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Abstract

The constitutive model for the porosity-permeability relationship is a powerful tool to es-
timate and design the transport properties of porous materials, and has thus attracted a
significant number of attention for the advancement of composite materials. However, in
comparison with engineering composite materials, biomaterials, especially natural and artifi-
cial tissues, have more complex micro-structures such as high anisotropy, high randomness of
cell/fibre dimensions and very low porosity. Consequently, these properties of the biomaterial
make the porosity-permeability relationship more difficult to obtain than traditional compos-
ites. To fill this gap, we start the mathematical derivation from the fundamental brain white
matter (WM) formed by nerve fibres. This is augmented by a numerical characterisation
and experimental validations to obtain an anisotropic permeability tensor of the brain WM
as a function of the tissue porosity. Moreover, we propose an anisotropic poroelastic model
enhanced by the newly defined porosity-permeability tensor relationship which precisely cap-
tures the tissue’s macro-scale permeability changes due to the micro-structural deformation
in an infusion scenario. The constitutive model, the theories and protocols established in
this study will both provide improved design strategies to tailor the transport properties of
fibrous biomaterials and enable the non-invasive characterisation of the transport proper-
ties of biological tissues. This will lead to the provision of better patient-specific medical
treatments, such as drug delivery.

1. Introduction

Fluid transport in porous media is a ubiquitous phenomenon in nature, which has at-
tracted widespread attention and extensive research in the fields of geoscience & petroleum
engineering [1], environmental engineering [2], composite material [3, 4], biological & medi-
cal science [5, 6] etc. The development of porous transport theories has also tremendously
advanced our understanding and capability of designing biomaterials, such as the bone-
substituting and -repairing biomaterials [7, 8], artificial bio-membrane [9, 10], and drug car-
riers [11, 12]. However, the microstructural complexity, especially in natural and artificial
tissues, remains an obstacle in understanding the materials’ transport properties [13]. This
is because hydraulic permeability, the key parameter to determine the transport efficiency
of a porous medium, is highly dependent on the pore-level structure of the said medium.
This not only prevents us from achieving high efficiency and customisation of biomaterials
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by direct design of their microstructure, but also hinders our capability to achieve a better
understanding of the functions and properties of biological tissues.

Linking the material’s geometric properties and its permeability is regarded as a corner-
stone for the improved design of porous materials [4, 14, 15]. The classical and well-known
semi-empirical Kozeny-Carman (KC) formula that defines the permeability (κ) of saturated
sands as a function of its porosity (i.e. void fraction, ϕ, Eq. 1) [16, 17] and its very broad
application is a good example of this:

κ =
ϕsD

2
pϕ

3

C0(1− ϕ)2
(1)

where ϕs, Dp, ϕ are the particle sphericity, diameter, and sample porosity, respectively; C0

is an empirical coefficient depending on the constituent geometries. With many further
improvements based on theoretical and experimental techniques, the porosity-permeability
relationship in isotropic porous medium has been thoroughly investigated with different for-
mulas developed to provide satisfactory predictions in different scenarios, as reported in e.g.
Refs. [18, 19].

However, microstructural anisotropy widely exists in biological tissues and biomaterials,
e.g., brain, muscles, skin, cartilage, bio-gels, scaffolds [20, 21]. This adds more complexity
to link microstructural properties to the macroscale permeability, as permeability can no
longer be described by a scalar but becomes a tensor and all its components need to be
appropriately determined. Studies on fibrous materials have put forward some formulas
to relate the porosity and fibre dimensions to the permeability, such as the relationships
proposed by Gebart[22] and further improved by Clague [23] and Nabovati [4], as shown in
Eq. 2; alternative expressions have also been proposed by Van Doormaal [24] in Eq.3 based
on the KC formula.

