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Abstract 
The	results	published	in	Poore	and	Kopylova	et	al.	2020[1]	revealed	the	possibility	of	being	
able	to	almost	perfectly	differentiate	between	types	of	tumour	based	on	their	microbial	
composition	using	machine	learning	models.	Whilst	we	believe	that	there	is	the	potential	
for	microbial	composition	to	be	used	in	this	manner,	we	have	concerns	with	the	manuscript	
that	make	us	question	the	certainty	of	the	conclusions	drawn.	We	believe	there	are	issues	
in	the	areas	of	the	contribution	of	contamination,	handling	of	batch	effects,	false	positive	
classifications	and	limitations	in	the	machine	learning	approaches	used.	This	makes	it	
difficult	to	identify	whether	the	authors	have	identified	true	biological	signal	and	how	
robust	these	models	would	be	in	use	as	clinical	biomarkers.	We	commend	Poore	and	
Kopylova	et	al.	on	their	approach	to	open	data	and	reproducibility	that	has	enabled	this	
analysis.	We	hope	that	this	discourse	assists	the	future	development	of	machine	learning	
models	and	hypothesis	generation	in	microbiome	research.	

Main 
Most	models	do	not	perform	any	better	than	models	constructed	using	no	
information	

Poore	and	Kopylova	et	al.	detail	the	building	of	cancer	type	models	based	on	microbial	
interrogation	of	TCGA	(The	Cancer	Genome	Atlas	Program)	cancer	sequence	data	(which	is	
predominantly	RNA	sequencing	but	with	some	whole	genome	sequences).		Here,	we	
evaluate	these	models	within	the	framework	of	Whalen	et	al.	2021[2]	describing	common	
modelling	pitfalls,	namely:		I)	distributional	differences,	II)	confounding,	III)	leaky	
preprocessing	and	IV)	unbalanced	classes.	
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Following	their	most	stringent	decontamination,		only		5	of		the	33	one-vs-all	cancer	type	
models	examined	were	a	statistically	significantly	improvement	to	models	constructed	
using	no	information	(at	the	0.05	significance	level,	without	false	discovery	correction	for	
multiple	models,	“P-Value	[Acc	>	NIR]”,	available:	
http://cancermicrobiome.ucsd.edu/CancerMicrobiome_DataBrowser/)	–	this	was	not	clear	
in	the	main	text.		

	

Models	pronounce	nonsensical	genera	are	informative	of	tumour	type	

Even	when	the	model	does	appear	to	identify	samples	better	than	the	negative	predictor,	
we	have	concerns	that	many	of	the	key	features	used	in	the	model	are	implausible.	For	
example,	the	model	predicting	adrenocortical	carcinoma	is	significantly	better	than	a	
negative	predictor	(P=0.002)	and	boasts	high	sensitivity	(0.9565),	specificity	(0.998)	and	
positive	predictive	values	(0.71).	Therefore,	this	model	should	hold	some	features	that	
truly	distinguish	it	from	the	remainder	of	cancer	types.	The	top	ten	most	important	
features	for	this	model	are	Hepandensovirus	(relative	feature	importance	score:	9431,	a	
virus	that	infects	crustaceans[3]),	Paeniclostridium	(973),	Comovirus	(846),	Thalassomonas	
(267,	a	bateria	causing	coral	disease[4]),	Simkania	(160),	Cronobacter	(151),	Simonsiella	
(148),	Leucothrix	(145,	a	bacteria	from	marine	macroalgae[5]),	Phikmvlikevirus	(128)	and	
N4likevirus	(88).	It	is	unclear	how	Phikmvlikevirus	and	N4likevirus	might	be	informative	
for	adrenocortical	carcinoma	as	they	are	bacteriophages	and	therefore	would	be	
dependent	on	the	co-occurrence	of	their	bacterial	hosts	in	the	adrenal	glands	(or	
alternatively	the	remainder	of	anatomical	locations[6,	7].	Many	of	the	top	performing	
features	of	other	models	under	the	most	stringent	decontamination	approach	also	seem	
nonsensical	(Table	1).	This	point	is	not	covered	by	the	Whalen	pitfalls	because	it	is	
generally	presumed	that	the	features	being	modelled	exist	to	begin	with,	which	in	the	case	
of	taxonomic	classification	is	not	always	true.	

