Abstract
The signaling peptides adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and CGRP have overlapping and distinct functions in the cardiovascular, lymphatic, and nervous systems by activating three shared receptors comprised of the class B GPCR CLR in complex with a RAMP1, −2, or −3 modulatory subunit. Here, we report that AM2/IMD, which is thought to be a non-selective agonist, is kinetically selective for CLR-RAMP3, known as the AM2R. AM2/IMD-AM2R elicited substantially longer duration cAMP signaling than the eight other peptide-receptor combinations due to AM2/IMD slow off-rate binding kinetics. The regions responsible for the slow off-rate were mapped to the AM2/IMD mid-region and the RAMP3 extracellular domain. MD simulations revealed how these bestow enhanced stability to the complex. Our results uncover AM2/IMD-AM2R as a cognate pair with unique temporal features, define the mechanism of kinetic selectivity, and explain how AM2/IMD and RAMP3 collaborate to shape the signaling output of a clinically important GPCR.
Competing Interest Statement
KMB and AAP are filing a patent on kinetically selective AM and AM2/IMD variants.
Footnotes
↵3 Lead contact.