κ

a2
= C1

(√
1− ϕc

1− ϕ
− 1

)C2

(2)

κ

a2
= 0.28

ϕ4.3

1− ϕ
(3)

where a is the fibre radius, ϕc is the critical value of porosity below which no permeating
flow can develop and C1 C2 are related to the network geometry. Shou also proposed a more
sophisticated form of the permeability tensor[25]. However, significant gaps still exist in
applying these formulas to biomaterials, because (i) these formulas exclude strong anisotropy
as fibres in composite materials often have random orientation whereas cells in some biological
tissues have more uniform directionality, e.g. nerve fibres and muscle cells; (ii) these formulas
were derived by adopting fibres with constant diameter, but cells and fibres in biomaterials
span across a range of sizes; (iii) almost all these formulas are invalid when the porosity is
lower than 0.3; however, cells and biological fibres are normally closely packaged, leading to
low porosities; the porosity of brain tissue, for example, is within the 0.18 ∼ 0.3 range. In
addition, the limited availability of tissues makes it impractical to collect sufficient tissue
samples with different porosities to validate the porosity-permeability tensor relationships.
Consequently, putting forward a porosity-dependent permeability tensor suitable for fibrous
biomaterials and biological tissues is challenging and has, at least until recently, eluded
scientists.
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In this work, we establish a porosity-permeability tensor relationship (κ = f(ϕ)) of
closely and randomly packed fibrous biomaterials, starting from the specific application to
the brain white matter (WM). This was achieved through the integration of mathematical
derivation and experimental characterisation of the microstructure of WM reconstructed
from high-resolution imaging data. Furthermore, based on the newly developed porosity-
permeability tensor relationship, we propose an anisotropic poroelastic model for fibrous
biomaterials and validate it using ovine brain infusion experiments. In this study, we (i)
develop software capable of generating the microstructure of closely and randomly packed
fibrous biomaterials for microstructure-based modelling, (ii) build a powerful mathematical
tool to estimate fibrous biomaterials’ permeability tensor, (iii) obtain a deeper understanding
on how microstructure affects transport property of fibrous biomaterials, and (iv) provide
new tools for the noninvasive characterisation of fibrous biomaterials’ transport properties.

2. Materials and Methods

2.1. Geometric reconstruction

Brain WM is a typical anisotropic fibrous material; Fig. 1a & 1b show its transverse
and longitudinal section views obtained by electron microscope [26, 27]. A key parameter
to reconstruct the microstructure is the sizes of nerve fibres, which we have obtained ex-
perimentally by adopting the Focused Ion-Beam Scanning Electron Microscopy (FIB-SEM)
technique (Fig. 1c) [28]. For the sake of data statistics and without loss of generality, the
cross-sections of the nerve fibres were simplified to be circular (note ellipticity can also be
captured and later introduced as a second order effect) and Fig. 1d presents the data of their
diameters, which fits well to a log-normal distribution.

We then built an algorithm to randomly place these circles/disks in a rectangular domain
to mimic the transverse section of the WM, which belongs to packing problems that have
received extensive attention [29, 30, 31]. Three major challenges need to be overcome by the
present algorithm: (i) the reported minimum porosity of brain tissue is 0.15 [32], which is
close to the current limitation of documented algorithms for random disk packing [29]; (ii)
diameters of all disks to be packed have been determined, so generating additional small disks
to fill the pores left between large disks to reduce the porosity is invalid in this case; (iii) disk-
disk and disk-boundary overlaps are not allowed. Under these conditions, it is challenging to
randomly determine both the position and size of the disks while achieving a low porosity.
We propose here a random-size-adaptive-position strategy to keep the randomness while
acquiring low porosity. A schematic of the main strategy is shown in Fig. 1e , which contains
five major steps:

• Step 1 & 2 - The core. We generate a random array of diameters based on data in Fig.
1d and number them in ascending order. Disk 1 is placed at the centre of a rectangular
domain. Disk 2 is then placed on top of disk 1 within a specific distance. Note that we
assume the tangent distance between any two disks is constant. Disk 3 is then placed
to the right and tangential to disks 1&2.

