasc. Res. 116, 698–527 

707 (2020). 528 

62. Yang, C.-R. et al. Soluble decoy receptor 3 induces angiogenesis by neutralization of TL1A, a 529 

cytokine belonging to tumor necrosis factor superfamily and exhibiting angiostatic action. 530 

Cancer Res. 64, 1122–1129 (2004). 531 

63. Yang, D.-H. et al. TNFSF15 is an independent predictor for the development of Crohn’s 532 

disease-related complications in Koreans. J. Crohns Colitis 8, 1315–1326 (2014). 533 

64. He, L., Chen, J., Sun, J., Peng, J. & He, Q. Protective association of TNFSF15 polymorphisms 534 

with Crohn’s disease and ulcerative colitis: A meta-analysis. Saudi J. Gastroenterol. Off. J. 535 

Saudi Gastroenterol. Assoc. 24, 201–210 (2018). 536 

65. Zhou, Y. et al. Polymorphism rs6478109 in the TNFSF15 gene contributes to the susceptibility 537 

to Crohn’s disease but not ulcerative colitis: a meta-analysis. J. Int. Med. Res. 48, 538 

300060520961675 (2020). 539 

66. Richard, A. C. et al. Reduced monocyte and macrophage TNFSF15/TL1A expression is 540 

associated with susceptibility to inflammatory bowel disease. PLoS Genet. 14, e1007458 541 

(2018). 542 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.13.523556doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523556
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

67. Sundararajan, M., Taly, A. & Yan, Q. Axiomatic Attribution for Deep Networks. in Proceedings 543 

of the 34th International Conference on Machine Learning 3319–3328 (PMLR, 2017). 544 

68. Kokkotis, G. & Bamias, G. TL1A as a therapeutic target in inflammatory bowel disease. Expert 545 

Rev. Clin. Immunol. 18, 551–555 (2022). 546 

69. Wu, C. et al. IL-18 Receptor β-Induced Changes in the Presentation of IL-18 Binding Sites 547 

Affect Ligand Binding and Signal Transduction. J. Immunol. 170, 5571–5577 (2003). 548 

70. Cherlin, S. et al. Investigation of genetically regulated gene expression and response to 549 

treatment in rheumatoid arthritis highlights an association between IL18RAP expression and 550 

treatment response. Ann. Rheum. Dis. 79, 1446–1452 (2020). 551 

71. Hunt, K. A. et al. Newly identified genetic risk variants for celiac disease related to the immune 552 

response. Nat. Genet. 40, 395–402 (2008). 553 

72. Wang, X. et al. Polymorphisms of ST2-IL18R1-IL18RAP gene cluster: a new risk for 554 

autoimmune thyroid diseases. Int. J. Immunogenet. 43, 18–24 (2016). 555 

73. Watanabe, R. et al. The first step of glycosylphosphatidylinositol biosynthesis is mediated by a 556 

complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J. 17, 877–885 (1998). 557 

74. Fukushima, K., Ikehara, Y. & Yamashita, K. Functional Role Played by the 558 

Glycosylphosphatidylinositol Anchor Glycan of CD48 in Interleukin-18-induced Interferon-γ 559 

Production*. J. Biol. Chem. 280, 18056–18062 (2005). 560 

75. Li, S. et al. A novel anti-human IL-1R7 antibody reduces IL-18-mediated inflammatory 561 

signaling. J. Biol. Chem. 296, 100630 (2021). 562 

76. Galicia, G. & Gommerman, J. L. Plasmacytoid dendritic cells and autoimmune inflammation. 563 

Biol. Chem. 395, 335–346 (2014). 564 

77. Jang, E., Cho, S., Pyo, S., Nam, J.-W. & Youn, J. An Inflammatory Loop Between Spleen-565 

Derived Myeloid Cells and CD4+ T Cells Leads to Accumulation of Long-Lived Plasma Cells 566 

That Exacerbates Lupus Autoimmunity. Front. Immunol. 12, (2021). 567 

78. Ioannidis, V. N. et al. DRKG - drug repurposing knowledge graph for covid-19. (2020). 568 

79. Venkatesan, K. et al. An empirical framework for binary interactome mapping. Nat. Methods 6, 569 

83–90 (2009). 570 

80. Peel, L., Peixoto, T. P. & De Domenico, M. Statistical inference links data and theory in 571 

network science. Nat. Commun. 13, 6794 (2022). 572 

81. Dixit, A. et al. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA 573 

Profiling of Pooled Genetic Screens. Cell 167, 1853-1866.e17 (2016). 574 

82. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. 575 

Methods 14, 297–301 (2017). 576 

83. Gasperini, M. et al. A Genome-wide Framework for Mapping Gene Regulation via Cellular 577 

Genetic Screens. Cell 176, 377-390.e19 (2019). 578 

84. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primer 2, 1–23 (2022). 579 

 580 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.13.523556doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523556
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

FIGURES 581 

 582 

 583 
Fig. 1 | Performance AUROC. a, the mean area under the receiver operator characteristic curve 584 

(AUROC) metric (higher is better) over n = 16 models for different base classifiers, dataset variants 585 

and phenotypes. For AUPRC and mean rank and see Extended Data Fig. 3. Combinations of 586 

methods and input data are indicated along the y-axis. The blocks group models using common 587 

input data as indicated: Only Network: adjacency matrix/matrices; Only Features: gene expression 588 

and GWAS input features but no adjacency matrices; No Expression: GWAS input features and 589 

adjacency of individual (single) or multiple (multi) networks; Network + Features: adjacency of 590 

individual (single) or multiple (multi) networks, GWAS and gene expression. b, AUROC of 4 591 

repetitions of a 4-fold cross validation for the indicated individual networks, all networks 592 

simultaneously (multi) using the classifier methods indicated by color. The vertical gray area 593 

indicates the interquartile range of the MLP, which does not use any network information (uppermost 594 

boxplot). Each boxplot is based on n = 16 values. Boxes represent the interquartile range, colored 595 

bars are medians, whiskers extend at most 1.5 times the interquartile range, and outliers are shown 596 

individually. 597 
 598 
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 599 
 600 

Fig. 2 | Cross Validation Ensemble. a, The 11 folds of the outer cross-validation, each with 10 601 

inner cross-validation folds. Each inner cross validation fold corresponds to one ML model. The 602 

positives correspond to the Mendelian disorder genes for the given phenotype. Every model within 603 

one outer fold has the same positive test set (red square), but different positive validation sets (green 604 

squares) used for early stopping. All unlabeled genes are used for training for every model of every 605 

fold. b, For each outer fold, the overlap of candidate-predicted unknowns (dark blue bars) and correct 606 

predictions of the positive test set (red bars) of the 10 models are compared to random sets of the 607 

same size. Mean and standard deviation of the random sets are shown colored according to the 608 

legend (light blue and orange bars, error bars denote one standard deviation). If the observed overlap 609 

of correctly classified held out positives is significantly higher than expected by chance (FDR < 0.05, 610 

one-sided t-tests, Supplementary Table ST1, marked with black asterisk), the predicted unlabeled 611 

genes of these overlap bins (inner threshold) are considered candidate core genes for this outer fold. 612 

c, the candidate genes of each outer fold are aggregated. The Consensus Score (CS) of candidate 613 

genes ranges from 1 to 11 and indicates by how many outer folds a given gene is selected as 614 

candidate core gene. Genes with CS of 0 are considered non-candidate genes.  615 
 616 
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 617 
 618 

Fig. 3 | Mouse Knockout Validation. a, Odds ratio (OR) (right y-axis) for observing disease relevant 619 

phenotypes in mice with knock-outs of orthologs of candidate core genes in the indicated 620 

convergence score bins (x-axis) of the five classifier methods (colored lines). Gray lines indicate 621 

strength of candidate gene sets (left y-axis) in the corresponding bin for the phenotypes as indicated 622 

in the panel. Only ORs with an FDR < 0.05 (Fisher’s exact test) are shown. Bars to the right of each 623 

plot (M) indicate set strength (gray) and OR (colored) of Mendelian genes for each phenotype. 624 

Precise P-values, FDR, and n for each test are shown in Supplementary Table ST2. b, Illustration 625 

of the probabilistic gap according to the “sampled at random with probabilistic gap positive unlabeled” 626 

