Smart utilization of betaine lipids in giant clam Tridacna

crocea

- 1 Ryuichi Sakai¹*, Naoko Goto-Inoue², Hiroshi Yamashita³*, Naoya Aimoto¹, Yuto Kitai¹,
- 2 Tadashi Maruyama⁴
- ³ ¹Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho,
- 4 Hakodate, 041-8611, Japan
- ⁵ ²Department of Marine Science and Resources, College of Bioresource Sciences, Nihon
- 6 University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
- ⁷³Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 148
- 8 Fukai-Ohta, Ishigaki, Okinawa 907-0451, Japan
- ⁹ ⁴School of Marine Biosciences, Kitasato University, 1-15-1, Kitazato, Minami, Sagamihara,
- 10 Kanagawa 252-0374, Japan
- 11
- 12 * Corresponding Authors:
- 13 Ryuichi Sakai, ryu.sakai@fish.hokudai.ac.jp
- 14 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
- 15 Hiroshi Yamashita, <u>yamashita_hiroshi21@fra.go.jp</u>
- 16 148 Fukai-Ohta, Ishigaki, Okinawa 907-0451, Japan

17

- 19 Author Contributions:
- 20 RS, HY, NGI conceptualized the study, NA, YK, HY NGI performed experiments and data
- analysis, RS, HY, NGI, TM wrote the manuscript.
- 22 **Competing Interest Statement:** The authors have no competing interests to declare.

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.16.524159; this version posted January 18, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

23 Abbreviations

- 24 DD, digestive diverticula
- 25 DGCC, diacylglycerylcarboxy-hydroxymethylcholine
- 26 DGDG,digalactosyldiacylglycerol
- EL, epidermal layer
- 28 IL, inner layer
- 29 GCC, glycerylcarboxy-hydroxymethylcholine
- 30 LC-MS/MS, liquid chromatography-tandem mass spectrometry
- 31 MGDG, monogalactosyldiacylglycerol
- 32 PC, phosphatidylcholine
- 33 SQDG, sulfoquinovosyl diacylglycerols
- 34
- 35
- 36
- 37
- 38

39 Abstract

40	The giant clam Tridacna crocea inhabits shallow tropical seas with poorly nourished water
41	and severe sun irradiation. They harbor symbiotic algae "zooxanthellae" (dinoflagellate family
42	Symbiodiniaceae) in the mantle tissue and are thought to thrive in this extreme environment
43	by utilizing photosynthetic products from the algae. However, there is no measure of the
44	detailed metabolic flow between the host and symbiont to evaluate one of the most
45	successful symbiotic relationships in nature. Here, we employed liquid
46	chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidomics and
47	Fourier-transform ion cyclotron resonance MS imaging on T. crocea tissues, revealing a
48	unique lipid composition and localization with their symbiont algae. We discovered that the
49	non-phosphorous microalgal betaine lipid diacylglycerylcarboxy-hydroxymethylcholine
50	(DGCC) was present in all tissues and organs of <i>T. crocea</i> to approximately the same degree
51	as phosphatidylcholine (PC). The fatty acid composition of DGCC was similar to that of PC,
52	which is thought to have physiological roles similar to that of DGCC. MS imaging showed
53	co-localization of these lipids throughout the clam tissues.
54	Glycerylcarboxy-hydroxymethylcholine (GCC), the deacylated derivative of DGCC, was
55	found to be a free form of DGCC in the clams and was isolated and characterized from
56	cultured Symbiodiniaceae strains that were isolated from giant clams. These results strongly

57	suggest that giant clams have evolved to smartly utilize DGCCs, phosphorus-free polar lipids
58	of symbiont algae, as essential membrane components to enable them to thrive in
59	oligotrophic coral reef milieu.
60	
61	Keywords: Giant clams, betaine lipid, lipidomics, coral reef, symbiosis
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	

73 Introduction

74	The boring giant clam Tridacna crocea is a tridacnid bivalve mollusk and is found in shallow
75	coral reefs. Giant clams are known to engage in symbiosis with the photosynthetic
76	dinoflagellate family Symbiodiniaceae, also known as "zooxanthellae" [1, 2]. The
77	symbiodiniacean cells in giant clams are harbored within a specialized tubular system,
78	"zooxanthella tubes", which extend from the stomach of the clam and branch out in their
79	mantle region [3]. This symbiotic relationship between giant clams and algal cells has
80	previously been observed from an energy flow viewpoint. For example, algal symbionts within
81	the <i>T. crocea</i> mantle release glucose, and 46–80% of fixed carbon was translocated from the
82	symbionts to the host tissues [4]. Although these values can vary among studies and clam
83	species, symbiont algae generally contribute more than half of the carbon requirements of
84	giant clams [1, 5]. This implies that giant clams are largely dependent on the symbiont algae
85	for survival, and the symbiotic algae are protected from harmful ultraviolet (UV) radiation by
86	the host clam [6]. Recently, we reported the isolation of ten different natural sunscreen
87	compounds, mycosporines, from the mantle tissue of a giant clam [7]. Mass spectrometry
88	and UV imaging studies have indicated that the distribution of mycosporines within the mantle
89	tissues differs among compounds. This is thought to be related to their UV absorbing function
90	and biosynthetic stage, suggesting that mycosporines can first be biosynthesized by clams or 5

91	symbiotic algae and then translocated to the area where they can function best with
92	appropriate structural modification [7, 8]. These findings revealed close and complex
93	relationships between the host animal and photosynthetic microalgae, whereby the functional
94	metabolites in the symbiotic system are not just 'utilized' as nutrients but are fine-tuned to
95	optimize their functions to thrive in shallow tropical waters. This 'smart use' of limited
96	metabolites may have positively contributed to the co-evolution of coral reef invertebrates and
97	their symbiont algae. Symbiotic relationships between invertebrates and microalgae are
98	widely observed in the coral reef environments [9, 10]. Each case of symbiosis is thought to
99	have independently evolved, reflecting their ecological and physiological characteristics.
100	Therefore, many interesting examples of the 'smart use' of metabolites are expected in each
101	symbiotic relationship. Although numerous studies on the symbiotic relationship between
102	invertebrate hosts and dinoflagellates have been conducted, these studies have mainly
103	focused on the chemical aspects of carbon and nitrogen flow [11, 12]. Limited studies have
104	investigated the metabolic flow in the symbiotic consortium by identifying individual
105	compounds present in the host and symbiont [13]. Therefore, further understanding of the
106	unique metabolic exchange between the host and symbiont is essential to explain the
107	paradoxical high production in coral reefs. Structural identification of key metabolites by
108	advanced liquid chromatography-mass spectrometry (LC-MS) in combination with the

109	determination of loci by MS imaging may provide a great deal of information regarding the
110	flow and functions of metabolites that govern symbiotic relationships between algae and
111	invertebrates [7]. In the present study, we focused on the lipid component in the giant
112	clam-Symbiodiniaceae system, as lipids can be useful marker molecules for revealing the
113	smart utilization of metabolites, from a metabolic flow perspective, between the host and
114	symbiont. Here, we show the first experimental evidence of the utilization of algal lipids in
115	giant clams. This finding may facilitate further insight into the co-evolution of coral reef
116	organisms on a molecular level.
117	Results
118	Anatomical analysis of <i>T. crocea</i> and distribution of Symbiodiniaceae cells
119	An anatomical overview of <i>T. crocea</i> is shown in Fig. 1. The outermost mantle tissue

- 120 (epidermal layer; EL) of the clam densely harbors Symbiodiniaceae cells. Conversely, the
- 121 pale white mantle tissue (inner layer; IL) contains algal cells at a lower density than that
- 122 observed in the EL. The kidney is a large and dark-colored organ. The adductor muscle and
- 123 posterior byssal/pedal retractor muscles are located in the middle of the shell. Ctenidia (gill)
- 124 can be recognized as a comb-like structure. The digestive diverticula (DD) are surrounded by
- 125 off-white gonads. To avoid cross-contamination as much as possible, each of these parts was

126	carefully separated (Fig. S1). However, DD are embedded in the gonads; thus, a small fraction
127	of the components from interconnected organs was inevitable. To confirm whether algal cells
128	were present or not, we observed algal chlorophyll fluorescence in both the EL and IL of the
129	mantle, muscle, gonad, DD, and kidney in the thin section (Fig. 1 C–H). The algal cells shown
130	as red fluorescent dots under blue excitation light were most densely localized in the EL (Fig.
131	1C) followed by the IL (Fig. 1D). Although the DD was completely bounded by gonads [14],
132	the DD and gonads could be easily distinguished by color (Fig. S1). The algal cells (including
133	digested cells) were also found in the DD region (Fig. 1H). Although the gonad region was
134	occupied by eggs and sperm (Fig. 1G), small brown patches were observed in rare instances
135	and often contained a few algal cells (Fig. S2). No algal cells were observed in the muscle
136	(Fig. 1F). Although a characteristic granular structure, the nephrolith [15], was observed in
137	the kidneys (Fig. 1E), no algal population was found in this organ. Unfortunately, ctenidia
138	could not be seen in the observed section.