• Step 3 - The outer layers. Outside the core, we start constructing the first outer layer.
In each layer, we chain the outmost disks and place the new disks left and tangential
to the chain in clockwise order. For example, for the first outer layer, we place the new
disks tangential to disks in the core in a clockwise fashion from 1 to 2, 2 to 3 and 3 to
1.
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Figure 1: Strategies for microstructural reconstruction. a. Electron micrographs of the cross-sectional
configuration of the brain white matter [26]. The disk-like structures are the cross-section of nerve fibres.
b. Electron micrographs of the longitudinal configuration of the brain white matter, which shows the wavy
shape of nerve fibres [27]. c. Schematic representation of Focused Ion-Beam Scanning Electron Microscopy
(FIB-SEM) technique. Combining scanning and milling, we obtained the microstructural configuration of
the ovine brain white matter every 150 nm, from which we measured the precise distribution of the nerve
fibre’s diameter. d. Measured diameter distribution of ovine nerve fibres in the region of Corona Radiata. e.
Schematic representation of the strategy to generate the randomly distributed cross-section of nerve fibres.
f. A representative 3D geometry of ovine brain WM (Corona Radiata).

• Step 4 - The 2D model. Step 3 is repeated until all the disks are placed. However,
strictly following the chain may lead to disk-disk overlap, e.g. placing disk 12 left to
6 → 1. Under this condition, the algorithm will search for a smaller disk to fit to this
position. If no smaller disk can fit, we will skip this position. In the case that disk
and boundary overlap at the outermost layer, the same method is applied to solve the
problem.

• Step 5 - The 3D model. Step 4 generates a large cross-sectional domain, but we may
just use a part of it to run simulations, which depends on the size of the Representative
Volume Element (RVE), which will be discussed in Section 2.3, so we cut a rectangular
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domain and extrude it along a wavy line to generate the 3D geometry, as shown in Fig.
1f. The wavy line is defined by the average length and tortuosity (τ : the ratio of the
arc length to the distance between the two endpoints) of the fibre, which, for specific
brain axonal structures, are measured as 15 µm and 1.1, respectively [28].

2.2. Mathematical expressions for the ϕ− δ − κ relationships

In many studies, the porosity-permeability relationship (κ = f(ϕ)) can be analytically
obtained via solving the Navier-Stokes (NS) equations in an idealised and periodic geometry,
as exemplified by Fig. 2a [33, 14]. In biomaterials, however, the randomness of the fibre size
and position makes it impossible to adopt analytical methods. Inspired by the scaling rule
by Clague [34], we write the permeability as a function of the half distance between the disks
(i.e. κ = f(δ), the parameter δ is shown in Fig. 2). Under the low Reynolds number regime,
which holds for the majority of biomaterial and biological tissues [35], Clague performed a
simple analysis of the Stokes flow equations:

∇ · v = 0 (4)

ηf∇2v−∇P = 0 (5)

and deduced the following scaling estimate for Stokes flow in the direction perpendicular to
the fibres, as shown in Fig. 2b:

∇p ∼ µ
⟨v⟩
δ2

(6)

or
∆p

l
∼ µ

⟨v⟩
δ2

(7)

where v is the flow velocity, ηf is the fluid dynamic viscosity (0.8 mPa·s in this study [36]),
p is the hydraulic pressure, ⟨v⟩ and l are the characteristic velocity and length, respectively.
Substituting Eq. 7 to Darcy’s Law:

κ =
Qµl

A∆p
(8)

where Q is the flow rate and A is the cross-sectional area of the domain, we can write:

κ = mδ2 (9)

where m is a coefficient dependent on the pore-scale microstructure.
In line with what has been suggested by other researchers [37, 38], we treated the WM

as transversely isotropic; this implies that the nerve fibres and ISF behaviours on the plane
perpendicular to the main fibre trajectory are directions independent. We can thus define
the permeability tensor as κ = diag(κ⊥, κ⊥, κ∥) and the perpendicular component is:

κ⊥ = mδ2 (10)

which shows that when the fluid flows perpendicular to the nerve fibres, the permeability
is proportional to the squared half distance between the fibres; and when there is no gap
between the fibres (i.e. δ = 0), the permeability reduces to zero as no flow can develop
between the fibres, which provides a good representation of the behaviour expected using
physics-based arguments. When the fluid flows parallel to the nerve fibres, however, the
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Figure 2: a. An example of idealised geometry for porosity-permeability relationship studies. b. Schematic
representation of mathematically deriving the δ − κ relationship. c. Schematic representation of mathemat-
ically deriving the δ − ϕ relationship.

permeability will not fall to zero even if δ = 0, because the void spaces between the fibres
can be the flow pathway. Therefore, the format of δ − κ∥ relationship needs to be:

κ∥ = nδ2 + κc (11)

where n is similar to m, a coefficient dependent on the pore-scale microstructure, and κc is
the critical parallel permeability when δ = 0.