(SAR-PGPU) case from ref. 52. Labeled and unlabeled positives are drawn from the same underlying 627 

distribution, however the label frequency increases towards the more extreme end of the positive 628 

distribution, e.g. due to detection bias. We assume this scenario to be true for Mendelian genes as 629 

“extreme” core genes14. c, For the internal cross validation on a holdout set (as in Fig. 1a) all 630 

unlabeled genes are considered negatives. Consequently, models with the indicated decision 631 

boundary (gray dashed line) will perform well. d, For prediction and subsequent validation of less 632 

‘extreme’ true, but unknown, core genes indicated by blue labels (Fig. 3a), a model with a decision 633 

boundary near the dark gray dashed line is expected to perform well, while the decision boundary 634 

from panel b (light gray dashed line) is not optimal anymore. 635 
 636 
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 637 
 638 

Fig. 4 | External Validation. a, Odds ratios (ORs) of Mendelian genes (first row) and of candidate 639 

genes of the five selected methods (rows) for common complex subtypes of the five Mendelian 640 

disorder groups. ORs with FDR > 0.05 (Fisher’s exact test) in gray. b, c, LoF intolerance and 641 

missense mutation intolerance Z-scores of Mendelian genes, and the indicated candidate and non-642 

candidate sets generated by the five methods. Shown are group means and 95% confidence 643 

intervals of Tukey’s HSD test. Colored symbols and error bars indicate P < 0.05 in comparison with 644 

respective non-candidate sets; not significant sets in gray. Dashed line indicates the mean across 645 

all genes. Precise P-values, FDR, and n for each test in each panel are shown in Supplementary 646 

Tables ST6, ST8, and ST9, respectively. 647 
 648 
 649 
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 650 
 651 

Fig. 5 | Model Interpretation. a. Most important edges for FiLM’s prediction of TNFSF15 as 652 

candidate gene for immune dysregulation. Shown are HGNC gene symbols, protein symbols are 653 

added in parenthesis where necessary. The query gene node is shown in the center, with adjacent 654 

relevant nodes in the periphery. Candidate genes are signed with their Consensus Score (CS). The 655 

color of the edges denotes the network and the strength of the edge shows the relative importance 656 

for the prediction of the query gene which is also written at the edge. Arrowheads indicate direction 657 

of edges, undirected edges have no arrowheads. A value of 1 means that it is the most important 658 

edge for all models of the ensemble, while a value of 0 indicates that it is the least important edge 659 

for every model. Shown are 11 out of 4.3 million edges, 301 of which are in the direct neighborhood 660 

of the query gene. b. Most important edges for FiLM’s prediction of IL18RAP as candidate gene for 661 

immune dysregulation. Shown are 7 out of 4.3 million edges, 431 of which are in the direct 662 

neighborhood of the query gene. c, d: Input feature importance for TNFSF15 and IL18RAP alongside 663 

the respective feature’s input value, compared to the input values of other genes by the quantile 664 

borders in the background. Shown are the 10 features with the strongest positive influence and the 665 

5 features with the strongest negative influence. Negative input values are normalized to the interval 666 

[-1; 0] and positive input values to [0; 1] for visualization. Gray bars exceeding the colored areas are 667 

either below the 1% quantile or above the 99% quantile of that input feature. Importance values are 668 

obtained by integrated gradients and normalized to the interval [-1; 1]. Positive importance values 669 

are in favor of the prediction as candidate genes, negative importance values are attributed to 670 
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features that contradict the prediction. For the input feature importance of surrounding nodes see 671 

Supplementary Note 5. 672 

  673 
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 674 
 675 

 676 
 677 

Fig. 6 | Drug Target Analysis. Enrichment of drug targets and druggability in Mendelian disorder 678 

genes and indicated candidate gene sets. DT: OR of known drug targets. xDC: Ratio of median 679 

number of drug-gene interactions per candidate gene to the median of non-candidates, only genes 680 

with drug-gene interactions are considered. Ratios with FDR > 0.05 (U-test) are grayed out. Dr: OR 681 

of druggable genes. Dr-: OR of druggable genes, after all drug targets have been removed. Odds 682 

Ratios with FDR > 0.05 (Fisher’s exact test) are grayed out. For all panels, precise P-values, FDR, 683 

and n for each test are shown in Supplementary Table ST10.  684 
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EXTENDED DATA FIGURES 685 

 686 

 687 
 688 

Extended Data Fig. 1 | Properties of biased and unbiased networks. a, the top and bottom rows 689 
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show the dependency of the neighborhood labels on the label of the center node of unlabeled genes 690 

and Mendelian disorder genes for immune dysregulation and cardiovascular disease, respectively. 691 

The two left columns show results for systematically generated Bioplex 3.0 HEK293T and HuRI 692 

adjacency matrices. The two right columns show the adjacency matrices IntAct Direct Interaction 693 

and STRING (confidence > 0.7), which are largely assembled from hypothesis-driven small-scale 694 

data. Connectivity of Mendelian gene encoded proteins in the systematic networks is similar to that 695 

of unlabeled nodes. In the collated networks, proteins encoded by Mendelian disorder genes show 696 

higher assortativity, i.e. tendency to interact with each other, for both phenotypes. b, in each panel 697 

the left bar shows the fraction of nodes in the largest connected component (component 0) versus 698 

isolated small components and disconnected nodes. The right bar shows how the positive and 699 

unlabeled nodes are distributed among these components. c, the top and bottom rows show the 700 

degree distributions of Mendelian disorder genes and unlabeled genes for immune dysregulation 701 

and cardiovascular disease, respectively. The two left columns show the adjacencies Bioplex 3.0 702 

293T and HuRI, which are unbiased, systematically generated networks. The two right columns 703 

show the adjacencies IntAct Direct and STRING (confidence > 0.7), which are not systematically 704 

generated. The bias towards known disease genes in the two right networks can be seen for both 705 

phenotypes. First, the average degree of Mendelian disorder genes is higher than the average 706 

degree of unlabeled genes. Second, the degree distribution of the Mendelian disorder genes in 707 

STRING does not follow a scale-free degree distribution. On the contrary, nodes with a medium 708 

degree are the most abundant, while nodes of low and very high degree are rare.  709 
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 710 
 711 

 712 
 713 

Extended Data Fig. 2 | Methods Comparison. *) assumptions about the prior class distribution of 714 

the PU learning problem in form of arbitrary cut-off that are imposed on rank distributions to divide 715 

candidate and non-candidate genes, in form of predetermined proportion of unlabeled positives. **) 716 

positive if the article also reports results using only unbiased networks or if the method can be 717 

reduced to only use unbiased networks without having to re-implement it. P-“Unbiased” networks 718 

represent large-scale, systematic experiments whereas “biased” networks stem from aggregating 719 

small-scale literature or using disease or gene ontologies. ***) within reason, i.e. without having to 720 

re-implement the method. ****) negative if the labels for validation are sourced from the same 721 

database as the input data, networks or training labels. †) uses label propagation instead of GNNs. 722 

°) Uses knowledge graph embedding models instead of GNNs. 723 

  724 
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 725 
 726 

 727 
 728 

Extended Data Fig. 3 | Additional performance metrics. a, the mean rank of all held out positives, 729 

ranked individually (i.e. filtered) against all unlabeled genes (lower is better), for different base 730 

classifiers, dataset variants and phenotypes. Combinations of methods and input data are indicated 731 

along the y-axis. The blocks group models using common input data as indicated: Only Network: 732 

adjacency matrix/matrices; Only Features: gene expression and GWAS input features but no 733 

adjacency matrices; No Expression: GWAS input features and adjacency of individual (single) or 734 

multiple (multi) networks; Network + Features: adjacency of individual (single) or multiple (multi) 735 

networks, GWAS and gene expression. b, the mean area under the precision recall curve (AUPRC) 736 

metric (higher is better) for different base classifiers, dataset variants and phenotypes. Combinations 737 

of methods and input data are indicated along the y-axis. The blocks group models using common 738 

input data as indicated: Only Network: adjacency matrix/matrices; Only Features: gene expression 739 

and GWAS input features but no adjacency matrices; No Expression: GWAS input features and 740 

adjacency of individual (single) or multiple (multi) networks; Network + Features: adjacency of 741 

individual (single) or multiple (multi) networks, GWAS and gene expression. 742 
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 743 
 744 