139 Lipidomic analysis of *T. crocea* organs

We first conducted LC-MS-based lipidomic analyses of extracts from each of the seven
organs including mantle (EL and IL), adductor muscle, kidney, DD, gonads, and ctenidia to
yield a total of 566 lipids (Table S1). These could be divided into six categories:

143	glycerophospholipids (12 classes, 157 species), betaine lipids (3 classes, 79 species),
144	glycerolipids (9 classes, 209 species), sterol lipids (2 classes, 32 species), sphingolipids (3
145	classes, 60 species), and free fatty acids (22 species) (Table S1). Semi-quantitative data of
146	the representative lipid classes are summarized in Fig. 2. In all organs, glycerophospholipids
147	were predominant among the membrane-associated lipids (Fig. 2C). Betaine lipids were the
148	second most abundant class and were distributed in all the tissues analyzed, including those
149	that were free of symbiotic algae. The total amounts of glycerophospholipids, betaine lipids,
150	sphingolipids, and sterol lipids were 319, 42, 23, and 11 nmol mg ⁻¹ dry tissue, respectively
151	(Fig. 2D). To confirm the presence of algal cells in each giant clam body part, we further
152	analyzed algal lipids, namely peridinin and galactosyl lipids, using LC-MS. As expected,
153	peridinin, a dinoflagellate-borne carotenoid was found at a substantial ion intensity in EL and
154	DD, followed by IL (Fig. 2E, Table S2). Only trace ions for peridinin were found in other body
155	parts (Table S2). Moreover, we found three galactosyl lipids: digalactosyldiacylglycerol
156	(DGDG), sulfoquinovosyl diacylglycerols (SQDG), and monogalactosyldiacylglycerol
157	(MGDG) (Table S1, S2). Among them, DGDG was the most abundant class followed by
158	SQDG; MGDG was only detected at low intensities (Fig. 2E, Table S2). Other tissues
159	exhibited negligible peak intensities (Table S2). Subsequently, we semi-quantitatively
160	compared the amounts of phospholipids and betaine lipids at the subclass level in each organ

161	(Fig. 2F). The lipidomic profile of each body part differed substantially (Fig. 2F). Glycerol
162	phosphatidyl ethanolamines (PE) with ether lipids (ether-PE) were predominant among the
163	glycerophospholipid subclasses in all tissues; ctenidia and gonads were rich in this subclass
164	(Fig. 2F). The membrane lipid profiles among muscle, IL, and EL were comparable. Gonads
165	contained considerable amounts of PC and PE in addition to ether-PE. The storage lipid
166	triacylglycerol (TG) was especially prevalent in the gonads (Fig. S3). The kidney was the
167	leanest organ with the lowest phospholipid diversity. Among the three known subclasses of
168	betaine lipids, diacylglycerylcarboxy-hydroxymethylcholine (DGCC) was predominant. Only
169	trace amounts of diacylglyceryltrimethylhomoserine
170	(DGTS)/diacylglycerylhydroxymethylalanine (DGTA) were found in all body parts (10–100
171	pmol mg ⁻¹ dry tissue) except for the kidney where less than 10 pmol mg ⁻¹ was detected. A
172	trace amount of lyso-DGCCs was detected in the ctenidia, DD, EL, gonad, and IL (Table S1).
173	
174	We next compared the fatty acid composition of DGCC and phosphatidylcholine (PC)
175	because both lipids contain choline as a polar group, and thus they are structurally
176	compatible (Fig. 2A, B). We detected 18 PC and 96 DGCC species, of which the most

abundant 15 species were compared (Fig. 2G, H, Table S3, S4). Furthermore, 16:0-22:6 was

178	the major fatty acid in both PC and DGCC. Both classes were comprised mostly of
179	16:0-containing species (e.g., 16:0-22:5, 16:0-18:1, 16:0-20:5, 16:0-16:1, 16:0-20:1, and
180	16:0-22:4). Some odd numbered species 17:0-22:6 in both DGCC and PC, 15:0-22:6 in PC
181	were found in <i>T. crocea</i> (Fig. 2G, H). Additionally, we analyzed two Symbiodiniaceae culture
182	strains isolated from giant clams (TsIS-H4 and TsIS-G10, Fig. S4), and found that 16:0-22:6
183	DGCC was the most abundant species in the tested strains as reported previously [16-18].
184	However, the overall composition of minor species differed greatly from <i>T. crocea</i> (Fig. S4).
185	Of note, the PC composition of cultured Symbiodiniaceae cells was substantially different
186	from that of <i>T. crocea</i> (Fig. S4).
187	
188	
189	We also isolated DGCC for further spectral characterization. The ¹ H NMR and mass spectral
190	data for the fraction mainly containing DGCC 22:6_16:0 agreed well with that reported

- 191 previously from *Pavlova lutheri* [19] (Fig. S5, Fig. S6, Table S5). Moreover, HPLC analysis of
- 192 DGCC (Fig. S7) supported the data obtained on LC-MS.

194 Identification of glycerylcarboxy-hydroxymethylcholine (GCC) in *T. crocea* and

195 cultured Symbiodiniaceae cells

- 196 When the aqueous extract of *T. crocea* was analyzed using LC-MS, we found a novel ion at m/z
- 197 252. This ion was absent from the organic extract, suggesting that this compound is a polar
- 198 water-soluble substance. The molecular formula, C₁₀H₂₁NO₆, suggested that the molecule
- responsible for this ion was the deacylated derivative of DGCC. To obtain pure GCC, we searched
- 200 for the same ion in cultured Symbiodiniaceae strains; the compound was separated using gel
- filtration chromatography followed by HPLC. As the proposed structure for GCC has not been
- 202 previously reported as a free molecule, the planar structure of GCC was determined based on
- 203 spectral data analyses (Supplementary Results, Scheme S1, Fig. S8-10, Table S5). LC-MS/MS
- analysis of GCC from Symbiodiniaceae culture strains confirmed the identity between the isolate
- and that from the clam (Fig. S11).

206

207 Lipidomic analysis of *T. crocea* sperm and fertilized eggs

The symbiodiniacean cells are essential for giant clams; however, fertilized eggs and trochophore stage larvae are free of the symbiont [20], thus the larvae or juveniles must acquire the symbionts from the ambient environment [21]. A subtle decrease in TG ion

211	intensity was observed only after 72 h, while those of DGCC and PC decreased from 24 h
212	and markedly at 72 h after fertilization (Fig. 3A–C). These observations are in line with
213	progress in fertilization as eggs started to divide 3 h after fertilization, while the veliger larvae
214	and D-shaped larvae with thin shells were observed at 24 h and 72 h after fertilization,
215	respectively (Fig. S12).
216	Notably, GCC was found at a stable level in all sperm and egg stages (Fig. 3D). Next, we
217	semi-quantitatively compared the membrane lipid composition of eggs and larvae during
218	development. As for the adult clam, the amounts of ether-PE, PC, and DGCC were
219	predominant over other lipids in eggs and larvae up to 24 h. The original compositions of all
220	classes were maintained at 3 h after fertilization (Fig 3E, F). Lipid compositions started to
221	change from 24 h and then changed drastically at 72 h (Fig 3F).
222	Lipidomic analysis of other giant clams and bivalves
223	The above results suggested that DGCC is an indispensable class of fatty acid in <i>T. crocea</i> .
224	We thus investigated whether DGCC was present in other giant clams and non-symbiotic
225	clams. To confirm this, we compared DGCC in the adductor muscles of Tridacna squamosa,
226	Tridacna derasa, and Hippopus hippopus along with two other Symbiodiniaceae-free bivalves
227	as controls: Atactodea striata and Donax faba, which inhabit the sandy shore in Okinawa.

- 228 The LC-MS data indicated that the giant clams contained DGCC, whereas those in the
- 229 control group did not have detectable amounts of DGCC (Fig. S13).

230 MS imaging analyses

- Next, we investigated the localization of lipids in *T. crocea* tissues to assess whether DGCC
- and PC, structurally compatible lipids, share distribution patterns. The imaging data were
- analyzed for DGCC and PC with two different fatty acid compositions, 16:0-22:6 and
- 16:0-18:1, which were predominant molecules in *T. crocea* tissues (Fig. 2). As expected,
- 16:0-22:6 DGCC and PC showed similar distribution patterns, that is, they were dense in the
- EL and gonads but only trace levels were visible in the DD, kidney, and muscle (Fig. 4). In the
- case of 16:0-18:1 species, DGCC was distributed throughout the mantle tissues (Fig. 4B) and
- visceral parts, including DD (Fig. 4A), while PC showed a similar profile to that of the
- 16:0-22:6 species, except for some signals that were observed in the IL region of the mantle
- 240 **tissue.**
- We then analyzed the distribution of lyso-PC and lyso-DGCC, which can be enzymatically
- transformed from PC and DGCC, respectively. The distribution pattern of lyso-PC (16:0) was
- similar to that of PC (16:0-18:1); faint signals were found in the DD, kidney, and muscle.
- Notably, in DD, signals for lyso-DGCC (16:0) were clearly observed as opposed to those of

245 lyso-PC (16:0) and 16:0-22:6 DGCC; however, the distribution pattern was somewhat similar

246 to that of 16:0-18:1 DGCC.