To write κ as a function of porosity (ϕ), we then need to find the relationship between δ
and ϕ. Let’s define Stotal as the area of the whole domain, Sc as the critical void area when
δ = 0, ri as the radius of each fibre and N the number of fibres, as shown in Fig. 2c. We
then have:

Stotal =

∑N
i=1 πr

2
j

1− ϕc

(12)

=
π
∑N

i=1 r
2
j

1− ϕc

=
π ·Nr̄2j
1− ϕc

=
π ·N [r̄2j +Var(rj)]

1− ϕc

(13)

where rj = ri + δ, (̄ ) is the mean value, and Var(·) is the variance:

Var(r) =

∑N
i=1(ri − r̄)2

N
(14)

The porosity can then be written as:

ϕ =
Sc +

∑
π[(ri + δ)2 − r2i ]

Stotal

, (15)

which rearranges to give

ϕ =
πn

Stotal

· δ2 + πnd̄i
Stotal

· δ + ϕc (16)
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where ϕc = Sc/Stotal and di represents the fibre diameters. If we write Eq. 16 in the form

ϕ = aδ2 + bδ + c (17)

we then have

a =
1− ϕc

(d̄/2 + δ)2 +Var(d)/4
(18)

b =
d̄(1− ϕc)

(d̄/2 + δ)2 +Var(d)/4
(19)

c = ϕc (20)

By combining Eqs. 10, 11, 17, the relationship between ϕ and κ can be obtained, but
we still need to know the coefficients m,n, and the values of a, b, c (i.e. d̄,Var(d), ϕc). In
this study, d̄,Var(d) can be easily obtained from Fig. 1d, so we are only left with m,n, ϕc

unknown. ϕc can be obtained by running the algorithm developed in Section 2.1 to recon-
struct transverse sections with δ = 0. Since m and n link the geometric parameter to the
hydraulic permeability, they can be characterised by running computational fluid dynamics
(CFD) simulations in the reconstructed 3D geometries.

Fig. 3 Simulation setup and RVE
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Figure 3: CFD setup and RVE size. a. A representative result of pressure distribution in the RVE when
the flow is parallel to the nerve fibres. The top (T) and bottom surfaces are the inlet and outlet boundaries,
respectively. b. A representative result of pressure distribution in the RVE when the flow is perpendicular
to the nerve fibres. The right (R) and left surfaces are the inlet and outlet boundaries, respectively. c.
The relationship between RVE size and calculated permeability in two directions. The shadow areas are the
standard derivations (SD) of the results.

2.3. CFD and RVE

According to Darcy’s law (Eq. 8), the value of κ can be calculated from the flow rate (Q)
and pressure drop (∆p) in a given domain. As these two values can be obtained by solving
Stokes equations (Eqs. 4, 5) in the domain, we run computational fluid dynamics (CFD) in
the representative volume elements (RVEs) with different δ to characterise m and n. In the
cases of parallel flow (see Fig. 3a), the top surface of the RVE is set as the inlet boundary
with the inlet pressure of 10 Pa, the bottom surface is set as the outlet boundary with the
outlet pressure of 0 Pa. Note that κ is independent of the pressure drop, so the inlet pressure
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and outlet velocity can be arbitrarily chosen, i.e. the calculated κ will not change if the inlet
pressure and outlet pressure are set to be any other values [39]. The boundaries of nerve
fibres are set as no-slip. In the cases of perpendicular flow (see Fig. 3b), the right surface of
the RVE is set as the inlet boundary with the inlet pressure of 10 Pa, the left surface is set
as the outlet boundary with the outlet pressure of 0 Pa.

The size of RVE (side length of the top and bottom surfaces in this study) has a significant
effect on simulation results, as shown in Fig. 3c. When the RVE size is relatively small, the
calculated values of permeability using different RVEs cannot converge to a stable value, but
the instability decreases with the RVE size. Based on the results in Fig. 3c, we choose 18
µm as the RVE size. It is worth mentioning that the RVE sizes we obtained here are very
similar to those obtained by [40].