	

Table	1-	Top	performing	features	for	a	selection	of	one-vs-all	cancer	type	models	in	the	
most	stringent	decontamination	approach	as	presented	Poore	and	Kopylova	et	al.	These	
taxa	include	extremophiles	that	have	not	previously	been	isolated	from	humans.		See	
supplementary	for	a	full	description	as	on	NCBI	of	the	sources	for	each	representative	
species	within	these	genera.		

Genus	 Top	Feature	in	
cancer	type	model		

Details	

Leucothrix	 Bladder	Cancer	 Bacteria	from	marine	
macroalgae[5]	

Thalassomonas	 Uveal	Melanoma	 Bacteria	causes	disease	in	
coral[4]	
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Velarivirus	 Cervical	Cancer	 Grapevine	is	natural	host[8]	

Tritimovirus	 Colon	Cancer	 Known	to	infect	cereals[9]	

Dinovernavirus	 Renal	Clear	Cell	
Carcinoma	

Contains	insect	viruses[10]	

Bacillarnavirus	 Lung	Squamous	
Cell	Carcinoma	

Infects	algae[11]	

Rymovirus	 Ovarian	serous	 Infects	species	of	grass[12]	

Ignicoccus	 Prostate	 Identified	in	marine	
hydrothermal	vents[13]	

Salinimicrobium	 Testicular	Cancer	 Halophilic	genus	identified	from	
marine	environments[14]	

	

Some	models	do	demonstrate	plausible	and	promising	results.	For	example,	in	
hepatocellular	carcinoma,	Orthohepadnavirus	is	known	to	have	a	causal	relationship	with	
cancer	formation[15]	and	has	been	found	to	be	specific	to	the	liver	in	other	datasets	[16].		
This	is	reflected	well	in	Poore	and	Kopylova	et	al.’s	model	where	the	estimated	variable	
importance	score	of	Orthohepadnavirus	in	their	model	(2020.53)	dwarfs	the	next	most	
‘important’	feature	(Levivirus,	975.09).	Despite	this,	the	model	is	still	not	significantly	
better	than	a	negative	predictor	(P-value	[Acc	>	NIR]	=	1)	and	suffers	a	poor	positive	
predictive	value	(0.4).	

Potential	for	read	misclassification	

We	believe	that	these	nonsensical	genera	arise	because	the	models	in	this	manuscript	are	
built	on	many	features	that	are	likely	to	be	taxonomically	misclassified,	from	human	reads	
or	other	contamination[17,	18],	and	therefore	do	not	originate	from	microbes	in	the	
sample.	One	possible	reason	for	these	misclassifications	is	that	extra	steps	were	not	taken	
to	remove	human	reads	prior	to	model	building.	Poore	and	Kopylova	et	al.	detail	the	
extraction	of	reads	unaligned	to	a	human	reference	genome	which	are	then	the	subject	of	
taxonomic	classification.	This	pool	of	reads	will	still	contain	human	reads	which	have	not	
aligned[19].	For	example,	this	could	be	because	the	reads	are	of	low	quality,	they	are	
mutated	in	cancer	genomes	or	due	to	sequencing	artifacts.	In	addition,	the	authors	detail	no	
human	reference	sequences	in	their	taxonomic	database,	using	59,974	microbial	genomes	
only.	Therefore,	it	is	highly	likely	that	human	sequences	will	have	been	misclassified	as	
microbial.	The	subsequent	application	of	SHOGUN	alignment	of	kraken	classified	reads	is	
more	specific	but	may	still	involve	the	inappropriate	classification	of	human	reads	to	a	
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database	with	no	representation	of	the	human	genome.	Additional	human	depletion	
filtering	and	steps	to	remove	contamination	such	as	those	employed	by	the	cancer	
microbiome	atlas	to	distinguish	tissue-resident	microbiota	from	contaminants	would	have	
helped	to	remove	misclassifications[20].	