- 247 Further analysis of the distribution of GCC, a deacylated form of DGCC, revealed that its ion
- 248 distribution was different from that of 16:0-22:6 DGCC, showing dense signals in the DD and
- 249 kidney, but low intensity in gonads (Fig. 4D). Overall, these observations supported those of
- 250 the LC-MS analysis of the dissected organs (Fig. 2, Fig.S7).

251

252 Discussion

253	In the present study, we performed LC-MS lipidomic and metabolomic analyses of the giant
254	clam T. crocea and cultured giant clam-associated Symbiodiniaceae to identify the unique
255	metabolic relationships between symbiotic dinoflagellate and their host clams. Strikingly, we
256	found a betaine lipid, DGCC and its polar head group GCC, not only in the algal cells but also
257	in the clam tissue extracts at concentrations comparable to those of PC. To date, three
258	different classes of betaine lipids: DGTS, DGTA, and DGCC have been identified. DGTS and
259	DGTA are structure isomers found in a wide variety of lower plants, such as algae,
260	pteridophyta, bryophyta, lichens, and fungi [22, 23]. However, DGCC is only known in limited
261	taxa of microalgae, including Haptophyceae, Bacillariophyceae, and Dinophyceae [16, 24].
	15

262	Recently, DGCC was detected in the coral Montipora capitata [25] and the zoantharian
263	Palythoa sp. [26]; however, the origin of DGCC in these invertebrates is not known since it is
264	difficult to separate symbiont algae from the host to precisely analyze its origin.
265	We combined metabolomics and MS imaging approaches on large dissectible giant clams to
266	overcome this problem. This combined approach revealed that DGCC was present in
267	considerable amounts in all analyzed tissues of T. crocea. As expected, DGCC was detected
268	in the Symbiodiniaceae-rich mantle, because the "zooxanthellae" are known to contain
269	DGCC [16]: however, the presence of DGCC in the muscle and kidney, which harbor only a
270	few algae, and in sperm and eggs where no symbiotic algae exist, was unexpected. DGCC is
271	most likely biosynthesized in microalgae [27], and to the best of our knowledge, this is the first
272	report that showed the presence of DGCC in animal cells, except for the above-mentioned
273	Symbiodiniaceae-containing corals [28]. Therefore, the present observations led to a
274	hypothesis that <i>T. crocea</i> take up algal DGCC and metabolites in their own cells and tissues.
275	Our data along with previous observations showing that algal DGCC is localized in plasma
276	membranes [29, 30], strongly suggest that DGCC is incorporated in the lipid bilayer of the
277	clam cells, up to a level equivalent to that of PC [23, 31, 32]. The MS imaging data for two
278	major fatty acid species illustrated that the most abundant species 16:0-22:6 of PC and
279	DGCC share similar distribution profiles, suggesting that these lipids are physiologically

280	compatible. However, the second most abundant 16:0-18:1 species of PC and DGCC were
281	distributed somewhat differently (Fig. 4A). This suggests that lipid molecules at the class and
282	even species levels have defined loci to present and roles to play [33, 34]. Phytoplankton in
283	oligotrophic waters with low phosphate concentrations can compensate for this phosphorous
284	requirement by breaking down PC, and concomitantly, fulfill their cellular phosphorus
285	requirements by substituting non-phosphorus membrane lipids for phospholipids [31, 32].
286	Some marine phytoplankton employ betaine lipids for this purpose [31, 32]. Our results
287	clearly show that <i>T. crocea</i> accumulate DGCC in all tissues, which strongly suggests that
288	giant clams have evolved to utilize DGCC as a phospholipid substitute to thrive in oligotrophic
289	coral reef waters, similar to phytoplankton. Therefore, the giant clam-Symbiodiniaceae
290	consortium has positively contributed to their co-evolution by compromising atomic scarcity.
291	The presence of degraded forms of DGCC, lyso-DGCC and GCC, were found in the clams
292	and warrant further discussion. Lyso-DGCC was found in the DD and ctenidia, in
293	substantially higher amounts than in the EL, indicating that lyso-one is probably generated by
294	the enzymatic digestion of DGCC in DD. Notably, significant quantities of lyso-DGCC were
295	found in ctenidia and may suggest that they have specific functions in the loci. One of the
296	notable observations here is the presence and distribution of GCC, which can be both a
297	precursor and catabolite of DGCC. GCC was distributed in the DD and kidney which is a 17

298	complementary pattern to DGCC (Fig. 4D). This observation supports that the clam digests
299	its own symbiont algae in the DD, and algal DGCC can be degraded to form GCC (Fig. 5).
300	The high GCC signal observed in the DD in the MS imaging data supports this deduction. In
301	fact, degraded algal cells were observed in the DD (Fig. 1H). Fankboner's detailed
302	microscopic observation of aged algal cells that were culled and digested by amoebocytes
303	and conveyed to DD (35, 36), further supports our finding. Therefore, GCC can be
304	re-acylated to produce DGCC or lyso-DGCC, which is re-distributed and utilized in other
305	organs and tissues as a component of the lipid membrane (Fig. 5). We found that the
306	variation in fatty acid species in DGCC from <i>T. crocea</i> was highly diverse (49 species), while
307	the diversity in cultured Symbiodiniaceae strains, which were isolated from giant clams was
308	lower (18 species); however, their profiles differed greatly apart from 16:0-22:6 being the
309	major species in both organisms (Fig. 3F, Fig. S4). This differential fatty acid diversity
310	suggests that the algal DGCC should be re-modeled [37] in the clam to constitute lipids that
311	meet the physiological needs of the animal. Little is known about DGCC metabolism and
312	enzymes involved in the re-modeling of DGCC. However, in Pavlova lutheri, cytoplasmic
313	DGCC was shown to act as a carrier of fatty acids to plastid MGDG [29], suggesting the
314	presence of acyltransferase that utilize DGCC as a substrate. Thus, our result suggests that
315	giant clams may have acquired such enzymes and metabolic pathways to utilize algal DGCC.

316	It can be speculated that in addition to DD, the kidney is a key organ for the metabolism of
317	DGCC because a high intensity of GCC was found in the kidney tissue. This indicates that
318	digested GCC was excreted as urine or stored as waste. However, it is thought that the
319	kidney in giant clams associates closely with symbiosis with zooxanthella [15]. Although the
320	function of kidneys in giant clams is not well understood, these organs are disproportionally
321	large, and high enzymatic activity involving proteases is evident [15, 38]. The body plan
322	connecting the DD to other parts such as the gonads, gastrointestinal system, and ctenidia,
323	suggests that the kidneys may play a central role in the use of symbiodiniacean metabolites
324	in giant clams [15, 39].
325	The distribution of DGCC in completely algae-free eggs and sperm suggests maternal
326	transfer of these molecules. DGCC was consumed rapidly as development progressed,
327	similarly to PC, while the storage lipid TG was consumed relatively slowly (Fig 3A–C). It was
328	also evident that lipid class remodeling occurred at approximately 24 h after fertilization,
329	suggesting de novo lipid biosynthesis occurs throughout development. The fact that GCC
330	was found in all egg and sperm stages suggests that not only DGCC but also GCC were
331	supplied maternally. The level of GCC in sperm, eggs, and larvae was consistent throughout
332	the stages, suggesting that free GCC can be pooled at certain levels. Although the
333	biosynthesis of DGCC is not understood to date [27, 40], the presence of DGCC and GCC

334	both in Symbiodiniaceae and the clam may provide some clues in investigating the
335	metabolism of DGCC. Taken together, we conclude that DGCC takes part in the membrane
336	lipid metabolism in developing <i>T. crocea</i> . It is reported that DGTS take roles of PC in
337	P-deficient conditions and can function as a hub of glycerolipid remodeling in some
338	stramenopile microalgae [41, 42]. Our data suggested that DGCC acts to serve fatty acids in
339	the lipid biosynthesis of <i>T. crocea</i> , analogous to other betaine lipids in lower plants.
340	In conclusion, the lipidomic study combined with MS imaging techniques uncovered an
341	unusual metabolic flow in the giant clam-algae consortium. First, our observation that DGCC
342	was distributed not only within the symbiont-rich sites in the clam but also in the
343	symbiont-free tissues, including eggs and sperm, suggests that the clam uses this lipid as a
344	plasma membrane component. Second, DGCC is most likely enzymatically digested,
345	remodeled, and then re-distributed to organs within the clam. Although additional clam
346	species need to be analyzed in future studies, the non-symbiotic clams tested here did not
347	contain DGCC and GCC, as opposed to all giant clams, which contained DGCC. Therefore,
348	our results support the hypothesis that the DGCC and GCC found in giant clams are closely
349	related to the symbiotic relationship between giant clams and algae. Together, these findings
350	have identified a novel scenario in the metabolic flow between symbiotic algae and clams.
351	First, GCC is biosynthesized within the symbiotic algae and acylated to form DGCC. The $_{20}$

352	algae are trafficked and digested by clams in the DD to generate GCC, which can then be
353	used as a substrate for acyl transferase for remodeling. This transformation may take place in
354	either the DD or kidney. The newly formed DGCC can be re-distributed to other organs as a
355	building block of plasma membranes. Giant clams thus utilize DGCC as a membrane
356	component, which in turn allows the fast breakdown of PC to supply phosphate for other
357	indispensable phosphorus-containing biomolecules (Fig. 5). Our results demonstrated that
358	animal cells can utilize betaine lipids, possibly with unique coupling with phospholipid
359	metabolism, thereby showing that 'smart utilization' of novel metabolites helps giant clams
360	thrive in the oligotrophic milieu [32]. These results provide a basis for future investigations
361	into the paradoxical productivity and biodiversity of coral reef ecosystems.