Extended Data Fig. 4 | GNN Model Architecture. a, the general model architecture of all GNN 745 

models used in the experiments. The input features of node v are transformed into latent space by 746 

the pre-message passing module, which produces the latent vector xv pre-MP. This latent vector is 747 

fed into the message-passing module, where the neighborhood feature aggregation takes place 748 

according to the graph shown in panel b. Each layer aggregates one hop in the network. Arrows 749 

denote the aggregation operators of the respective GNN layers described in the Methods section. 750 

After message passing, the latent vector xv post-MP contains information of its n-hop neighborhood 751 

and is fed into the post-message passing module, which predicts the class of node v. The 752 

hyperparameters q, r and s control the number of layers per module. Not shown are nonlinearity 753 

functions and normalization layers. b, the simplified graph structure for the message passing shown 754 

in a with the observed node v in the center. Arrowheads denote the direction of the message passing; 755 

circles denote the respective n-Hop neighborhoods. c, normal versus alternative information flow 756 

through the network. Most commonly, all modules are chained consecutively, each feeding its output 757 

to the next. In the ‘Skip’ setting, the output vectors of the pre-MP and of the MP are summed up 758 

before being fed into the post-MP module. In the ‘concatenate’ setting, the output vectors of the pre-759 

MP and of the MP are concatenated before being jointly fed into the post-message passing module. 760 

In this setting, the first layer of the post-message passing module has twice the number of 761 

dimensions. 762 
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 763 
 764 

Extended Data Fig. 5 | GNN Depth. Influence of the number of graph convolution layers r on model 765 

performance using the adjacency matrices a, BioPlex 3.0 HEK293T, b, GRNdb Adipose Tissue, c, 766 

IntAct Direct Interaction. Zero convolutional layers correspond to an MLP. The gray bar in the 767 

background denotes the interquartile range of all MLP-runs. Each boxplot is based on n = 16 values. 768 

Boxes represent the interquartile range, colored bars are medians, whiskers extend at most 1.5 times 769 

the interquartile range, and outliers are shown individual. The color coding indicates the type of GNN 770 

(see Supplementary Note 2 for more details). 771 
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 772 
 773 

 774 

Extended Data Fig. 6 | Network Performance and Properties. a, Boxplots of model performance 775 

(y-axis) for different adjacency matrices (x-axis). Adjacency “None” refers to an MLP that does not 776 

use any graph information. Boxes represent the interquartile range, colored bars are medians, 777 

whiskers extend at most 1.5 times the interquartile range, and outliers are shown individual. The 778 

gray bar in the background denotes the interquartile range of all MLP-runs. “Normal” indicates the 779 

normal information flow from pre-MP to MP to post-MP (Extended Data Fig. 4c). “Concat” indicates 780 

that the output of pre-MP is concatenated to the output of MP before being passed into post-MP. 781 

“Skip” indicates that the output of pre-MP is added to the output of MP using a sum operation before 782 

being passed into post-MP. b, Network properties of IntAct Direct with the label set for immune 783 

dysregulation. c, Network properties of all networks merged together with the label set for immune 784 

dysregulation. Components: The left bar shows the fraction of the network that is either in the largest 785 

connected component (component 0), in microcomponents (smaller than 1% of all nodes), or 786 

isolated nodes which have no incident edge, right bar shows the distribution of labeled and unlabeled 787 

nodes. Paths: Each bar shows the number of positives which have other positives in the 788 

neighborhood of the indicated size. Color indicates the number of positives in the neighborhood for 789 

each node according to scale on the right. The black bar on the left indicates the number of isolated 790 

positives. Degrees: Degree distributions of positives and unlabeled nodes. Homophily: Plot shows 791 

the percentage of nodes in the neighborhood of a node that either share the same label or have the 792 

opposite label. Metrics: additional metrics of the graphs. 793 
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 794 
 795 

Extended Data Fig. 7 | Relation of gene-level GWAS association and core gene prediction. 796 

Scatterplots show the relation between the model prediction of a single FiLM prediction model trained 797 

for cardiovascular disease (y-axis) and the gene-level association z-scores computed with MAGMA85 798 

(x-axis) from different GWAS studies: yellow points represent Mendelian disorder genes; blue points 799 

represent unlabeled genes. Predictions are obtained on the holdout set. a, coronary artery disease 800 

(CAD), b, triglyceride levels (TRIG), c, high density lipoprotein levels (HDL) and d, low density 801 

lipoprotein levels (LDL).  802 
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 803 
 804 

Extended Data Fig. 8 | Biased results from aggregating small-scale Literature. a, shown are 805 

the 2 x 2 contingency tables of candidates and noncandidates with two different Convergence Score 806 

(CS) cutoffs for cardiovascular disease and their involvement in the IntAct Direct Interaction network. 807 

Degree d > 0 denotes genes that have at least one incident edge in IntAct Direct Interaction, while d 808 

= 0 denotes genes that are isolated in IntAct Direct Interaction. Odds Ratios (OR) and P-values 809 

obtained via Fisher’s exact test, unadjusted. b, shown are the 2 x 2 contingency tables of candidates 810 

and noncandidates with two different Convergence Score (CS) cutoffs for immune dysregulation and 811 

their involvement in the IntAct Direct Interaction network. Degree d > 0 denotes genes that have at 812 

least one incident edge in IntAct Direct Interaction, while d = 0 denotes genes that are isolated in 813 

IntAct Direct Interaction. Odds Ratios (OR) and P-values obtained via Fisher’s exact test, 814 

unadjusted. 815 
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 816 
 817 

Extended Data Figure 9 | Unbiased external validation. a, Odds ratio (OR) (right y-axis) for 818 

observing disease relevant phenotypes in mice with knock-outs of orthologs of candidate core genes 819 

in the indicated convergence score bins (x-axis) of the five classifier methods (colored lines). Gray 820 

lines indicate strength of candidate gene sets (left y-axis) in the corresponding bin for the phenotypes 821 

as indicated in the panel. Only ORs with an FDR < 0.05 are shown. Bars to the right of each plot (M) 822 
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indicate set strength (gray) and OR (colored) of Mendelian genes for each phenotype. Precise P-823 

values, FDR, and n for each test are shown in Supplementary Table ST3. b, Odds ratios (ORs) of 824 

Mendelian genes (first row) and of candidate genes of the five selected methods (rows) for common 825 

complex subtypes of the five Mendelian disorder groups. ORs with a FDR > 0.05 in gray. c, 826 

Enrichment of drug targets and druggability in Mendelian disorder genes and indicated candidate 827 

gene sets. DT: OR of known drug targets. xDC: Ratio of median number of drug-gene interactions 828 

per candidate gene to the median of non-candidates, only genes with drug-gene interactions are 829 

considered. Dr: OR of druggable genes. Dr-: OR of druggable genes, after all drug targets have been 830 

removed. Odds Ratios with FDR > 0.05 are grayed out. For all panels, precise P-values, FDR, and 831 

n for each test are shown in Supplementary Tables ST7, ST11.  832 
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 833 
 834 

Extended Data Fig. 10 | Model Interpretation. a. Most important edges for FiLM’s prediction of 835 

OBSCN as candidate gene for cardiovascular disease. Shown are HGNC gene symbols. The query 836 

gene node is shown in the center, with adjacent nodes connected by relevant edges in the periphery. 837 

Candidate genes are signed with their Consensus Score (CS). The color of the edges denotes the 838 

network and the strength of the edge shows the relative importance for the prediction of the query 839 

gene which is also written at the edge. Arrowheads indicate direction of edges, undirected edges 840 

have no arrowheads. A value of 1 means that it is the most important edge for all models of the 841 

ensemble, while a value of 0 indicates that it is the least important edge for every model. Shown are 842 

10 out of 4.5 million edges, 312 of which are in the direct neighborhood of the query gene. b. Most 843 

important edges for FiLM’s prediction of ITGA7 as candidate gene for cardiovascular disease. Shown 844 

are 8 out of 4.5 million edges, 316 of which are in the direct neighborhood of the query gene. c,d: 845 

Input feature importance for OBSCN and ITGA7 alongside the respective feature’s input value, 846 

compared to the input values of other genes by the quantile borders in the background. Shown are 847 

the 10 features with the strongest positive influence and the 5 features with the strongest negative 848 

influence. Negative input values are normalized to the interval [-1; 0] and positive input values to (0 849 

; 1] for visualization. Gray bars exceeding the colored areas are either below the 1% quantile or 850 

above the 99% quantile of that input feature. Importance values are obtained by integrated gradients 851 

and normalized to the interval [-1; 1]. Positive importance values are in favor of the prediction as 852 

candidate genes, negative importance values are attributed to features that contradict the prediction.  853 
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METHODS 854 