	

Normalization	introduces	variance	and	permits	modelling	

Another	possible	contributing	factor	to	the	issues	with	the	models	is	in	how	the	data	was	
processed.	Microbiome	data	is	dynamic[21]	(Whalen	I:	distributional	differences),	and	is	
typically	heteroskedastic	(meaning	that	the	variance	of	a	variable	is	non-constant	over	
value	of	an	independent	variable	i.e.	the	number	of	sequencing	reads	assigned	to	each	of	
two	genera)[22].	The	authors	resolve	heteroskedasticity	by	applying	a	tool	called	Voom	
that	is	designed	for	RNA	sequencing	data	of	a	single	organism	where	the	majority	of	genes	
have	some	level	of	expression.	However,	as	applied	by	Poore	et	al.		it	suggests	presence	
even	when	taxa	are	absent	(Whalen	III	–	leaky	preprocessing).	For	example,	for	
Hepandensovirus	(genus	of	crustacean	virus),	the	top	feature	for	adrenocortical	carcinoma,	
Voom	transitions	all	zeros	to	non-zero	values	and	untrue	variation	has	been	introduced	by	
the	global	adjustment	for	technical	variables	including	sequencing	center	(figure	1a,	batch	
correction	relating	to	Whalen	II:	confounding).	Therefore,	this	normalization	appears	
beneficial	on	the	global	level	but	raises	prominent	concerns	at	the	level	of	individual	taxa.	

Another	example	of	how	the	processing	of	data	can	be	problematic	is	provided	by	the	
extremophile	genera	Ignicoccus	in	prostate	cancer	samples.	Ignicoccus	demonstrates	a	
statistically	significant	increase	in	prostate	cancer	samples	compared	to	other	cancers	in	
the	normalized	dataset	(Wilcox	signed	rank-sum	test	P<2.2 × 10!"#,	figure	1b-c).	In	the	
raw,	unprocessed	data	no	increase	in	prostate	cancer	samples	is	apparent.	Indeed,	most	
values	are	zero	and	the	maximum	number	of	reads	found	in	the	raw	prostate	cancer	data	
for	Ignicoccus	is	12	(low	evidence	of	detection).	It	is	also	highly	likely	that	these	are	false	
taxonomic	assignments	given	that	Ignicoccus	was	identified	in	marine	hydrothermal	
vents[13].	This	taxon	should	have	been	filtered	out	prior	to	model	building	–	the	
application	of	a	minimum	read	threshold	(i.e.	100	classified	reads)	would	have	assisted	the	
removal	of	spurious	taxa.	
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Figure	1:	a)	Voom-SNM	normalised	TCGA	samples	(n	=	17,624)	that	were	negative	for	
crustacean	virus	hepandensovirus	with	zero	classified	reads	in	the	original	Kraken	dataset	
with	the	most	stringent	decontamination	approach.	One	sample	contained	two	sequencing	
reads	for	Hepandensovirus	which	has	been	omitted	from	this	figure	to	illustrate	inappropriate	
variation	introduced	by	SNM.	The	colour	of	each	point	indicates	the	sequencing	center.	The	x-
axis	demonstrates	cancer	types	using	TCGA	abbreviations	as	in	Poore	et	al.[1].	Raw	(b)	and	
Voom-SNM	normalised	(c)	Ignicoccus	values	which	was	deemed	the	most	important	feature	
for	predicting	prostate	cancer	(PCa)	from	all	other	cancer	types	(n=13,883	primary	tumours).	
Median	values	are	as	follows:	Kraken	raw	other	0,	Kraken	raw	PCa	1,	normalised	other	4.49,	
normalised	PCa	5.82.	In	both	the	raw	and	normalised	cases,	the	distributions	are	significantly	
different	(Wilcox	signed	rank-sum	test	P	<	2.2 × 10!"#)	

	

The	models	are	trained	on	unbalanced	data	

The	performance	of	the	models	may	in	part	be	due	to	the	major	imbalance	in	class	size	in	
the	datasets	(Whalen	IV:	unbalanced	classes);	meaning	that	before	model	construction,	
data	in	the	cancer	set	under	investigation	are	multiplied	up	many	times	(upsampling)	so	
that	patient	numbers	in	the	“cancer	groups”	and	in	the	“all	other	cancers	group”	become	
similar.		This	approach	may	amplify	the	prominence	of	implausible	artifactual	data.	
Adrenocortical	carcinoma	for	example	has	79	associated	samples	(as	per	Metadata-TCGA-
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All-18116-Samples.csv	provided	by	Poore	et	al.).	This	means	that	18,037	are	not	
adrenocortical	carcinoma.	Adrenocortical	carcinoma	therefore	represents	0.44%	of	the	
whole	dataset	and	therefore	data	from	adrenocortical	carcinoma	is	amplified	up	to	230	
times	to	equal	the	sample	size	of	the	rest	of	the	dataset.	The	modelling	is	therefore	
overexposed	to	inappropriate	variation	in	taxa	such	as	Hepandensovirus	(figure	1).		