362 Material and Methods

363 Clam specimens

- 364 Specimens of *T. crocea* were collected in the coastal waters of Ishigaki Island, Okinawa,
- Japan under permission from the Okinawa Prefectural Government for research use (No.
- 366 **30-82**, **2-60**). *T. crocea* specimens were dissected and each organ including the mantle,
- adductor muscle, kidney, digestive diverticula, and ctenidia (gill) was identified based on a
- 368 previous report [14]. The mantles were further divided into EL and IL. Other species of giant

- 369 clams, *T. derasa*, *T. squamosa*, and *H. hippopus* were purchased from local fishers in
- 370 Okinawa, and Symbiodiniaceae-free clams, *Atactodea striata* and *Donax faba*, were also
- 371 collected in coastal waters of Ishigaki Island.
- 372 **Preparation of sperm, eggs, and larvae**
- 373 The gonad cutting method was employed to obtain Symbiodiniaceae-free *T. crocea*
- reproductive cells [43]. The gonads were collected from three different *T. crocea* individuals.
- Giant clams are simultaneous hermaphrodites; thus, the gonads consist of both eggs and
- sperm. Eggs and sperm were separated using a 5 µm mesh filter. Fertilization was conducted
- using sperm from the other two individuals, under an egg:sperm ratio of 1:50 [44]. After 3 h of
- ³⁷⁸ fertilization, eggs were washed with 0.2 µm filtered seawater, and were collected. The
- remaining fertilized eggs were kept in a 27 °C incubator and the water was replaced once a
- day. The larvae at 24 and 72 h after fertilization were then collected. We repeated this
- process with another three individuals. Thus, we used a total of 6 sperm, egg, and larvae
- samples. Each sample was lyophilized and extracted as described below for LC-MS analysis.

383 Lipidomics analysis

Total lipid extracts were prepared using the Bligh–Dyer extraction procedure [45]. The lipid

layer was analyzed on a High-performance LC-tandem MS (HPLC-MS/MS) using a

386	quadrupole time-of-flig	aht (TOF) mass spectrom	eter (TripleTOF	5600+; Sciex,) with a BEH C8

- 387 column (2.1 × 150, S 2.5 um; Waters). Detailed LC-MS conditions and analysis criteria are
- described in the SI Materials and Methods. Final data analyses were conducted using
- 389 GraphPad Prism. Multiple comparisons with one-way ANOVA followed by a Dunnett's test
- were used when applicable.

391 Isolation of GCC from cultured Symbiodiniaceae cells

- 392 Two Symbiodiniaceae culture strains, TsIS-H4, and TsIS-G10, isolated from giant clam *T*.
- squamosa in our laboratory, were used for GCC isolation. The culture strains were
- maintained in a 27 °C incubator under a light regime of 80–120 μ mol photon m⁻² s⁻¹ (12:12 h
- [light: dark] period) in IMK medium (Sanko Jyunyaku, Tokyo, Japan). Each of the cell pellets
- 396 from these culture strains was extracted with water on ice using an ultrasonic homogenizer.
- ³⁹⁷ The water extract was separated to give pure GCC, and its structure was determined by
- 398 spectral analyses as described in the SI Materials and Methods.

399 Isolation of DGCC from *T. crocea*

- 400 Adductor muscles from eight cultured specimens of *T. crocea* purchased from local fishers
- 401 were used to obtain DGCC. Details of isolation and structural assignment are described in the
- 402 SI Materials and Methods.

403 **MS-imaging**

- 404 Consecutive 10-µm frozen sections were mounted onto glass slides with/without hematoxylin
- 405 and eosin (HE) staining and onto indium tin oxide-coated glass slides (Bruker Daltonics,
- Billerica, MA, USA) for MS imaging. The section unstained with HE was observed under an
- 407 epifluorescent microscope (BX50, Olympus, Tokyo, Japan). After MS imaging, the sections
- 408 were subjected to HE staining for morphological observation. Imaging samples were prepared
- 409 as previously described [46, 47]. MS analysis was performed using SolariX Fourier-transform
- 410 ion cyclotron resonance (FT-ICR) (Bruker Daltonics) mass spectrometers. Detailed analytical
- 411 settings are provided in the SI Materials and Methods.

412 Statistical Analysis

- 413 Data were obtained from randomly collected specimens. Number of specimens is indicated in
- figure legends. Datapoints representing mean value and error bars ±SD were analyzed using
- 415 one-way analysis of variance (ANOVA) and Dunnett's multiple comparison test using
- 416 GraphPad Prism 8.0.3.

417 Acknowledgments and funding sources

- The authors thank the staff at the Yeyama field station, Fisheries Technology Institute, Japan
- 419 Fisheries Research and Education Agency for their support during clam sampling. Hiroki

- 420 Ikeda at Hokkaido University assisted initial data collection. We would like to thank Editage
- 421 (www.editage.com) for English language editing. This study was supported by Japan Society
- 422 for the Promotion of Science KAKENHI grant no. 21H04742 to HY.
- 423 Some research equipment for the MEXT Project for promoting public utilization of advanced
- 424 research infrastructure (Program for advanced research equipment platforms, grant number
- 425 JPMXS0450200120) was used in this study.
- 426
- 427
- 428
- 429
- 430
- 431
- 432

433 **References**

- 1. Trench RK, Wethey DS, Porter JW. Observations on the symbiosis with
- 435 zooxanthellae among the Tridacnidae (Mollusca, Bivalvia). Biol Bull.
- 436 1981;161(1):180–198. <u>https://doi.org/10.2307/1541117</u>
- 437 2. Ikeda S, Yamashita H, Kondo SN, Inoue K, Morishima SY, Koike K. Zooxanthellal
- 438 genetic varieties in giant clams are partially determined by species-intrinsic and
- 439 growth-related characteristics. PLOS ONE. 2017;12(2):e0172285.
- 440 <u>https://doi.org/10.1371/journal.pone.0172285</u>

441	3.	Norton JH, Shepherd MA, Long HM, Fitt WK. The zooxanthellal tubular system in	the
T T T	0.	Norton on, onophola wit, Eong mill, ma vita mio zooxananonal abalar oyoton mi	

- 442 giant clam. Biol Bull. 1992;183(3):503–506. https://doi.org/10.2307/1542028
- 443 4. Ishikura M, Adachi K, Maruyama T. Zooxanthellae release glucose in the tissue of a
- 444 giant clam, Tridacna crocea. Mar Biol. 1999;133(4):665–673.
- 445 https://doi.org/10.1007/s002270050507
- 446 5. Klumpp D, Lucas J. Nutritional ecology of the giant clams Tridacna tevoroa and T.
- 447 derasa from Tonga: influence of light on filter-feeding and photosynthesis. Mar Ecol
- 448 Prog Ser. 1994;107:147–156. <u>https://doi.org/10.3354/meps107147</u>
- 449 6. Ishikura M, Kato C, Maruyama T. UV-absorbing substances in zooxanthellate and
- 450 azooxanthellate clams. Mar Biol. 1997;128(4):649–655.
- 451 https://doi.org/10.1007/s002270050131
- 452 7. Goto-Inoue N, Sato T, Morisasa M, Yamashita H, Maruyama T, Ikeda H, et al. Mass
- 453 spectrometry imaging reveals differential localization of natural sunscreens in the
- 454 mantle of the giant clam Tridacna crocea. Sci Rep. 2020;10(1):656.
- 455 <u>https://doi.org/10.1038/s41598-019-57296-9</u>
- 456 8. Shick JM. The continuity and intensity of ultraviolet irradiation affect the kinetics of
- 457 biosynthesis, accumulation, and conversion of mycosporine like amino acids

458 (MAAs) in the coral Stylophora pistillata. Limnol Oceanogr.2004;49(2):442–458.