2.4. Experimental data and Poroelastic modelling

We verified the newly proposed κ = f(ϕ) formula by a group of brain tissue infusion
experiments, where Phosphate-buffered saline (PBS) was injected into the brain WM tissues
both along and perpendicular to the nerve fibres, as shown in Fig. 4a, and the corresponding
changes of permeability tensor were measured [41]. The box charts in Fig. 6 show the
experimental results. We built an anisotropic poroelastic model and integrate the κ = f(ϕ)
formula to simulate the infusion experiments.
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for poroelasticity simulation
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a b
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Figure 4: a. Schematic representation of the brain tissue infusion experiment. b. Schematic representation
of the Geometric model, boundary conditions, and the method of integrating the κ = f(ϕ) formula for the
anisotropic poroelastic model.

In the poroelastic theory, the porous domain is divided into the solid phase and the fluid
phase. As brain WM is composed of nerve fibres, interstitial fluid (ISF), and extracellular
matrix (mainly lecticans and proteoglycans) [42], we assume the nerve fibres as the solid
phase and the rest as the fluid domain. We can then write the stress relationship as:

σij = σ′
ij − αijp (21)

where σij is the total (tissue) Cauchy stress, σ′
ij is the Cauchy stress of nerve fibres, αij is the

Biot-Willis coefficient tensor, and p is the interstitial hydraulic pressure. To more precisely
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capture the fibre’s compressive behaviour, We used a realistic hyper-elastic model (Eq. 22)
to describe the nerve fibres and the fibre stress can be written as Eq. 23.

W =
N∑
i=1

µi

αi

(λαi
1 + λαi

2 + λαi
3 − 3) +

1

2
B(J − 1)2 (22)

σ′
ij =

1

J

∂W

∂F
· FT (23)

where W is the strain-energy density function that is expressed in terms of the principal
stretches λi, i = 1, 2, 3; N,µi, αi are material constants with the values of 1, 281.84 Pa, and
6.33, respectively [27]; B is the bulk modulus, and J =

√
λ1λ2λ3 = detF is the volumetric

deformation, and F = fij = ∂xi/∂Xj is the deformation gradient tensor. The updated
porosity due to nerve fibres’ compression can be then written as:

ϕ = 1− 1− ϕ0

J
(24)

where ϕ0 is the initial porosity without fibres’ compression (∼ 0.2 for brain tissues [32]).
Integrating the updated porosity and permeability tensor to Darcy’s Law, we can then solve
the flow velocity:

ϕ (vf − vs) = −kij
ηf

∆p, κij =

∣∣∣∣κ∥ 0
0 κ⊥

∣∣∣∣ (25)

where vf is the flow velocity, vs is the deformation velocity of the solid phase.

3. Results

3.1. A versatile microstructure generator for fibrous material: MicroFiM

Based on the algorithm presented in Section 2.1, we built a software application with
MATLAB, which is able to generate closely and randomly packed porous domains. By
inputting the distribution of fibre diameters (currently supports Lognormal Distribution, but
the source code can be easily changed to support any other distributions), the approximate
distance between fibres and the size of the domain, the software will automatically generate
the geometric information of the porous media. The App and source code are available in
the Supplementary material and the manual is available in Appendix A.

Prevailing opinions suggest that the distance between neurons ranges from ∼30 nm to
∼100 nm [43, 44]; the extracellular space (ECS), accordingly, occupies normally 18% ∼ 30%
of brain tissues [32]. The parameter values of the generated microstructures, underpinned
by our measurement of neuron fibre diameter distribution (Fig. 1d), coincide exactly with
the ranges. First, by reconstructing 70 RVEs with δ = 0 and measuring their porosity, we
obtained ϕc ≈ 0.175 (Fig. 5a), which agrees that the lowest ECS volume fraction should be
higher than 0.18. Second, we reconstructed 7 groups of RVEs (each group contains ∼100
RVEs) with the fibre distance in the range of 20 nm ∼ 140 nm. The porosity of these RVEs
is, accordingly, between 0.17 ∼ 0.32, as shown by the box chart in Fig. 5b.