 855 

Speos: An ensemble-based PU learning framework 856 

Speos is a fully equipped Python framework which manages the modeling of networks and input 857 

modalities as well as the training, evaluation and validation of several machine learning (ML) 858 

methods for the prediction of novel core gene candidates. It is available at 859 

https://github.com/fratajcz/speos and allows the configuration of experiments, including those 860 

reported in this article, without the necessity to write or read any code, facilitating the uptake of 861 

computational methods. For our experiments we used the Python version 3.7.12. Furthermore, it is 862 

fully extensible, as input data, networks, label and validation sets as well as ML methods can be 863 

chosen and added by the user. The following sections describe the modeling, training and validation 864 

approaches of Speos as they are used in the experiments shown in the manuscript. 865 

To fully exploit all available data for training and to avoid overestimating the performance of the 866 

model, we first conduct a hyperparameter optimization on the full data set assuming negative labels 867 

for unlabeled genes to find promising base classifiers and then proceed with an ensemble approach, 868 

which we evaluate on independent data sources. 869 

Selection of base classifiers by cross validation 870 

We first optimize hyperparameters of base classifiers to identify the best setting of the model 871 

architecture based on the performance on immune dysregulation and cardiovascular disease (see 872 

Hyperparameter optimization and Supplementary Note 2). Next, we apply these optimal 873 

hyperparameters to all diseases and select the most promising base classifiers for the ensemble 874 

approach. We performed a fourfold cross validation with four repeats per fold, each holding out 25% 875 

of positive and unlabeled genes. We assume negative labels for unlabeled genes and compare 876 

performance by mean AUROC on the holdout set.  877 

The Ensemble Approach 878 

PU learning describes a subdomain of ML approaches for problems where a small set of data points 879 

(in our case genes) is labeled positive and the rest of the data points are unlabeled. An intrinsic 880 

challenge for this class of problems is that the number of true positives, i.e. the prior class 881 

distribution86–91, is unknown and most classifiers require labels for training. Motivated by the 882 

robustness and the performance of ensemble approaches such as bagging in PU learning39,86,87, we 883 

develop a statistical approach to separate candidate genes from non-candidate genes using an 884 

ensemble approach87,88,92 which eliminates the need to predefine39 or estimate88 a prior class 885 

distribution or to choose an arbitrary cut-off40,42 on predicted rank distributions. At the heart of Speos 886 

is the cross validation ensemble consisting of m outer folds, each containing n models. It is an 887 

approach to maximize the utilization of scarce, strong labels and simultaneously exploit the 888 

constraints of the genetic domain while satisfying the assumptions of the positive-unlabeled training 889 

regimen. In addition to the two-step approach and the ensemble learning, we introduce the following 890 

measures to improve PU learning: we designed a specific loss function that upweights positives and 891 
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we employed a variant of the stochastic gradient descent algorithm that downsamples negatives 892 

inspired by refs 93,94,86. 893 

Nested cross-validation  894 

In each outer fold 𝑗 ∈ {1,2, . . . , 𝑚} the positive labels are split up into the training set 𝑡𝑟𝑎𝑖𝑛𝑗 and the 895 

hold-out test set 𝑡𝑒𝑠𝑡𝑗. All positives in 𝑡𝑒𝑠𝑡𝑗 are treated as unknown and consequently labeled as 896 

negatives (class y = 0) during training. The remaining positives are labeled as class 𝑦 = 1 during the 897 

training. There are two options to define the hold out sets: 1) define hold out sets containing positives 898 

and negatives (i.e. unlabeled examples) or 2) define the hold out sets to only contain positives. In 899 

option 1) the held out negatives do not contribute to the loss function during training, whereas in 900 

option 2) all negatives contribute to the loss function during training. Therefore, in option 2) the 901 

additional negatives increase the loss if they are unknown positives while they would not contribute 902 

to the loss in option 1). In general, the model will only produce supposed false-positive predictions if 903 

alternative parameters increase false negative predictions, i.e. decrease sensitivity. Thus, by design 904 

of the loss function, such a change of parameters results in a greater loss than “admitting” the “false-905 

positive” predictions of the unlabeled. However, only in option 2 this trade-off is reflected in the overall 906 

loss across all negatives used for training. In option 1, the prediction of the held out negatives would 907 

have no implication on model parameters, thus failing to induce a loss-guided trade-off between false 908 

positives and false negatives. The penalty of making these errors is stronger in option 2 because it 909 

was applied to the positively predicted candidate genes that are selected from the training set. 910 

Therefore, this leads to even fewer positive predictions overall, i.e. more stringent predictions and 911 

thus a more conservative choice than option 1. 912 

Each model 𝑖 ∈ {1,2, . . . , 𝑛} of the inner cross validation is trained on the entirety of unlabeled genes 913 

treated as negatives (𝑦 = 0) and the subset 𝑡𝑟𝑎𝑖𝑛𝑗 of positives (Fig 3a). The set of positives 𝑡𝑟𝑎𝑖𝑛𝑗 914 

is used for all models in cross validation run 𝑗, but each inner model 𝑚𝑜𝑑𝑒𝑙𝑗,𝑖 divides it further into 915 

𝑡𝑟𝑎𝑖𝑛𝑗,𝑖 and 𝑣𝑎𝑙𝑗,𝑖. Since our holdout 𝑣𝑎𝑙𝑗,𝑖 set contains only positives, we quantify overfitting by 916 

measuring precision 𝑝𝑟 on the training data and recall 𝑟𝑒𝑐 on the holdout set for the performance 917 

measure 𝑓1 = 2(𝑝𝑟 ⋅ 𝑟𝑒𝑐) We train for a maximum of 1000 epochs and always retain model 918 

parameters corresponding to the maximum 𝑓1, but we stop training if 𝑓1 did not improve during 100 919 

epochs from the maximum. Within each outer fold 𝑗, each model 𝑖 produces a prediction �̂�𝑖,𝑗
𝑔

= 1 for 920 

every gene 𝑔 if the model prediction is greater than 0.7 and 0 otherwise. The global holdout set of 921 

𝑡𝑒𝑠𝑡𝑗 is not accessible for any model in outer fold 𝑗. We compute the number of concordant 922 

predictions for each gene 𝑐𝑗
𝑔

= ∑ (�̂�𝑖,𝑗
𝑔

)𝑛
𝑖=1  for this given cross validation run 𝑗. Each gene is 923 

considered a candidate gene if 𝑐𝑗
𝑔

≥ 𝑐* and forwarded to the outer cross validation. The inner 924 

threshold 𝑐* is introduced in the next section. 925 

Calculation of the inner threshold 926 

To assess if predictions at any threshold have higher concordance than expected by chance, and 927 

hence are potentially meaningful, we set aside a global holdout set 𝑡𝑒𝑠𝑡𝑗 for every outer fold 𝑗 (Fig. 928 
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2b). We then quantify the overlap of the held-out positive genes 𝑔 in 𝑡𝑒𝑠𝑡𝑗 with concordant predictions 929 

of 𝑐* models as 𝐶𝑗 = |{𝑔|𝑐𝑗
𝑔

= 𝑐∗ ∧ 𝑔 ∈ 𝑡𝑒𝑠𝑡𝑗}|. To obtain a background model for the distribution of 930 

model overlaps 𝑐𝑗
𝑔
 we setup 𝑛 random classifiers 𝑖 ̂ that produce the same number of positive 931 

predictions �̂��̂�,𝑗 = 1 as the original models and analogously count the overlaps of their ‘predictions’ 932 

as 𝑐�̅�
𝑔
. We quantify the overlap of the held-out positive genes𝑔 in 𝑡𝑒𝑠𝑡𝑗 with concordant predictions 933 

of 𝑐* random models as 𝐶�̅� =. This is repeated B = 1000 times to obtain an empirical background 934 

distribution. Finally, we compare 𝐶𝑗 against 𝐶�̅� using a one sample t-test for each value of 𝑐∗ ∈935 

{1,2, . . . , 𝑛} and apply FDR across the 𝑛 tests. We choose the inner threshold as the minimal 𝑐∗ where 936 

𝐶𝑗 is significantly greater than the random expectation 𝐶�̅� (FDR < 0.05, Student’s t-test, 937 