- 459 <u>https://doi.org/10.4319/lo.2004.49.2.0442</u>
- 460 9. Baker AC. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and
- 461 biogeography of Symbiodinium. Annu Rev Ecol Evol Syst.2003;34(1):661–689.
- 462 https://doi.org/10.1146/annurev.ecolsys.34.011802.132417
- 463 10. Trench RK. Microalgal-invertebrate symbiosis—a review. Endocytobiosis Cell Res.
- 464 **1993;9:135–175**
- 465 11. Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MY, Jørgensen BB. Coral mucus
- 466 functions as an energy carrier and particle trap in the reef ecosystem. Nature.
- 467 2004;428(6978):66–70. <u>https://doi.org/10.1038/nature02344</u>
- 12. De Goeij JM, Van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ, De Goeij AF, et
- al. Surviving in a marine desert: the sponge loop retains resources within coral reefs.
- 470 Science. 2013; 342(6154):108–110. <u>https://doi.org/10.1126/science.1241981</u>
- 471 13. Gordon BR, Leggat W. Symbiodinium—invertebrate symbioses and the role of
- 472 metabolomics. Mar Drugs. 2010;8(10):2546–2568.
- 473 https://doi.org/10.3390/md8102546
- 474 14. Norton JH, Jones GW. The giant clam: an anatomical and histological atlas. 1992.

- 475 15. Reid RGB, Fanklboner PV, Brand DG. Studies of the physiology of the giant clam
- 476 Tridacna gigas linné—II. Kidney function. Comp Biochem Physiol A.
- 477 1984;78(1):103–108. <u>https://doi.org/10.1016/0300-9629(84)90100-2</u>
- 478 16. Kato M, Sakai M, Adachi K, Ikemoto H, Sano H. Distribution of betaine lipids in marine
- 479 algae. Phytochemistry. 1996;42(5):1341–1345.
- 480 https://doi.org/10.1016/0031-9422(96)00115-X
- 481 17. Leblond JD, Khadka M, Duong L, Dahmen JL. Squishy lipids: temperature effects on
- 482 the betaine and galactolipid profiles of a C 18/C 18 peridinin containing
- 483 dinoflagellate, Symbiodinium microadriaticum (D inophyceae), isolated from the
- 484 mangrove jellyfish. Phycol Res. 2015;63(3):219–230.
- 485 https://doi.org/10.1111/pre.12093
- 18. Rosset S, Koster G, Brandsma J, Hunt AN, Postle AD, D'angelo C. Lipidome analysis
- 487 of Symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef
- 488 coral symbionts. Coral Reefs. 2019;38(6):1241–1253.
- 489 https://doi.org/10.1007/s00338-019-01865-x

Kato M, Adachi K, Hajiro-NakanishiK, Ishigaki E, Sano H, Miyachi S. A betaine lipid

19.

491		from	Pavlova	lutheri.	Phytochemistry.	1994;37(1):279-280.
492		https://do	i.org/10.1016/0	<u>031-9422(94)8</u>	<u>5041-0</u>	
493	20.	Fitt WK, ⁻	French RK. Spa	awning, develop	oment, and acquisition	of zooxanthellae by
494		Tridacna	squamosa (Mo	llusca, Bivalvia). Biol Bull. 1981;161(2):213–235.
495		https://do	i.org/10.2307/1	<u>540800</u>		
496	21.	Fitt WK.	The role of cher	mosensory beh	avior of Symbiodinium	n microadriaticum,
497		intermedi	ate hosts, and	host behavior i	n the infection of coele	enterates and molluscs
498		with zoox	anthellae. Mar	Biol. 1984;81(1):9–17. <u>https://doi.org</u>	/10.1007/BF00397620
499	22.	Künzler k	ζ, Eichenberger	W. Betaine lip	ids and zwitterionic ph	ospholipids in plants
500		and fungi	. Phytochemist	ry.1997;46(5):8	83–892.	
501		https://do	i.org/10.1016/s	<u>0031-9422(97)</u>	<u>81274-5</u>	
502	23.	Cañavate) JP, Armada I,	Ríos JL, Hach	ero-Cruzado I. Explori	ng occurrence and
503		molecula	r diversity of be	taine lipids acro	oss taxonomy of marir	ne microalgae.
504		Phytoche	mistry. 2016 ;1:	24:68–78. <u>http</u>	s://doi.org/10.1016/j.pł	nytochem.2016.02.007
505	24.	Aveiro S	3, Melo T, Figue	eiredo A, Domi	ngues P, Pereira H, M	aia IB, Silva J, et al. The
506		polar lipic	lome of cultured	d Emiliania hux	leyi: a source of bioac	tive lipids with relevance
						29

507 for biotechnological applications. Biomolecules. 2020;10(10):1434.

- 508 <u>https://doi.org/10.3390/biom10101434</u>
- 509 25. Roach TNF, Dilworth J, Jones AD, Quinn RA, Drury C. Metabolomic signatures of
- 510 coral bleaching history. Nat Ecol Evol. 2021;5(4):495–503.
- 511 https://doi.org/10.1038/s41559-020-01388-7
- 512 26. Sikorskaya TV, Efimova KV, Imbs AB. Lipidomes of phylogenetically different
- 513 symbiotic dinoflagellates of corals. Phytochemistry. 2021;181:112579.
- 514 https://doi.org/10.1016/j.phytochem.2020.112579
- 515 27. Kato M, Kobayashi Y, Torii A, Yamada, M.Betaine Lipids in Marine Algae. In:
- 516 Advanced Research on Plant Lipids. Springer. 2003;pp19-22. Dordrecht.
- 517 <u>https://doi.org/10.1007/978-94-017-0159-4_3</u>
- 518 28. Imbs AB, Ermolenko EV, Grigorchuk VP, Sikorskaya TV, Velansky PV. Current
- 519 progress in lipidomics of marine invertebrates. Mar Drugs. 2021;19(12):660.
- 520 https://doi.org/10.3390/md19120660
- 521 29. Eichenberger W, Gribi C. Lipids of Pavlova lutheri: cellular site and metabolic role of
- 522 DGCC. Phytochemistry. 1997;45(8):1561–1567.
- 523 https://doi.org/10.1016/S0031-9422(97)00201-X

524	30.	Künzler K, Eichenberger W, Radunz A. Intracellular localization of two betaine lipids
525		by cell fractionation and immunomicroscopy. Z Naturforsch C J Biosci.
526		1997;52(7–8):487–495. <u>https://doi.org/10.1515/znc-1997-7-811</u>
527	31.	Martin P, Van Mooy BA, Heithoff A, Dyhrman ST. Phosphorus supply drives rapid
528		turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. ISME
529		J. 2011;5(6):1057–1060. <u>https://doi.org/10.1038/ismej.2010.192</u>
530	32.	Van Mooy BA, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblížek M, et al.
531		Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus
532		scarcity. Nature. 2009;458(7234):69-72. https://doi.org/10.1038/nature07659
533	33.	Murphy RC, Hankin JA, Barkley RM. Imaging of lipid species by MALDI mass
534		spectrometry. J Lipid Res. 2009;50 Supplement:S317–S322.
535		https://doi.org/10.1194/jlr.R800051-JLR200
536	34.	Bourceau P, Michellod D, Geier B, Liebeke M. Spatial metabolomics shows
537		contrasting phosphonolipid distributions in tissues of marine bivalves. PeerJ Anal
538		Chem. 2022;4:e21. https://doi.org/10.7717/peerj-achem.21
539	35.	Fankboner PV. Intracellular digestion of symbiontic zooxanthellae by host
540		amoebocytes in giant clams (Bivalvia: Tridacnidae), with a note on the nutritional role

of the hypertrophied siphonal epidermis. Biol Bull. 1971;141(2):222–234.

542 https://doi.org/10.2307/1540113

- 543 36. Morton B. The diurnal rhythm and the processes of feeding and digestion in Tridacna
- 544 crocea (BivaMa: Tridacnidae). J Zool. 1978;185(3):371–387.
- 545 https://doi.org/10.1111/j.1469-7998.1978.tb03339.x
- 546 37. Huang B, Marchand J, Thiriet-Rupert S, Carrier G, Saint-Jean B, Lukomska E,
- 547 Moreau B, et al. Betaine lipid and neutral lipid production under nitrogen or
- 548 phosphorus limitation in the marine microalga Tisochrysis lutea (Haptophyta). Algal
- 549 Res. 2019;40:101506. <u>https://doi.org/10.1016/j.algal.2019.101506</u>
- 38. Rees TAV, Fitt WK, Yellowlees D. Host glutamine synthetase activities in the giant
- 551 clam-zooxanthellae symbiosis: effects of clam size, elevated ammonia and
- 552 continuous darkness. Mar Biol. 1994;118(4):681–685.
- 553 https://doi.org/10.1007/BF00347516
- 554 39. Fankboner PV, Reid, RGB. Nutrition in giant clams (Tridacnidae). The
- 555 Bivalvia-Proceedings of a Memorial Symposium in Honour of Sir Charles Maurice
- 556 Yonge, Edinburgh. 1986, B. Morton, ed. Hong Kong University Press, Hong Kong.
- 557 **1991. pp. 195-209**