3.2. δ − ϕ relationship

The half-distance between fibres (δ) bridges the tissue porosity (ϕ) and permeability
tensor (κ) in the present study, so we first characterised the formulas of ϕ = aδ2 + bδ + ϕc

and κ = diag(mδ2, nδ2 + κc), i.e. the coefficients of ϕc,m, n, κc, according to Section 2.2.
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Figure 5: δ − ϕ − κ relationships. a. Critical porosity (ϕc) of the fibrous porous medium when δ = 0. b.
δ − ϕ relationships obtained by direct measurement of the reconstructed RVEs (box chart) and using the
newly developed theory (shadowed line). The central line shows the mean values while the shadow denotes
the SD. c. Characterisation results of δ2 − κ∥ relationship of parallel flow. the error bars denote SD of the
results in each group. The table on the top shows the characterised formula. d Characterisation results of
δ2 − κ⊥ relationship of perpendicular flow.

Substituting the mean value (d̄) and variance (Var(d)) of nerve fibre diameters of each
RVE and the ϕc, which has been available in Section 3.1, to Eqs 19, 20, we obtained the
theoretical results of the δ−ϕ relationship of each RVE presented by the shadowed red line in
Fig. 5b. The central line shows the mean value and the shadow shows the standard deviation
(SD). Comparison between the measured results and the theoretical result demonstrates the
validity of Eqs. 16-20 and the precision of ϕc. It is worth mentioning that compared with
ϕc, d̄ and Var(d) of fibre diameters are more easily available by imaging techniques, so we
characterised ϕc in this study which can be directly adopted for brain tissue. For other fibrous
materials, given the diameter distribution, the App can easily characterise their specific ϕc.

3.3. δ − κ relationship

We then run CFD in these RVEs and calculated their individual permeability in both
directions based on Darcy’s law. The results of parallel flow and perpendicular flow are
shown in Fig. 5c and d, respectively, with error bars. It shows that in both directions, the
mean value of κ is proportional to δ2, which matches our theory expressed by Eqs. 10 and
11. By linearly fitting the mean values, we finally characterised m,n, κc and obtained the
following formulas:

κ∥ = 0.618δ2 + 4.17× 10−15 (26)

κ⊥ = 0.308δ2 (27)

3.4. Application and validation

Fig. 6a shows the results of modelling the brain tissue infusion experiments with the
anisotropic poroelastic model built in Section 2.4 underpinned by the newly developed
κ = f(ϕ). While the streamlines show the flow direction, the contours show the tissue
deformation. Due to the existence of a plastic tube wrapping and supporting the tissue,
the fluid cannot flow out via the outer boundaries of the tissue, so the streamlines turn to
the axial direction when reaching the outer boundary of the tissue. In addition, streamlines
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in the right figure (infusion is perpendicular to nerve fibres) turn more sharply to the axial
direction compared with the situation in the left figure (infusion is parallel to nerve fibres),
this is because the flow can be more easily developed along the nerve fibres. When applying
local hydraulic pressure, nerve fibres tend to deform laterally because the fluid can flow freely
along nerve fibres. Consequently, as shown in the contours, the parallel infusion does not
introduce obvious tissue deformation while the perpendicular infusion extrudes the tissue.

a

Parallel infusion Perpendicular infusion

7 . 5 1 0 1 2 . 5 1 5 1 7 . 5 2 0

0 . 0

0 . 5

1 . 0

1 . 5 E x p e r i m e n t
 2 5 % ~ 7 5 %
 M e a n  ±  2  S D
 M e a n

I n f u s i o n  p r e s s u r e ( m m H g )

E x p e r i m e n t
 2 5 % ~ 7 5 %
 M e a n  ±  2  S D
 M e a n

κ(
10

−1
6 m2 )

b

7 . 5 1 0 . 0 1 2 . 5 1 5 . 0 1 7 . 5 2 0 . 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

 P r e s e n t  s t u d y
 K o z e n y - C a r m a n

 P r e s e n t  s t u d y
 K o z e n y - C a r m a n

Figure 6: Comparison between experimental results and theoretical results. a. Poroelastic modelling result
of brain tissue infusion. The contours show the tissue deformation (mm) while the vectors denote the flow
direction. b. Infusion pressure-permeability tensor relationship. The box charts are experimental results,
while the lines present the theoretical results. In both figures, left is for parallel infusion and right is for
perpendicular infusion.