Supplementary Table ST1) or if 𝐶�̅� is smaller than 0.1. All positively predicted unlabeled genes 938 

which reach at least the inner threshold are considered candidate genes for this outer fold 𝑗. 939 

Ensemble prediction 940 

The m candidate gene sets, one from every fold of the outer cross validation, are assessed for 941 

overlapping genes to arrive at a Consensus Score (CS) for every gene. The CS reflects the number 942 

of outer folds, which has predicted the gene as a candidate gene. Thus, the CS ranges from 0 to m, 943 

with 0 indicating that the gene has never been chosen as a candidate and thus is termed a non-944 

candidate gene. Candidate genes have a CS of 1 to m, where 1 indicates the least and m the most 945 

stringent cutoff.  946 

 947 

Input Data 948 

Labels 949 

Freund et al. have recently defined 20 classes of Mendelian disorders which resemble common 950 

complex diseases. This defines sets of Mendelian disorder genes for each of the disease groups95. 951 

Importantly, Mendelian genes “clearly fulfill the core gene definition”14. Thus, we have chosen the 952 

Mendelian gene sets proposed by Freund et al. as reliable “known positives” for each disease group. 953 

The Mendelian disorder gene sets are originally obtained by querying the Online Mendelian 954 

Inheritance in Men (OMIM)96 database for symptoms and phenotypes that relate to the diseases95. 955 

In total we use 598 Mendelian disorder genes for cardiovascular disease, 550 for immune 956 

dysregulation, 128 for body mass disorders, 182 for diabetes, and 623 for insulin disorders.  957 

Disease gene prediction is inherently a positive unlabeled (PU) learning problem. Despite this, it is 958 

a common approach to compose a supposedly “reliable” negative training set to transform the 959 

problem from a PU learning task into semi-supervised classification39,40. Precise negative training 960 

sets are inherently difficult, if not impossible, to obtain as this requires a positive demonstration that 961 

a given gene has no function in a specific, or even a panel of diverse diseases. In light of the 962 

modification of genetic risk by genetic variation and environmental factors it requires immense 963 

resources to demonstrate the lack of involvement, which renders this approach essentially 964 

impossible, if a statistically meaningful negative training set is required. Alternative approaches make 965 
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assumptions about the nature of disease genes and then define negatives that contrast these 966 

assumptions. In different contexts this has shown to lead to very strong biases97,98, since even 967 

inconspicuous household genes host a higher-than-average rate of disease genes99. Moreover, 968 

using negatives that are most dissimilar to the positives in the input space encourages ML algorithms 969 

to find trivial solutions, artificially inflating performance metrics while leading to suboptimal results. 970 

In light of these substantial challenges, we decided to use a PU learning approach for core disease 971 

gene identification and rely on an internal threshold and external validation to assess precision of 972 

the results. 973 

Nodes and node features 974 

In the following we define an input matrix 𝑋 
(0) ∈ ℝ𝑛×𝑝, which is used for all experiments where the 975 

number of nodes n and the number of features per node p depend on the disease and data 976 

availability. The full list of nodes contains nfull = 19220 protein coding genes. We use tissue-wise 977 

median gene expression and GWAS summary statistics as input features, which have to be available 978 

for every gene. For the gene expression we use GTEx v7 data which has been obtained via RNASeq 979 

across 44 human tissues encoded as median transcript per million (TPM)100 across all GTEx samples 980 

of one tissue. Additionally, we use normalized gene expression levels for 18 different blood cells and 981 

total peripheral mononuclear blood cells (PBMC) from the human protein atlas101. As GWAS traits 982 

we used those that are mapped to the relevant Mendelian disorder by ref. 95 (Supplementary Table 983 

ST13). We gathered genome-wide summary statistics from a collection of GWAS of 114 traits that 984 

were assembled by the GTEx consortium102 and are available on zenodo103. We converted our 985 

protein names/gene symbols to Entrez gene ids and mapped them to the corresponding annotations 986 

on the human genome assembly 38. Next we aggregated the GWAS summary statistics on the gene-987 

level using MAGMA85 based on the positional overlap of SNPs and gene annotations with an 988 

upstream/downstream window of 10 kb. Finally we used 8 GWAS traits for cardiovascular disease 989 

(BW, CAD, HDL, HR, LDL, RBC, PLT, TRIG), 7 for immune dysregulation (CD, CEL, IBD, MS, RA, 990 

SLE, UC), 7 for body mass disorders (BMI, BW, HDL, FAT, T2D, TRIG, WHR), 6 for (monogenic) 991 

diabetes (BW, HDL, FAT, T1D, T2D, TRIG) and 4 for insulin disorders (BMI, CAD, FG, WHR). We 992 

used the total number of SNPs per gene, the gene-level P-value and the gene-level Z-score for every 993 

trait as input node features for Speos. Genes for which at least one of the mentioned input features 994 

could not be gathered are excluded from the analysis. This leaves n = 17320 out of nfull = 19220 for 995 

cardiovascular disease, n = 17042 for immune dysregulation, n = 17398 for body mass disorder, n 996 

= 17460 for diabetes and n = 17401 for insulin disorders (see Supplementary Table ST13). 997 

Finally, all input features were scaled by quantiles using scikit-learn’s (v1.0.2) RobustScaler104 to 998 

facilitate the processing in neural networks. Unlike gaussian normalization, this method is more 999 

robust to outliers and extreme skewness of input features. 1000 

It is important to point out that Speos is a fully extensible framework, which allows the user to add 1001 

more features by adding a minimal description and a preprocessing function as outlined here:  1002 

https://speos.readthedocs.io/en/latest/extension.html#additonal-node-features 1003 
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Edges and types of networks 1004 

Network maps have been generated for different modalities of biological regulation or tissue-specific 1005 

manifestations. In total, we use 33 different networks in our model. Protein-protein interaction 1006 

networks (PPI), have been widely used for the analysis of the genetic background of diseases and 1007 

can be obtained using a variety of methods105. Affinity-purification mass spectrometry based maps 1008 

predominantly identify stable complexes and contain a mix of direct and indirect associations105. For 1009 

this, we use the systematically collected BioPlex 3.0 HEK293T and BioPlex 3.0 HCT11619 (accessed 1010 

17.3.22). Additionally, we use the Human Reference Interactome (HuRI) (accessed 17.3.22), which 1011 

has been obtained using a binary multi-assay mapping pipeline, which identifies predominantly 1012 

directly contacting proteins18. Both BioPlex and HuRI were generated in systematic experimental 1013 

approaches. Additional PPI network data are derived from the IntAct database22 (accessed 11.5.22), 1014 

which is a manually curated and annotated source of protein-protein interactions. For our analysis, 1015 

we use only human interactions and further filter them into two subsets. The first contains all 1016 

interactions that have been labeled as “Physical Association'' including its subcategories, and 1017 

includes, analogous to AP-MS-based data, direct and indirect protein associations e.g. in large 1018 

complexes or mediated by rRNAs in the ribosome. The second category “direct interactions” is a 1019 

strict subset of IntAct Physical Association and requires unambiguous evidence for direct interactions 1020 

using biochemically purified proteins. In contrast to the systematically collected HuRI and BioPlex 1021 

datasets, IntAct contains interactions sourced from hypothesis-driven small-scale studies and thus 1022 

represents the biases inherent to this research approach18,25,26. 1023 

The next type of network that is usually imposed on genes is gene regulatory networks (GRN). Gene 1024 

regulatory networks are usually directed. Edges run from a transcriptional regulator (the transcription 1025 

factor - TF) to its target gene. We use 27 tissue-specific GRNs obtained from GRNdb106 (accessed 1026 

29.3.22). These networks have been inferred using enriched TF motifs and RNA-seq expression 1027 

data of healthy human tissues from GTEx100,106. Finally, we use two types of relations from Hetionet 1028 

(accessed 18.3.22) to define edges107,108. The relation “Gene→regulates→Gene” is a non-tissue-1029 

specific GRN that has been established from RNA-seq data by the original authors of Hetionet. The 1030 

relation “Gene–covaries–Gene” captures coevolutionary patterns of two genes which has been 1031 

shown to aid in disease gene prioritization109. We do not include the third relation that runs between 1032 

genes, “Gene–interacts–Gene”, since we already include several prime candidates for PPIs. 1033 

At this point we would like to emphasize that Speos is a fully extensible framework, which allows 1034 

users to add more adjacency matrices by adding a minimal description as outlined in the 1035 

documentation: https://speos.readthedocs.io/en/latest/extension.html#adding-a-network  1036 