40. Hunter JE, Brandsma J, Dymond MK, Koster G, Moore CM, Postle AD,
--

- 559 Lipidomics of Thalassiosira pseudonana under phosphorus stress reveal underlying
- 560 phospholipid substitution dynamics and novel diglycosylceramide substitutes. *Applied*
- 561 *and environmental microbiology*. 2018;84(6):e02034-02017.
- 562 <u>https://doi.org/10.1128/AEM.02034-17</u>.
- 41. Murakami H, Nobusawa T, Hori K, Shimojima M, Ohta, H. Betaine lipid is crucial for
- adapting to low temperature and phosphate deficiency in Nannochloropsis. *Plant*
- 565 Physiol. 2018;177(1):181-193. 41. https://doi.org/10.1104/pp.17.01573
- 566 42. Cañavate JP, Armada I, Hachero Cruzado, I. Interspecific variability in phosphorus
- ⁵⁶⁷ induced lipid remodelling among marine eukaryotic phytoplankton. New Phytol.
- 568 2017;213(2):700-713. <u>https://doi.org/10.1111/nph.14179</u>
- 43. Murakoshi M, Hirata H. Self-fertilization in four species of giant clam. Nippon Suisan
- 570 Gakkaishi. 1993;59(4):581–587. https://doi.org/10.2331/suisan.59.581
- 571 44. Neo M, Todd P, Chou L, Teo S. Spawning induction and larval development in the
- 572 fluted giant clam, Tridacna squamosa (Bivalvia: Tridacnidae). Nat Singapore.
- **2011;4:157–161**

574	45.	Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J
575		Biochem Physiol. 1959;37(8):911–917. https://doi.org/10.1139/o59-099
576	46.	Goto-Inoue N, Manabe Y, Miyatake S, Ogino S, Morishita A, Hayasaka T, et al.
577		Visualization of dynamic change in contraction-induced lipid composition in mouse
578		skeletal muscle by matrix-assisted laser desorption/ionization imaging mass
579		spectrometry. Anal Bioanal Chem. 2012;403(7):1863–1871.
580		https://doi.org/10.1007/s00216-012-5809-x
581	47.	Goto-Inoue N, Kashiwagi A, Kashiwagi K, Mori T. Metabolomic approach for
582		identifying and visualizing molecular tissue markers in tadpoles of Xenopus tropicalis
583		by mass spectrometry imaging. Biol Open. 2016;5(9):1252–1259.
584		https://doi.org/10.1242/bio.019646
585		
586		
587		
588		
589		

591 Supporting Information

592 Supplementary Methods

593 LC-MS/MS-based lipidomics

- 594 Approximately 5 mg of lyophilized samples were homogenized with a mortar and pestle and
- 595 weighed in 1.5 mL tubes. Then, 200 µL/mg ice-cold extraction solvent (water: methanol:
- 596 chloroform 0.8:2:1, v/v/v) containing 1 mg/mL deuterium labeled phosphatidylcholine
- 597 15:0–18:1(d7) (PC), lysophosphatidylcholine 18:1(d7) (LPC), phosphatidylethanolamine
- 598 15:0–18:1(d7) (PE), lysophosphatidylethanolamine 18:1(d7) (LPE), phosphatidylglycerol
- 15:0–18:1(d7) (PG), phosphatidylinositol 15:0–18:1(d7) (PI), phosphatidylserine
- 600 15:0–18:1(d7) (PS), triacylglycerol 15:0–18:1(d7)-15:0 (TG), diacylglycerol 15:0–18:1(d7)
- 601 (DG), monoacylglycerol 18:1(d7) (MG), cholesteryl ester 18:1(d7) (CE), sphingomyelin
- 18:1(d9) (SM), and diacyl-N,N,N-trimethylhomoserine 16:0–16:0(d9) (DGTS) were added to
- 603 the homogenates and sonicated on ice for 2 min by an ultrasonic homogenizer. The
- 604 extraction mixture was allowed to stand for 10 min, vortexed, and then centrifuged at
- ⁶⁰⁵ 16,000×g at 4 °C for 3 min. Next, 200 μL chloroform and distilled water were added to the
- ⁶⁰⁶ supernatant (760 μL) and vortexed for 30 s. After centrifugation at 16,000×g at 4 °C for 3 min,

607	the upper aqueous layer was removed, and the lower layer was transferred to new 1.5 mL
608	glass vials and evaporated to dryness in a SPEED VAC (Thermo Scientific). The dried
609	extracts were resuspended in MeOH and diluted 10-fold with MeOH for LC-MS analysis.
610	High-performance LC-tandem MS (HPLC-MS/MS) was performed on a quadrupole
611	time-of-flight (TOF) mass spectrometer (TripleTOF 5600+; Sciex, Framingham, MA, USA)
612	with a BEH C8 column (2.1x150, S 2.5 um; Waters, Milford, MA, USA) and solvents A (0.1% $$
613	formate + 10 mM ammonium formate in water) and B (0.1% formate + 10 mM ammonium
614	formate in MeOH: 2-propanol (85:15, v/v)). The flow rate was 0.3 mL/min with the following
615	time program: B conc 75%, 0–2 min; 75%–99%, 2–18 min; 99%, 18–24 min; 99%–75%,
616	24–25 min; 30 min stop. The column oven temperature was 50 °C, and 3 (positive) and 5 μL
617	(negative) of the samples were injected. The following MS parameters were set based on the
618	lipidomic analysis reported previously(1): MS range 100–1,250 Da, ion spray voltage floating
619	+5,5 kV (positive) and -4,5 kV (negative), gas temperature 350 °C, declustering potential
620	80V, and accumulation time 250 ms. MS2 was measured using the high sensitivity mode for
621	information dependent analysis (IDA), which acquires 15 times MS2 per cycle. MS2
622	parameters were MS range 100–1,250 Da, gas temperature 350 $^\circ$ C, collision energy 40–70 V
623	(positive) and -30–-60 V (negative). The collision energy in the positive ion mode was

- 624 stronger than that used by Tsugawa [1] for clearer acquisition of the fatty acid fragment of
- 625 diacylglycerylcarboxy-hydroxymethylcholine (DGCC).
- We used a mixture of all samples for quality control (QC). QC data were acquired for every
- five samples during the analysis to monitor the intensity drift of peaks detected by LC-MS and
- reduce the number of failed MS2 acquisitions of peaks in the IDA mode.

629 Lipidomic data analysis

- 630 LC-MS/MS data were analyzed using MS-DIAL version 4.24, and lipid annotation was
- automatically conducted by matching with an *in silico* MS/MS library available on the RIKEN
- 632 PRIMe website (<u>http://prime.psc.riken.jp/</u>); the results were manually curated with the
- 633 confirmation of the diagnostic product ion and neutral losses in addition to the fatty acid
- fragmentation of each lipid species. We used the table reported by Tsugawa to characterize
- 635 each lipid species [2].
- The parameters below were used for the MS-DIAL analysis: retention time begin, 0.5 min;
- retention time end, 28 min; mass range begin, 100 Da; mass range end, 2000 Da; accurate
- mass tolerance (MS1), 0.01 Da; MS2 tolerance, 0.025 Da; maximum change number, 2;
- 639 smoothing level, 3; minimum peak width, 5 scans; minimum peak height 1000; mass slice
- 640 width, 0.1 Da; sigma window value, 0.5; exclude after precursor ion, true; keep the isotopic

641	ions until 0.5 Da;	retention time to	plerance for ide	entification, 100) min; MS1 foi	· identification,
-----	--------------------	-------------------	------------------	-------------------	----------------	-------------------

- 642 0.01 Da; accurate mass tolerance (MS2) for identification, 0.05 Da; identification score cut-off,
- 643 **70%**; using retention time for scoring, true; relative abundance cut-off, 0; top candidate report,
- true; retention time tolerance for alignment, 0.5 min; MS1 tolerance for alignment, 0.015 Da;
- 645 peak count filter, 0; remove feature based on blank information, true; sample max/blank
- average, 5; keep identified metabolites, true; keep removable features and assign the tag,
- 647 true; and gap filling by compulsion, true.

649 Preparation of sperm and fertilized eggs form *T crocea*.

650	We conducted artificial fertilization using gonad cut method [3] as follows. The gonads were
651	collected from three different individuals of <i>T. crocea</i> . Eggs and sperm from gonads were
652	separated by using 5 μ m mesh filter. Fertilization was conducted using sperm from other two
653	individuals, under eggs: sperm ratio 1:50. After 3 hours fertilization, eggs were washed with
654	$0.2\mu m$ filtered seawater, and we collected the eggs. Remaining fertilized eggs were and kept
655	at 27°C in an incubator changing water once a day. The larvae at 24 and 72 hours after
656	fertilization were also collected. We repeated this process with another three individuals.

- 657 Thus, we used total 6 sperm, egg, and larvae samples. Each sample was lyophilized and
- 658 extracted as described above to prepare analyte for LC-MS analysis.