	

	

Discussion	

Ideally,	the	authors	would	have	followed	the	RIDE	criteria	set	out	by	Eisenhofer	et	al.	(also	
authored	by	Knight)	as	closely	as	possible[23].	Some	of	these	criteria	are	difficult,	if	not	
impossible	to	meet	on	this	dataset,	but	this	means	that	the	context	of	this	study	should	be	
in	hypothesis	generation	and	more	care	should	be	taken	in	the	conclusions	drawn.	Poore	
and	Kopylova	et	al.	have	paid	considerable	attention	to	the	issue	of	contamination	but	
nonsensical	taxa	with	limited	evidence	of	true	involvement	are	still	prominent.	The	
hypothesis	that	the	tumour	microbiome	is	dependent	on	the	anatomical	site	is	well	
founded	based	on	prior	work[24],	but	the	models	produced	by	Poore	and	Kopylova	et	al.	
are	at	best	suggestive	and	do	not	substantiate	this	observation.		

Poore	and	Kopylova	et	al.	use	many	good	practices	in	machine	learning[25]	but	there	is	the	
need	to	avoid	the	pitfalls	of	Whalen	et	al.	and	use	more	stringent	methods	regarding	
contamination,	taxonomic	misclassification	and	a	lack	of	explanations	backed	by	
microbiological	insights	for	approximately	600	models.	It	is	advisable	that	additional	care	
should	be	taken	to	include	only	taxa	with	strong	evidence	of	presence	based	on	
computational	evidence,	consideration	of	the	likelihood	of	contamination	and	prior	
biological	evidence	that	the	taxa	exist	in	the	biological	sample	of	interest.	

	

Conclusion 
We	believe	that	the	tumour	microbiome	is	an	exciting	field	and	that	using	large	sequencing	
datasets	with	rich	metadata	may	unlock	much	more	about	the	nature	of	the	interplay	
between	microbes	and	cancer.	The	authors	have	stated	that	the	tumour	microbiome	is	
specific	to	the	tumour	type	using	machine	learning	models,	but	we	have	concerns.	There	
needs	to	be	a	more	appropriate	demonstration	of	microbial	differences	between	tumour	
types	and	stringent	validation	of	models	before	we	can	be	certain	of	these	differences.	This	
is	required	before	these	findings	can	be	translated	into	the	clinic.	A	dataset	with	a	less	
prominent	batch	effect,	more	balanced	class	sizes,	modelling	tumour	type	(not	one-vs-all	
models)	might	help	to	better	distinguish	pan-cancer	microbial	structure.	
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Methods 
	

All	analysis	in	this	manuscript	was	conducted	on	the	open-source	data	made	available	by	
Poore	and	Kopylova	et	al.[1]	available	at:	
ftp.microbio.me/pub/cancer_microbiome_analysis/	.	Files	analysed	include:	Kraken-TCGA-
Raw-Data-17625-Samples.csv	(MD5	checksum:	6af81818f69bf56b79836e1c317c3e03),	
Metadata-TCGA-All-18116-Samples.csv	(MD5	checksum:	
dbdd1f64d45973977fc8435db2eb8b3e),	Kraken-TCGA-Voom-SNM-Most-Stringent-
Filtering-Data.csv	(MD5	checksum:	b7e50700b791b8881426aeb1fa12c3bb).	

Model	performance	and	feature	importance	was	accessed:	
http://cancermicrobiome.ucsd.edu/CancerMicrobiome_DataBrowser/	.	All	data	was	
analysed	in	R	(version	4.2.1).	Packages	used	include	tidyverse[26]	(version	1.3.2),	
ggpubr[27]	(version	0.5.0),	ggbeeswarm[28]	(version	0.7.1),	cowplot[29]	(version	1.1.1)	
and	EnvStats[30]	(version	2.7.0).	Hypothesis	testing	was	performed	with	the	wilcox.test()	
function.	

Representative	species	within	top	features	(supplementary)	were	identified	by	browsing	
GTDB[31]	(release	version	207).	Associated	metadata	regarding	isolation	sources	was	
found	by	accessing	links	presented	on	the	GTDB	taxonomy	browser.	
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