 1037 

Modeling Networks for Machine Learning 1038 

All nodes in the used networks represent genes or their encoded protein products, thus the networks 1039 

represent homogeneous graphs. For our machine learning approach we model each network as a 1040 

directed graph. In case of PPI networks, which are inherently undirected, we introduce two edges 1041 

between two connected genes genea and geneb, each going in a different direction, so that the there 1042 
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exist both edges genea → geneb and geneb → genea. In case of gene regulatory networks which are 1043 

inherently directed, we only model the edges running from the transcription factor (TF) to the 1044 

modulated genes geneTF → geneb, but not vice versa. In the experiments where multiple networks 1045 

are used simultaneously, each edge is also given a type 𝑟𝜖𝑅, which indicates the network the edge 1046 

is sourced from. This means that two connected genes genea and geneb can, but don’t have to be 1047 

connected by more than one edge of different edge types 𝑟1 and 𝑟2 ∶ genea →𝑟1 geneb and genea →𝑟2 1048 

geneb. 1049 

 1050 

Model Architecture 1051 

Our general model architecture for most of our base classifiers consists of three consecutively 1052 

arranged modules: pre message passing, message passing and post message passing (Extended 1053 

Data Fig. 4a). The pre and post message passing consist of fully connected linear layers, 1054 

interspersed with exponential linear unit (ELU) activation functions110. Their task is to transform the 1055 

dimensionality from the input dimension to the desired hidden or output layer’s dimension. 1056 

Additionally, they serve as feature extraction layers, where pre message passing extracts and 1057 

transforms the features so that the message passing can be most efficient, and the post message 1058 

passing transforms the result of the message passing into a prediction for every gene. Based on 1059 

hyperparameter optimization, we have chosen two hidden layers plus the input/output layer for both 1060 

pre and post message passing with a hidden dimension of 50 (see Supplementary Note 2). The 1061 

message passing is where the actual graph convolutions take place using graph neural network 1062 

(GNN) layers. Based on hyperparameter optimization (Extended Data Fig. 5) we have chosen two 1063 

GNN layers, each followed by ELU nonlinearity and instance normalization layers111. 1064 

GNN-based methods 1065 

GNNs have recently seen a rapid development since Kipf and Welling have proposed their seminal 1066 

GCN layer46. Since then, numerous adaptations of the GCN layer have been proposed, focusing on 1067 

different weaknesses of the original formulation. We have explored 11 different types of GNNs 1068 

implemented in PyTorch Geometric112 (v2.0.4) and assessed their suitability for our task. Speos 1069 

allows the user to choose any of these convolution layers, as well as the number of hidden layers 1070 

and hidden dimensions of the network. For a detailed account of the graph convolutions we 1071 

examined alongside with the resulting change in performance, see Supplementary Note 2. Here 1072 

we introduce layers that are used throughout our work.  1073 

Graph Convolutional Network Layer (GCN) 1074 

The GCN layer is defined as follows:  1075 

𝑋(𝑡+1) = 𝐷−1 2⁄ (𝐴 + 𝐼)𝐷−1 2⁄ 𝑋(𝑡)𝑊𝑡
 
 1076 

where t corresponds to the t-th layer of the network. Usually, self-loops are added by adding the 1077 

identity matrix 𝐼 to the adjacency matrix 𝐴 which is then normalized by the node degree matrix 𝐷. 1078 

The resulting normalized adjacency matrix is then multiplied with the node feature matrix 𝑋(𝑡) and a 1079 

trainable weight matrix 𝑊𝑡. The node-specific update rule following this layer definition, also called 1080 
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message passing, is defined as follows 1081 

𝑥𝑣
(𝑡+1)

= 𝑊𝑡
⊤ ∑   

𝑢∈𝑁(𝑣)
𝑎𝑣,𝑢

√𝑑𝑣𝑑𝑢
𝑥𝑢

(𝑡)
 . 1082 

where 𝑥𝑣
(𝑡+1)

 is the latent representation of node v at layer t+1, which is composed of a linear 1083 

combination of the latent representations 𝑥𝑢
(𝑡)

 of nodes at layer t in the neighborhood of 𝑣, 𝑁(𝑣), 1084 

weighted by an optional weight 𝑎𝑣,𝑢 of the edge between 𝑢 and 𝑣 and the degree of the nodes, 𝑑𝑣and 1085 

𝑑𝑢. In our experiments, all edges are weighted identically with 𝑎𝑣,𝑢 = 1. 1086 

Topology Adaptive Graph Convolution (TAG) 1087 

TAG47 has been proposed to address the limitation of GCN layers to the 1-hop neighborhood of each 1088 

node, which implies that the receptive field of GCNs in the graph is directly dependent on the number 1089 

of layers. TAG contains a hyperparameter 𝐾 which manages the depth (number of hops) that each 1090 

TAG layer can reach within the graph. It achieves this by using powers of the adjacency matrix 1091 

𝑋(𝑡+1) = ∑ (𝐷−1 2⁄ (𝐴 + 𝐼)𝐷−1 2⁄ )𝑘𝑋(𝑡)𝑊𝑡,𝑘
𝐾
𝑘=0

 
. 1092 

We use two layers of TAG with a 𝐾 of 3, which means that each node’s representation can be 1093 

influenced by nodes 3 hops away for each TAG layer used. It furthermore employs skip-connections 1094 

between layers so that unhelpful information can be blocked. These skip connections are encoded 1095 

in the weight matrix 𝑊𝑡,𝑘 for 𝑘 = 0, as (𝐷−1 2⁄ (𝐴 + 𝐼)𝐷−1 2⁄ )0 = 𝐼. Like GCN, TAG is not aware of edge 1096 

types, so it is only applied on individual networks. 1097 

Relational Graph Convolution (RGCN) 1098 

RGCN extends the idea of GCN to be aware of multiple types 𝑅 of edges between nodes, denoted 1099 

as 𝑟 ∈ {0,1, . . . , |𝑅| − 1}. Every layer 𝑡 therefore learns separate weights 𝑊𝑟
(𝑡)

 of node 𝑣’s 1100 

neighborhood for each type of edge 𝑟 and then sums these up 1101 

𝑥𝑣
(𝑡+1)

= 𝑊𝑟𝑜𝑜𝑡
(𝑡)

𝑥𝑣
(𝑡)

+ (∑ ∑
1

|𝑁𝑟(𝑣)|
𝑊𝑟

(𝑡)
𝑥𝑢

(𝑡) 
𝑢∈𝑁𝑟(𝑣)

 
𝑟∈𝑅 ). 1102 

It furthermore learns edge-independent weights 𝑊𝑟𝑜𝑜𝑡
(𝑡)

 that are multiplied with 𝑣’s node features and 1103 

added to the neighborhood representation. 1104 

Feature-wise Linear Modulation Convolution (FiLM) 1105 

The FiLM49 GNN layer has been proposed as a generalization of several relational GCN 1106 

architectures such as relational graph convolution (RGCN)48 or relational graph attention (RGAT)113 1107 

and is based on the idea of feature-wise linear modulation which has recently been proposed for 1108 

visual reasoning50. As such, it introduces an offset beta and a linear coefficient gamma for every 1109 

feature of an incoming message 𝑥𝑢
(𝑡)

 based on the edge type 𝑟 and the receiver node 𝑣  1110 

𝑥𝑣
(𝑡+1)

= ∑ ∑ 𝜎(𝛾𝑟,𝑣
(𝑡)

⊙ 𝑊𝑟𝑥𝑢
(𝑡)

+ 𝛽𝑟,𝑣
(𝑡)

 
) 

𝑢∈𝑁𝑟(𝑣)
 
𝑟∈𝑅 . 1111 

Where 𝜎 is a nonlinearity function (Rectified Linear Unit: ReLU) and ⊙ is the element-wise or 1112 

Hadamard product. The coefficients 𝛾𝑟,𝑣
(𝑡)

 and offsets 𝛽𝑟,𝑣
(𝑡)

 applied to every message 𝑥𝑢
(𝑡)

 from node 𝑢 1113 

in the neighborhood of 𝑣 for each edge type r, 𝑁𝑟(𝑣), are obtained by training a hypernetwork 𝑔 1114 

𝛽𝑟,𝑣
(𝑡)

, 𝛾𝑟,𝑣
(𝑡)