659 Isolation of GCC from cultured Symbiodiniaceae cells.

- 660 To analyze betaine lipid of Symbiodiniaceae cells, we used three Symbiodiniaceae culture
- 661 strains (TsIS-H4, and TsIS-G10) isolated from giant clams. The cell pellets from culture
- strains were extracted with water on ice using an ultrasonic homogenizer (Smurt NR 50M;
- 663 Microtec, Funabashi, Chiba, Japan). The water extract was separated by dialysis and the
- 664 small molecular fraction was subjected to Sephadex LH-20 gel filtration chromatography (GE
- 665 Healthcare, Chicago, IL, USA). The glycerylcarboxy-hydroxymethylcholine (GCC)-containing
- 666 fraction was further separated using a Hillic HPLC column (Develosil ANIDIUS, NOMURA
- 667 CHEMICAL CO., LTD, Japan) with an acetonitrile-water gradient, and pure GCC (IH2-78-7,
- 1.00 mg) was obtained. Subsequently, HRESIMS (m/z 252.1442 C₁₀H₂₁NO₆, D 2 ppm) was
- 669 performed.

670 Isolation of DGCC of *T. crocea*

671 Cultured *T. crocea* (8 specimens) were dissected to yield EL (28g), IL (23g), ctenidia (5g),

- kidney (4g), DD (2g), foot (10g), muscle (6g). The muscle was used to isolate DGCC.
- 673 Samples were first extracted with 27 mL of extraction solvent system

674	(water:methanol:chloroform = $2:5:2$) and water ($12mL$) was added after homogenization.
675	The solvent was partitioned by centrifugation and both upper layer and lower layer were
676	concentrated to dryness. The organic extract (lower layer, 11 mg) was separated by counter
677	current partition chromatography (CPC MODEL LLB; SIC Japan, Tokyo, Japan) using a
678	solvent system; chloroform: n-heptane: n-butanol: methanol: acetic acid (60%) at 3:5:3:3:5
679	ratio. The lower phase was used as the mobile phase at a rotor speed of 1000 rpm. The
680	sample was suspended in the upper and lower layers of the solvent system (3 mL) and
681	injected in the descending mode at a flow of 9.0 mL/min. Elution was initially performed in the
682	descending mode at 2 mL/min with a column pressure of 35 kg/cm ² and then switched to the
683	ascending mode (9 mL/min, 22 kg/cm ²). The column was then flushed with methanol, after
684	which the eluents (31 tubes, 10 mL/tube) was collected and combined into 10 fractions
685	(IH9-28-1~10). Each fraction was analyzed by thin layer chromatography and LC-MS/MS to
686	characterize its lipid composition. Fraction 3 (IH9-28-3, 4 mg) containing DGCC 22:6_16:0
687	(HRESIMS m/z 800.5954, M + H ⁺ , C ₁₀ H ₂₁ NO ₆) as a major lipid was used for spectral analysis.

688 Analysis of DGCC on HPLC-CAD

As DGCC does not offer strong and characteristic UV absorption, charge aerosol detector
 (CAD, CORONA Ultra RS; Thermo Fisher Scientific, Waltham, MA, USA) was used to quantify

691	DGCC to further support our LC/MS analysis data. We used the lipophilic portion of the
692	dissected samples described above. Each of the extract was dissolved in MeOH (1mg/mL),
693	and POPG was added as an internal standard at final concentration of 1mg/mL. InertSustain
694	C8-5 (4.6 x 250 mm, GL Sciences) was used with a gradient of acetonitrile (0.05% TFA) and
695	water (0.05% TFA) at oven temperature at 50°C. Amount of DGCC was calculated relative to
696	that of POPG (Fig S5).

698 MS imaging

699	Consecutive 10- μ m sections were cut directly from the frozen samples using a cryostat (CM
700	1950; Leica Microsystems, Wetzlar, Germany). Serial sections were mounted onto glass
701	slides for with/without hematoxylin and eosin (HE) staining and onto indium tin oxide-coated
702	glass slides (Bruker Daltonics, Billerica, MA, USA) for MS imaging. The section without HE
703	stain was observed under epifluorescent microscope (BX50, Olympus, Tokyo, Japan) to
704	confirm the distribution/localization of Symbiodiniaceae cells in the section. After MS imaging,
705	the sections were subjected to HE staining for morphological observation. Samples were
706	prepared as previously described [4, 5]. Briefly, a matrix solution containing 50 mg/mL
707	2,5-dihydroxybenzoic acid in methanol: water (8:2, v/v) was used, with 1–2 mL prepared

41

708	before use and sprayed uniformly over the frozen sections using an airbrush with a 0.2-mm
709	nozzle (Procon Boy FWA Platinum; Mr. Hobby, Tokyo, Japan). MS analysis was performed
710	using TOF/TOF 5800 (AB Sciex, Framingham, MA, USA) and SolariX Fourier-transform ion
711	cyclotron resonance (FT-ICR) (Bruker Daltonics) mass spectrometers. To optimize FT-ICR
712	MS, we set the mass range from m/z 400–1200 for DGCC/PC, and m/z 100-500 for GCC and
713	the spatial resolution to 150 μm for mantle tissue and 220 μm for the frozen viscera of the
714	animal.

716 Supplementary Results

717 Structure determination of GCC and identification of DGCC.

718	The molecular formula for GCC, $C_{10}H_{21}NO_6$ was established by the HRESIMS molecular ion
719	at m/z 252.1442 (M + H) ⁺ , D 2 ppm. ¹ H NMR (Fig. S6, Table S5) data indicated a presence of
720	trimethyl amino group, and a characteristic singlet appeared at d4.85. In the 13 C NMR data
721	only 6 resonances (Fig. S7), accounting for 8 carbons appeared. Resonances for C-1" and
722	carboxylate, were missing. Two-dimensional NMR data, however assigned most 1 H and 13 C
723	resonances as shown in Table S5. HSQC spectrum was particularly useful to detect acetal
724	carbon 1" which was missing in ¹³ C NMR data. Thus, these data constructed the planer
	49

725	structure of GCC mostly	except for a carbox	vlate group, ESIMS/	AS data showing diagr	nostic

- ions for DGCC at *m*/*z* 104 and 132 (Scheme S1, Fig. S8, 9), however, supported the
- proposed structure with the carboxylate group at C-1". Thus, the planer structure of GCC was
- 728 assigned.
- The molecular formula for DGCC 22:6_16:0, $C_{10}H_{21}NO_6$ was supported by HRESIMS m/z
- 800.5954, M + H⁺, D7 ppm (Fig. S10). ¹H NMR data showed characteristic acetal proton at
- d4.78 (Fig. S11), however, area of this peak and trimethylammonium group was about 1:24,
- suggesting about the half of this fraction contains PC. ESIMS showing diagnostic fragment
- ions at m/z 104 and 132, assuring the identity of this lipid.

735 Supplementary Scheme

736 Scheme S1. Planer structure of GCC. (A) fragmentations in ESIMS/MS. (B) Correlation

- 738
- 739

740

⁷³⁷ NMR data for GCC.

741 Supplementary Figures

- 742 **Fig. S1**. Dissected clam (*Tridacna crocea*) specimen, indicating all body parts used for
- LC-MS analyses. Adductor muscle is covered by a thin reddish-brown membrane containing
- Symbiodiniaceae cells. To avoid contamination of algal cells, we removed this membrane
- 745 from adductor muscle specimens.
- Fig. S2. Light micrographs for gonad region. Small brown patches (arrows) were
- observed in the gonad region. B, C high magnification observations. Under blue right
- excitation, a few algal cells were recognized within the patches (C).
- Fig. S3. Amounts ether-PE (left) and storage lipids TG (right).
- 750 Fig. S4. Heatmap for DGCC (left) and PC (right) in Symbiodiniaceae culture strains
- (TsIS-H4, and TsIS-G10). Positive ion mode was used for DGCC analysis while negative
- mode was employed for PC data acquisition because substantially fewer peaks were
- obtained in the opposite polarity in both classes.
- Fig. S5. ¹H NMR (400 MHz) for the DGCC-containing fraction taken in CD₃OD
- 755 **Fig. S6. ESIMS for DGCC 22:6_16:0**

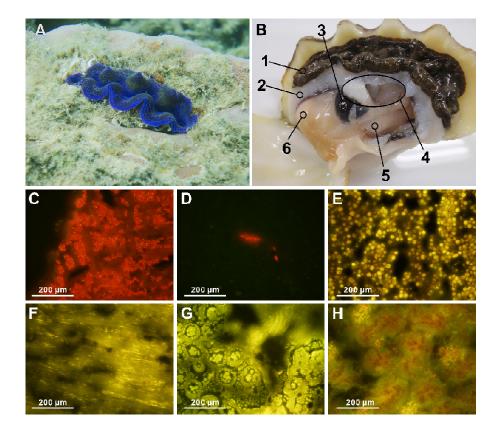
- Fig. S7. CAD analysis of DGCC in each body part of *T. crocea* (A) HPLC-CAD trace of
- each extract. A large peak at T_R around 22 min is POPG (1 mg/mL), and DGCC
- right after the standard (black arrow). The area of concentration of DGCC
- vas calculated from the area of standard and DGCC. One sample was employed
- to obtain this data due to sample availability.
- 761 Fig. S8. ¹H NMR (400 MHz) of GCC
- 762 Fig. S9. ¹³C NMR (100 MHz) of GCC in D_2O
- 763 Fig. S10. ESIMS/MS data for GCC
- Fig.S11 LC-MS analyses of GCC from Symbiodinium (A) and T. crocea (B)
- Fig. S12. Eggs, sperms, and larvae of *Tridacna crocea* in each developmental stage
- Fig. S13. Ion intensities for DGCC in giant clams and other bivalves. *T. squamosa* (n =
- 3), *T. derasa* (n = 3), *Hippopus hippopus* (n = 1), and bivalves *Donax faba* (n = 3), and
- 768 Atactodea striata (n = 3).
- 769 Figure S14. Ion intensity for GCC in each organ.
- N = 5, One-way ANOVA followed by a Dunnett's test for multiple group comparison. *P* values
- are indicated.

