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Abstract

Medical imaging represents the primary tool for investigating and monitoring
several diseases, including cancer. The advances in quantitative image analysis
have developed towards the extraction of biomarkers able to support clinical de-
cisions. To produce robust results, multi-center studies are often set up. However,
the imaging information must be denoised from confounding factors – known
as batch-effect – like scanner-specific and center-specific influences. Moreover,
in non-solid cancers, like lymphomas, effective biomarkers require an imaging-
based representation of the disease that accounts for its multi-site spreading over
the patient’s body. In this work, we address the dual-factor deconfusion problem
and we propose a deconfusion algorithm to harmonize the imaging information of
patients affected by Hodgkin Lymphoma in a multi-center setting. We show that
the proposed model successfully denoises data from domain-specific variability
while it coherently preserves the spatial relationship between imaging descrip-
tions of peer lesions, which is a strong prognostic biomarker for tumor hetero-
geneity assessment. This harmonization step allows to significantly improve the
performance in prognostic models, enabling building exhaustive patient represen-
tations and delivering more accurate analyses. This work lays the groundwork
for performing large-scale and reproducible analyses on multi-center data that are
urgently needed to convey the translation of imaging-based biomarkers into the
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clinical practice as effective prognostic tools. The code is available on GitHub at
this link.
Keywords: Radiomics, Harmonization, Batch-effect, PET, Tumor
Heterogeneity, Hodgkin Lymphoma
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1. Introduction

Hodgkin Lymphoma (HL) is a type of cancer that affects the lymphatic system,
where lymphocytes proliferate uncontrollably in multiple lymph nodes and even-
tually in extranodal sites (e.g. spleen, bone, etc.). It is acknowledged as a curable
disease thanks to its high rate of response to chemotherapy, often combined with
radiotherapy. Still, a considerable percentage of patients do not respond to first-
line treatments and the latest research has been devoting its efforts to discovering
alternative and more efficient therapies, such as immunotherapy. Immunotherapy
has indeed been approved for relapsing cases and has since represented a huge
stride for patients, who are on average very young (Mohty et al., 2021).

As the number of available therapies increases, treatment planning becomes
more and more crucial, and personalized medicine is catching on in every as-
pect of medical practice to devise the optimal treatment for each patient. Nev-
ertheless, such a tailored approach requires quantitative and informative data to
input into powerful and transferrable models on which to rely decisions. On pur-
pose, Positron Emission Tomography/Computed Tomography (PET/CT) radiomic
analysis has been shown to be an insightful, non-invasive tool for histological
prediction, prognostic assessment, and bone marrow involvement definition in
lymphoma (Rizzo et al., 2021). In brief, the radiomics framework entails the
extraction of a high-dimensional vector description of the spatial gray levels’ dis-
tribution of an image, the so-called radiomic features (Afshar et al., 2019, Scapic-
chio et al., 2021). Each of such features thus describes a statistical property of
the image heterogeneity at different scales, which can inform several downstream
analyses and modeling efforts.

As HL is a rare disease, studies performed at a single institution usually do
not account for sufficient information to build powerful enough models and de-
rive general knowledge. Therefore, oftentimes multi-center cohorts need to be
set up and large-scale studies have to be conducted, collecting data coming from
different sources (Parmar et al., 2018). This raises a relevant issue, as radiomics
features are known to be highly influenced by the image acquisition settings and
the reconstruction parameters, jeopardizing the transferability and scalability of
the results (Berenguer et al., 2018, Pavic et al., 2018). Typical exogenous con-
founding factors include both scanner characteristics and protocols and more gen-
eral center-specific variabilities. These two factors must therefore be accounted
for together when performing any type of analysis on multi-center data.

Moreover, the latest trend in radiomics is developing towards the extraction
of more and more features, including first-order statistics, second- and higher-
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order statistics, and wavelet/frequency-derived indices. As the number of features
rises, their pairwise correlation increases accordingly, and it becomes harder and
harder to build effective models and disentangle the true signals of interest from
technical artifacts, noise, and uninteresting biological variables. Here comes the
need to properly reduce the dimensionality of radiomics vectors, transforming the
features into low-dimensional vectors that keep the true informative signals while
discarding domain-specific confounders. That is, both scanner and center-related
variability must be removed from radiomic features leaving the predictive tumor-
specific information intact.