In Fig. 6b, we compared the simulation results (lines with symbols) against the experi-
mental results (boxes). It shows that adopting the Kozeny-Carman formula seems to be able
to provide a good prediction under relatively low infusion pressure but leads to significant
error under high pressure, especially in the scenario of parallel infusion. The lack of considera-
tion of the flow along fibres should be the culprit. By contrast, the newly developed formula
in the present study can better predict the infusion in both directions, but the result in
perpendicular infusion is slightly higher than the mean values of experimental measurements
under high pressure. The reason is that in the situation of perpendicular infusion, apart from
being compressed, the nerve fibre will also undergo lateral deformation. While compression
of the solid phase provides more space for the fluid flow thus increasing permeability, the
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lateral deformation of nerve fibres may drive the nerve fibres to approach each other, close
the flow pathway and decrease the permeability. Given that the formulas of κ = f(ϕ) can
only consider the porosity change caused by compression of the solid phase, the predicted
permeability under perpendicular infusion should be higher than the real situation. To prove
this hypothesis, we added spring foundations to the outlet boundaries (see Fig. 4b) to reduce
the lateral deformation and mimic the situation of closing gaps between nerve fibres. See
more details in Appendix B.

3.5. Effects of fibrous microstructure on the ϕ− κ relationship

To obtain a clear understanding of how the fibrous microstructure and the randomness
of the fibre size affect the porosity-permeability tensor relationship, we further conducted
parametric studies on the fibre length, tortuosity and diameter distribution to explore their
effects.

Fibre length and tortuosity. Changes in fibre length and tortuosity do not change the
cross-sectional configuration of the material, so only changes in parallel permeability need
to be considered in these cases. We generated 7 new groups of RVEs with different lengths
and tortuosities, see Fig. 7a and 7b for the specific values. Results show that fibre length
alone has a very limited effect on the porosity-permeability relationship. We then chose one
cross-sectional configuration with different length, and found that although the permeability
values decrease slightly with the length, the deviations are within 3% (see Table 1).

Table 1: Relationship between fibre length and parallel permeability

Fibre length (µm) κ∥ Deviation*
1 5.62× 10−15 2.61%
5 5.58× 10−15 1.87%
10 5.53× 10−15 0.89%
15 5.48× 10−15 -
20 5.44× 10−15 0.62%

* Calculated based on the result of 15µm fibre

On the contrary, the effect of tortuosity is considerable. Fig. 7b shows that a larger
tortuosity leads to a smaller parallel permeability and also a slightly slower increase of parallel
permeability with porosity; these effects also increase with the tortuosity. This suggests that
for highly curved fibres, we should also incorporate tortuosity into the formula of the porosity-
permeability tensor relationship. This will be explored in more detail in future work.

Fibre diameter distribution. Different from the above situations, changes in fibres’
diameter distribution also change the cross-sectional configuration of the material, so we
studied both components of the permeability tensor here. In this case, we chose another
area of ovine brain white matter (Fornix) and adopted the same protocol as dealing with
the region of Corona Radiata (Fig. 1). Appendix C, which shows the processing details
of Fornix, again demonstrates the validity of applying the theory established in Section 2.2
to Fornix. Comparisons of the porosity-permeability tensor relationship between Corona
Radiata and Fornix show that with larger mean value and variance of fibre diameters, Fornix
has larger permeability in both directions than Corona Radiata under the same porosity,
and the difference increases with the porosity. By comparing Fig. 5b and S2c, we further
found that both theory and direct measurement show that with the same distance between
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Figure 7: Microstructural effects on the porosity-permeability relationship. a. Effect of fibre length on the
ϕ − κ relationship. Fibre tortuosity is 1.1. b. Effect of fibre tortuosity on the ϕ − κ relationship. Fibre
length is 15 µm. c. Effect of fibre diameters’ distribution (region) on the ϕ− κ relationship.

fibres, Fornix has a smaller porosity than Corona Radiata. These two findings show that
while we may intuitively acknowledge that a higher porosity means higher permeability, the
real situation is more complex and may be counter-intuitive, which further underscores the
importance of defining a reliable constitutive model for the porosity-permeability relationship
of the fibrous domain formed by fibres with random size and position.