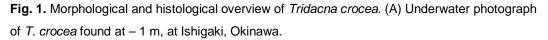
bioRxiv preprint doi: https://doi.org/10.1101/2023.01.16.524159; this version posted January 18, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

772			
773			
774			
775			
776			
777			
778			
779			
780			
781			
782			
783			
784			
785			
786			
787			
788			

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.16.524159; this version posted January 18, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 789
- 790
- 791


792 Supplementary Tables


793 Table S1. A summary of semi-quantitative lipidomics data for each body parts of *T*.

- 794 crocea^a
- ^a Lipid classes were grouped in color. For lipid class nomenclature see,
 <u>http://prime.psc.riken.jp/compms/msdial/lipidnomenclature.html</u>
- ^b DGTS and DGTA are indistinguishable with the analytical method employed here as they are
 structural isomers to each other [7].
- [°]Galactosyl lipids and free fatty acids (FA) were not quantified, and thus marked '-'
- 800 Table S2. LC-MS ion intensities for plant derived metabolites
- 801 **Table S3. Semi-quantitative lipidomics data:** Grand average of each lipid species was
- ordered to show 15 most abundant DGCC species in each organ of *T. crocea*.
- 803 **Table S4. Semi-quantitative lipidomics data**. Grand average of each lipid species was
- ordered to show 15 most abundant PC species in each organ of *T. crocea*.
- 805
- Table S5. NMR data for GCC and polar portion of DGCC obtained in the present study
- along with those of DGCC reported [6].

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.16.524159; this version posted January 18, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figures

(B) Dissected specimen (shell length 80.0 mm). 1; mantle (outer epidermal layer: EL), 2; mantle (inner tissue layer: IL), 3; kidney, 4; muscle (adductor muscle and posterior byssal/pedal retractor muscles), 5; ctenidia (gill), 6; gonads and digestive diverticula (DD; inside). (C–H)
Fluorescence micrographs of visceral parts of *T. crocea* under blue (460-490 nm) excitation light.
(C) Mantle EL, (D) Mantle IL, (E) muscle, (F) kidney, (G) gonad, (H) digestive diverticula. The red dots in fluorescence micrographs (C, D, H) indicate symbiont algal chlorophyll autofluorescence.

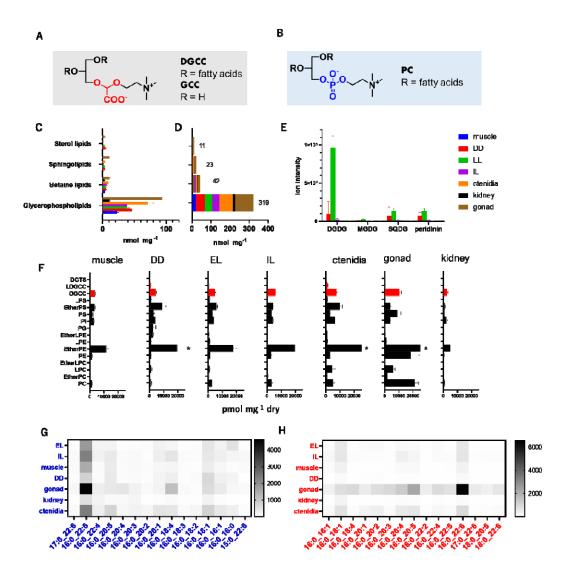
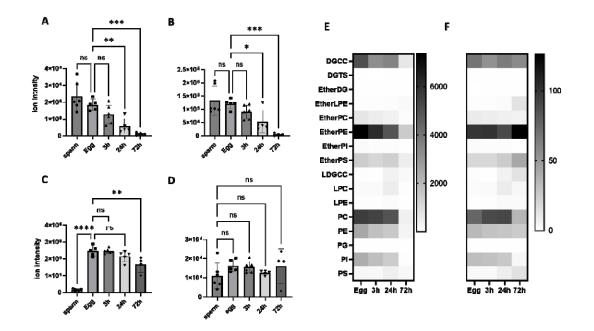



Fig. 2. The lipidomics overview of T. crocea.

Structures of (A) DGCC and (B) PC. (C) Semi-quantitative data for four representative classes of membrane-associated lipids in each organ. (D) Sum of each lipid class. Number on the histogram is the total amount in nmol. Error bars were omitted for clarity. (E) Ion intensity of galactosyl lipids and peridinin in each organ. The color label in the upper light panel is applicable to all graphs in (C–E). (F) Semi-quantitative analysis of the membrane lipids in *T. crocea*. The total amount of each class of lipids in pmol mg⁻¹ of dry tissue is shown. Glycerol phosphatidyl lipids, black bars; and betaine lipids, red bars at fixed scale. Some data for ether-PE are clipped* in the given scale (Fig. S3). Comparisons of the 15 most abundant fatty acid species of DGCC

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.16.524159; this version posted January 18, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(G) and PC (H) in each organ of *T. crocea*. All data here were collected form 5 specimens independently (Table S3, S4). In histograms, average \pm SD were indicated.

Fig. 3. Metabolomics profiles for eggs, sperm, and fertilized larvae of *T. crocea.* Relative abundance of (A) DGCC ** *P* value <0.006, *****P* value < 0.0006, ns: not significant. (B) PC, * *P* value < 0.0215, *** *P* value <0.0004, (C) TG, ** *P* value <0.0011, **** *P* value < 0.0001, and (D) GCC. Each histogram indicates average value from four to six independent specimens \pm SD. One-way ANOVA followed by a Dunnett's test for multiple group comparison, ns: not significant. (E) Semi-quantitative analysis for lipid classes at each developmental stage (pmol mg⁻¹). (F) Relative concentration of lipid in each stage. Data in each column were normalized so that the highest value becomes 100 and the lowest value is equal to 0.

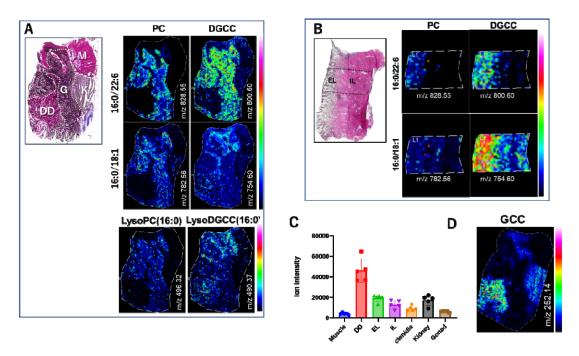
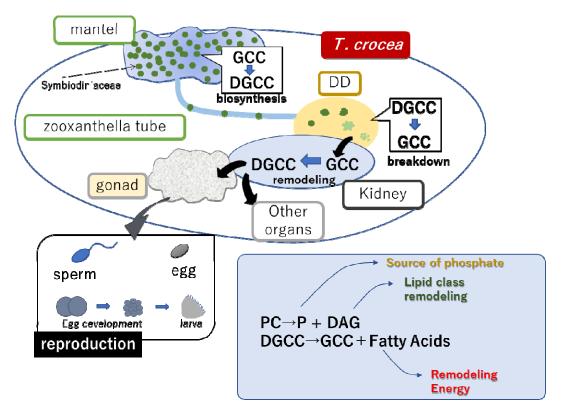



Fig. 4. Mass imaging data for cryosections of *T. crocea*.

(A) Atlas of the HE-stained cryo-visceral-section recovered after MS imaging. M, muscle; K, kidney; G, gonad; and DD, intestine. Heatmaps (0–100%) show relative intensities for two representative ion species (16:0/22:6) and (16:0/18:1) of PC and DGCC, and lyso-PC (16:0), and lyso-DGCC (16:0) at positive mode, $(M + Na)^+$ for PC and $(M + H)^+$ for DGCC. (B) HE-stained cryo-mantle-section and heatmaps. (C) LC-MS analysis of GCC in each organ. Each histogram indicates average value form four independent specimens ±SD. Detailed result of multiple comparison is given in Fig. S14. (D) MS-imaging data for detection of GCC.

Fig. 5. A schematic diagram of metabolic flow in *T. crocea.* Symbiotic algae fix carbons and biosynthesize GCC followed by DGCC. The algal cells are culled, transported, and digested in DD. Algal DGCC can be hydrolyzed to form GCC, which is re-acylated to form DGCC with new acyl substituents (remodeling). Newly formed DGCC are redistributed to each organ to be incorporated in plasm membrane. In phosphorus (P) deficient conditions, the use of DGCC allows consumption of PC as an extra source of P.