= 𝑔(𝑥𝑣
(𝑡)

, 𝑊𝑔,𝑟
(𝑡)

). 1115 
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so that both 𝑊𝑔,𝑟 and 𝑊𝑟 contain trainable parameters. Hypernetworks are neural networks that learn 1116 

parameters of other neural networks in an attempt to increase weight-sharing and reduce model 1117 

complexity and memory requirements114,115. In FiLM, 𝑔 is implemented as a single linear layer. In 1118 

other words, FiLM modifies the message that a node 𝑢 passes to a node 𝑣 conditioned on the relation 1119 

𝑟 and the latent representation of the receiving node 𝑣. 1120 

Node2Vec 1121 

Methods like Node2Vec51 can bridge the gap between graph-native and non-graph methods by first 1122 

preprocessing the graph, embedding each node into vector space in an unsupervised setting using 1123 

random walks. These embeddings can then be used by MLPs or regressions as regular input 1124 

features. We used the fastnode2vec116 (v0.0.5) command line interface of gensim’s117 (v4.1.2) 1125 

implementation of Node2Vec with context 5, 100 dimensions, walk length 100 and 500 training 1126 

epochs on all networks simultaneously. Because Node2Vec does not use edge types, using all input 1127 

networks is effectively equivalent to using a single network. 1128 

Non-GNN Methods 1129 

LINKX118 is an MLP-based method that first trains MLPs on the input features and adjacency matrix 1130 

separately and then a third MLP that joins the information of the previous two. It has been proposed 1131 

to address the shortcomings of GNNs when the first order neighborhood is heterophilous, i.e. the 1132 

connected nodes do not tend to have the same label. To do so, it trains multiple MLPs: MLPA is 1133 

trained directly on the adjacency matrix, using each row of the matrix as feature vectors for the 1134 

respective nodes. MLPX is trained on the feature matrix 𝑋(0). Finally, MLPf uses the concatenated 1135 

latent representations produced by MLPA and MLPX as input and predicts the class label �̂�.We 1136 

implemented LINKX in PyTorch119 (v1.8.0) and found that it is prone to overfitting due to the large 1137 

weight matrix of the first layer of MLPA. We have therefore placed an L1 regularization term on this 1138 

matrix which we multiply with a factor α and add it to the task-specific loss. We have searched α in 1139 

powers of ten from 100 to 10-5 and found the best performance with α = 10-2. 1140 

The MLP used as a base-classifier resembles the general model architecture outlined above with 1141 

the number of message passing layers set to 0, only leaving fully connected layers interspersed with 1142 

ELU nonlinearity. Logistic regression and random forests are implemented using scikit-learn’s104 1143 

(v1.0.2) LogisticRegression and RandomForestClassifier classes with balanced class weights and 1144 

sample weights 2 for positives and 1 for unlabeled genes. As they are not able to directly use graph-1145 

structured data, they either only use the feature matrix 𝑋(0) (Only Features) or use a concatenation 1146 

of 𝑋(0) and the latent node features obtained via Node2Vec (Network + Features). 1147 

Hyperparameter Optimization (HPO) 1148 

A systematic HPO is crucial for most machine learning purposes. We utilize a 4-fold cross validation 1149 

for HPO and report the performance in recovering held out known positives, considering all unlabeled 1150 

genes as negatives. We assess the area under the receiver operator characteristic curve (AUROC) 1151 

as performance metric since we expect an ideal classifier to rank the known positives higher than 1152 

the average unlabeled gene. To avoid a bias towards a small holdout set given our already very 1153 
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small set of reliable positives, each fold trains on 75% of all genes and assess holdout performance 1154 

on the remaining 25%. Using the same data for HPO and the validation of the final ensembles would 1155 

be considered an information leak, resulting in overestimation of model performance. This is why we 1156 

evaluate the final performance of the ensembles exclusively on additional independent label sets 1157 

(external validation) which are not present during the HPO. Therefore, the integrity of the training 1158 

regimen is not compromised. For HPO, we train four models on each fold and report the mean of all 1159 

16 resulting models. We first searched for optimal hidden dimension (data not shown), number of 1160 

hidden layers and type of single-network GNN layer using a selection of networks (Extended Data 1161 

Fig. 5). Then we searched for the optimal network using all 35 networks and for the optimal multi-1162 

network GNN layer using the union of all networks (Extended Data Fig. 6a). See Supplementary 1163 

Note 2 for detailed results. 1164 

Loss Function 1165 

The loss or risk function 𝐿 measures the goodness of fit of the model and provides the error term 1166 

from which the gradient is calculated which directly influences the tuning of model parameters via 1167 

backpropagation. We use class-label 0 for unlabeled genes and class-label 1 for labeled genes and 1168 

use binary cross entropy, also called logistic loss, as loss function. To reflect the uncertainty of the 1169 

true label of class 0 and the strength of evidence for our label class 1, we have implemented two 1170 

mechanisms for loss tuning which we refer to as dilution and amplification, inspired by ref. 93,94,86. 1171 

Dilution is a downsampling process where, for each training epoch, we gather a different random 1172 

subset 𝑈𝑠𝑎𝑚𝑝𝑙𝑒𝑑 sampled uniformly with replacement from all unlabeled genes 𝑈 so that |𝑈𝑠𝑎𝑚𝑝𝑙𝑒𝑑| =1173 

|𝑃𝑡𝑟𝑎𝑖𝑛| ⋅ 𝑑 = 𝑢* where 𝑃𝑡𝑟𝑎𝑖𝑛 is the set of all positives in 𝑡𝑟𝑎𝑖𝑛𝑗,𝑖and 𝑑 is the dilution hyperparameter. 1174 

This has the advantage that not every unlabeled gene contributes to the loss term in every epoch, 1175 

allowing unlabeled genes that resemble positive genes to receive a higher prediction, and balancing 1176 

the contribution of unlabeled and positives to the loss term, eradicating the influence of class 1177 

imbalance. 1178 

The final loss function is composed as follows: 1179 

𝐿 = ∑
𝐵𝐶𝐸(𝑦𝑢, �̂�𝑢)

𝑑

𝑢∗

𝑢=0

+ 𝑎 ⋅ ∑ 𝐵𝐶𝐸(𝑦𝑝, �̂�𝑝)

|𝑃𝑡𝑟𝑎𝑖𝑛|

𝑢=0

 1180 

Where 𝐵𝐶𝐸 stands for binary cross entropy or logistic loss, 𝑎 is our amplification hyperparameter, 1181 

𝑦𝑢 = 0 and 𝑦𝑝 = 1. We use 𝑑 = 10 and 𝑎 = 2 in our experiments. For amplification, we sum the 1182 

individual loss terms of positives used for training and multiply it with the amplification factor 𝑎. This 1183 

has the effect that false-negative predictions become 𝑎 times more costly than false-positive 1184 

predictions. If there exists an unlabeled gene, which is indistinguishable from a known positive, both 1185 

dilution and amplification result in a loss that encourages the model to predict both genes as positive 1186 

(class 1) rather than both as negative (class 0). Although this might lead individual models to overfit 1187 

to their positive examples in training, ensembles are expected to thrive under these 1188 

circumstances120. We optimize 𝐿 via gradient descent using an Adam121 optimizer with learning rate 1189 
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10-3. 1190 

 1191 

Model Interpretation 1192 

As candidate genes are predicted by an ensemble, we provide model interpretations based on the 1193 

average importance of an edge or input feature across the whole ensemble. A related idea of model 1194 

interpretation has recently been formulated as model class reliance122. To assess the reliance of the 1195 

ensemble on certain edges and node features, we gather the respective edges’ and nodes’ 1196 

importance using integrated gradients67 from every model of the ensemble for a query gene 𝑐. 1197 

Broadly speaking, integrated gradients assign importance values based on the change in gradients 1198 

when input features are substituted with a contrast, usually a vector containing only zeros. For edge 1199 

importance, this means that we introduce edge weights of 1 for every edge which are then substituted 1200 

with edge weights of 0. An edge weight of 1 does not alter the message passing and an edge weight 1201 

of 0 means removing the edge, while gradients backprogated to the respective edge weights can be 1202 

used for inspection. As we predict the importance based on the gradients backpropagated from gene 1203 

𝑐, the obtained importance values are valid only for the interpretation of the prediction for gene 𝑐. 1204 