4. Discussion

While extensive studies have shown the significant impact of the microstructure on mass
and fluid transport processes in biomaterials [45, 46], our recent experimental and imaging
results have further emphasised this relationship and raised the more complicated anisotropic
issue existing more widely in biomaterials and biological tissues e.g. brain white matter
[41, 47]. Although we have successfully unravelled the mechanisms behind the complex
interactions between the microstructure and transport processes via theoretical modelling
[6, 48], the practical utilisation of this relationship to gain an improved understanding of the
functions of biological tissue and design capability of advanced biomaterials is still difficult
due to the lack of an explicit definition of the relationship between the microstructure and
transport properties. The framework developed in this study provides a solution to bridge
this gap, specifically between the microstructure and the anisotropic transport property of
fibrous biomaterials as well as other types of composite materials.

Mechanical behaviours are important for biological tissues and biomaterials [49]; their
characterisation usually rely on precise definitions of mechanical and spatial interactions
between the solid phase and fluid phase. Consequently, the poroelastic theory is widely
adopted in modelling the mechanical behaviours of biological tissues and biomaterials and the
precision of modelling results relies on the definition of the porosity-permeability relationship.
Due to the lack of a porosity-permeability tensor relationship that can explicitly consider
the microstructural complexity of fibrous biological tissue and biomaterials, modelling their
anisotropic mechanical behaviours is still an outstanding problem. Although the scope of this
study provides only the porosity-permeability tensor relationship of brain white matter, we
can adapt the theory, tools, and protocols established here to build the porosity-permeability
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tensor relationship of other similar fibrous biomaterials and therefore pave the way for a more
precise prediction of their mechanical properties.

Extensive studies in the recent decade have shown the direct links between the fluid
& mass transport in the brain and brain diseases, such as Parkinson’s, Alzheimer’s and
stroke; particularly since the dysfunctions of these transport processes can reduce the waste
clearance and spread the toxic components or pathogens [5]. Whereas how the complex
brain microstructure guides the fluid flow and how the unhealthy microstructure leads to
the abnormal fluid flow are largely unknown and unpredictable. Aided by advanced medical
imaging techniques, e.g. neurite orientation dispersion and density imaging (NODDI) [50],
which can calibrate the distribution of porosity in the brain, the newly developed quantitative
relationship between porosity and permeability tensor of brain white matter will be able to
draw the map of whole brain fluid transport. And therefore potentially helping to detect
brain disorders by monitoring the brain flow status. The potential success of the emerging
drug delivery techniques, which deliver drugs directly into the brain tissue by infusion, also
depends on the understanding of transport properties of the brain [13]. Successful application
of this newly proposed mathematical formula and supporting methods will be able to play
important role in planning the drug delivery route in the brain. One potential limitation
is that these applications need to be underpinned by a database of nerve fibre diameters’
distribution in different regions of the human brain as the results in Fig. 7c suggest significant
differences of permeability tensor exist in the different brain region. Fortunately, the protocol
to build this database has been established in Ref. [28].

5. Conclusions

In the present study, we have (i) built a geometry generator for closely and randomly
packaged fibrous domains and can reach a low porosity down to 0.16. By generating the
complex and semi-realistic microstructure, this tool will enable the community to carry out
various types of modelling to capture biomaterial behaviours and gain a deeper understand-
ing of microstructure-function relationships; (ii) built a validated mathematical theory and
comprehensive modelling protocol to link the microstructural information of fibrous bioma-
terials and biological tissues to their anisotropic permeability tensor, which fills the gap of
lacking a precise porosity-permeability tensor relationship to accelerate biomaterial design
and non-invasive characterisation; (iii) proposed a validated mathematical formula of the
porosity-permeability tensor relationship of brain white matter, which will help to precisely
model fluid transport in the brain tissue and plan the drug delivery route in the brain.
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