Each individual model’s absolute integrated gradients are minmax scaled to the interval [0,1] across 1205 

all nodes and edges in the graph. Minmax scaling has the advantage of a comparable output space, 1206 

but has the tendency to over-emphasize negligible differences in the input space. To alleviate this 1207 

problematic tendency, we use the mean value of all models’ minmax scaled importance values, 1208 

assuming that an important edge or input feature will repeatedly be close to 1 and an unimportant 1209 

edge or input feature close to 0, leaving the intermediate values to edges and features that are of 1210 

ambivalent importance. 1211 

Edge Importance 𝐼𝑣,𝑒 ∈ ℝ of edges 𝑒 ∈ 𝐸 for candidate gene 𝑣 over all models 𝑖 ∈ {1,2, . . . , 𝑛 ⋅ 𝑚} from 1212 

all inner and outer folds against a contrast edge weight of 0: 1213 

𝐼𝑣,𝑒 =
1

𝑛 ⋅ 𝑚
∑ 𝑚𝑖𝑛𝑚𝑎𝑥∀𝑒∈𝐸(|𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠𝑖

 (𝑒, 0)|)

 

𝑖

 1214 

Note that minmax operates across the set of all edges 𝐸 (union of all edges across networks in the 1215 

case of FiLM). Node input feature Importance 𝐼𝑣,𝑛 ∈ ℝ𝑝 of for input features 𝑓 ∈ ℝ𝑝 nodes 𝑛′ ∈ 𝑁 for 1216 

candidate gene 𝑣 over all models 𝑚 from ensemble 𝑀 against a contrast vector containing only zeros 1217 

(0 
→ ∈ ℝ𝑝): 1218 

𝐼𝑣,𝑛′ =
1

𝑛 ⋅ 𝑚
∑ 𝑚𝑖𝑛𝑚𝑎𝑥∀𝑛′∈𝑁(|𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠𝑖

 (𝑛′, 0 
→)|)

 

𝑖

 1219 

To get a more detailed interpretation of node 𝑣’s own input features, we also obtain the importance 1220 

𝐼𝑣,𝑣 without removing the sign of the output of integrated gradients and minmax scale it across its 1221 

own dimensions: 1222 

 𝐼𝑣,𝑣 =
1

𝑛⋅𝑚
∑ 𝑚𝑖𝑛𝑚𝑎𝑥𝑣(𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠𝑖

 (𝑣, 0 
→)) 

𝑖  1223 

This way, the most important feature across all models will receive an importance score close to 1 1224 

or -1, depending on the direction of its influence, and the least important feature will receive an 1225 
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importance score close to 0. 1226 

For implementation of GNN interpretations we use the interface of PyTorch Geometric112 (v2.0.4) 1227 

with the PyTorch119-based model interpretation library Captum123 (v0.4.1). 1228 

 1229 

External validation and core gene properties 1230 

As outlined above, we use all available positive labels for training due to their scarcity. To avoid an 1231 

information leak between training and validation, we base the validation of our candidate genes on 1232 

labels sourced from external datasets which are not present during training and hyperparamter 1233 

optimization but reflect several characteristics of core genes. 1234 

Mouse KO Experiments 1235 

We assume that if a gene plays a pivotal role in a disease, severely disrupting the gene's function 1236 

will result in a phenotype that resembles the disease. To assess this hypothesis, we gathered the 1237 

same phenotypical queries that ref. 95 used to obtain the labels for the Mendelian genes 1238 

(Supplementary Table ST14). We then used these queries to retrieve a set of genes that, if 1239 

deliberately knocked out in mice, produce phenotypes that match the queries using the Mouse 1240 

Genome Database (MGD)124,125 (http://www.informatics.jax.org/allele, accessed 17.3.22). We used 1241 

an empty query to get a background set of all available mouse knockout genes. We then translated 1242 

the mouse genes to their human orthologs using the official MGD mouse-human homolog table 1243 

(http://www.informatics.jax.org/homology.shtml, accessed 28.11.22), entries without a human 1244 

ortholog were discarded, resulting in 16370 genes. For the assessment of candidates, we removed 1245 

Mendelian genes from the background sets and those genes that were excluded from the predictions 1246 

due to missing input features, such that the respective intersections of 14116; 13936; 14586; 14541; 1247 

14123 (Supplementary Table ST12) formed the background sets for the following analysis 1248 

(Supplementary Table ST2 & ST3). Next we tested the Mendelian genes of each disease for an 1249 

enrichment in mouse KO genes against all non-Mendelian genes in the background set, and the 1250 

candidate genes against all non-Mendelian non-candidate genes in the background set using 1251 

Fisher’s exact test (Supplementary Table ST2 & ST3). We further tested if restricting the candidate 1252 

genes to a higher consensus score increases their enrichment. To do so, we tested each CS bin for 1253 

enrichment against all protein coding non-Mendelian genes with a lower CS. We adjusted the P-1254 

values of the multiple Fisher’s exact tests by FDR correction. 1255 

Differential Gene Expression 1256 

We gathered differentially expressed genes for subcategories of cardiovascular disease and immune 1257 

dysregulation by indivdually querying the following disease subtype in the GEMMA database126: 1258 

coronary artery disease (DOID_3393), Atrial Fibrillation (HP_0005110), aortic aneurysm 1259 

(DOID_3627), ischemia (DOID_326), hypertension (DOID_10763), atherosclerosis (DOID_1936), 1260 

Crohn’s disease (DOID_8778), ulcerative colitis (DOID_8577), lupus erythematosus (DOID_8857), 1261 

rheumatoid arthritis (DOID_7148), multiple sclerosis (DOID_2377), obesity (DOID_9970), 1262 

Decreased body weight (HP_0004325), Increased body weight (HP_0004324), Abdominal symptom 1263 
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(HP_0011458), diabetes mellitus (DOID_9351), hyperglycemia (DOID_4195). Non-human entries 1264 

were removed. We applied Fisher’s exact tests (Supplementary Table ST6 & ST7) to look for an 1265 

enrichment of differentially expressed genes in the respective gene sets.  1266 

Gene Set Enrichment Analysis 1267 

We applied gene set enrichment analysis (GSEA) to our candidate gene sets using all using the 1268 

respective list of ‘considered genes’ as background. Gene Ontology (GO) Enrichment Analysis 1269 

performs GSEA based on the GO ontology biological process127,128 (Supplementary Table ST4). 1270 

We obtained the GO annotations through the tool GeneSCF129. 1271 

LoF and Missense Intolerance 1272 

We gathered gene-level LoF and Missense Intolerance Z-scores from the ExAc Cohort54 where a 1273 

high value indicates a high intolerance for LoF or missense mutations, respectively. In total we 1274 

obtained Z-scores for 16834 of our nfull of 19220 genes, which correspond to 15709 for 1275 

cardiovascular disease, 15450 for immune dysregulation, 15781 for body mass disorders, 15787 for 1276 

diabetes and 15784 for insulin disorders. We conducted a Tukey’s Honestly Significant Difference 1277 

test (Supplementary Table ST8, ST9) between Mendelian disorder genes, candidate genes and 1278 

non-candidate genes. 1279 

Drug targets and druggability 1280 

We obtained drug-gene interactions from the Drug Repurposing Knowledge Graph78, which has 1281 

been gathered from a large compendium of databases relating genes, diseases, drugs and several 1282 

other biomedical domains. We extracted only edges linking drugs and genes and removed edges 1283 

that have been automatically mined from preprint servers. We considered as drug targets (DT) genes 1284 

that have at least one edge to any compound and applied Fisher’s exact tests (Supplementary 1285 

Table ST10) to look for enrichment of drug targets in our gene sets. To analyze the drug-targeting 1286 

degree we counted for all drug targets the number of drug-gene interactions. We then applied 1287 

pairwise Wilcoxon rank sum tests between the counts of Mendelian disorder genes, candidates and 1288 

non-candidates and adjust the P-values using FDR (Supplementary Table ST10). We report the 1289 

fold increase of the median drug-targeting degree compared to non-candidate genes (xDC). Genes 1290 

encoding druggable proteins were obtained from DGIdb130. Enrichment for “druggable genes” (Dr) 1291 

in any set was assessed using Fisher’s exact test. To evaluate not-targeted but druggable genes 1292 

(Dr-), genes encoding products that are already targeted by a drug from the respective gene sets 1293 

were removed and the remaining druggable proteins tested for enrichment using a Fisher’s exact 1294 

test.  1295 
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linked to this paper. 1510 
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