While the above holds for many multi-center radiomics studies of (rare) dis-
eases, when analyzing a hematological (like HL) or metastatic cancer, an addi-
tional level of complexity is added to the task of deconfounding and reducing
radiomics features. In fact, different lesions can be found throughout the body of
the patients. Despite the current approach for imaging-based quantitative assess-
ment of most cancers, including HL, relies on the inspection of the bigger or hotter
lesion, Sollini et al. (Sollini et al., 2020) have demonstrated how lesions are radio-
logically heterogeneous within patients in terms of radiomics description and how
a prognostic classifier performs better when all tracer-avid lesions are considered.
These findings align with the latest discoveries in the biological underpinnings of
lymphomas. Some studies on solid cancers have previously described how both
proximal and distant lesions deriving from the same primary tumors exhibit diver-
gent patterns of both morphological and genetic heterogeneity (Campbell et al.,
2008). Similarly, Tabanelli et al. (Tabanelli et al., 2020) reported the same evo-
lutionary crossroad between morphological heterogeneity and intra-clonal evolu-
tion in a case of high-grade B-cell lymphoma. Thus, morphological heterogeneity
behaves as a surrogate of genetic heterogeneity, responsible for treatment inef-
ficacies. It follows that all lesions’ morphology must be taken into account, to
exhaustively represent the disease in the prediction of cancer progression, therapy
efficacy, and disease-free survival outcomes (Sangaletti et al., 2020, Lavin and
Tan, 2022). This implies that any postprocessing (i.e. dimensionality reduction
and/or deconfusion process) aimed at preparing radiomics features for patients’
representations needs to keep the inter-lesion relationships within patients con-
sistent, as here is where information of tumor morphological heterogeneity lies
(Sollini et al., 2020, Cavinato et al., 2022).

In light of the above, a robust post-image-acquisition method aimed to har-
monize multi-lesion radiomics data from multi-center studies requires (i) to prop-
erly remove both scanner and center confounding effects, (ii) to treat features’
collinearity and allow for simpler statistical modeling via proper dimensionality
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reduction, and (iii) to keep intra-patient heterogeneity consistent throughout the
transformation. All this should be achieved while retaining all truly informative
signals in the data, so as not to affect – and possibly improve - any potential down-
stream analysis.

Different strategies have been proposed in recent literature to minimize the
batch-effects of radiomics variability, ranging from imaging-based to feature-
based approaches (Da-Ano et al., 2020, Ligero et al., 2021, Mali et al., 2021).
Most of them aim to perform batch-specific standardization of images to disen-
tangle the true signal from environment-related noise. Among these, the ComBat
method was shown to be superior to other techniques, attracting attention in the
radiomics field (Johnson et al., 2007, Chen et al., 2011, Da-Ano et al., 2020).
ComBat is a statistical harmonization method that can correct variation by us-
ing empirical Bayes to estimate location and scale parameters. Starting from its
first conception, ComBat was improved over time by different independent re-
searchers. One for all, Adamer et al. proposed a regularized solution of ComBat,
namely ReComBat, computationally more efficient to facilitate the large-scale
harmonization of data (Adamer et al., 2022). However, it must be noted that
ComBat and most of its derivative algorithms were developed in the computa-
tional biology domain, where usually only one main confounder (i.e. sequencing
batch effect) needs to be removed. Indeed, to remove multiple confounders, they
must be applied repeatedly, one factor at a time. As the context of radiomics
studies oftentimes implies multiple confounders, Nested ComBat (Horng et al.,
2022b) and its improved evolution from the same authors, OPNested Combat
(Horng et al., 2022a), were recently proposed specifically to tackle multi-factor
deconfusion. The latter applies ComBat iteratively on confounder-associated sub-
sets of features, identifying the optimal order of factors to correct for. Notably,
irrespective of the number of confounders removed from the data, ComBat-based
methods rely on the hypothesis of normality of the features’ errors, which might
be unrealistic for radiomics data (Horng et al., 2022a). Moreover, none of the
above methods perform dimensionality reduction and are thus typically followed
by Principal Component Analysis (PCA) before the analysis. Additionally, to the
best of our knowledge, none of them has neither explicitly addressed the problem
of preserving inter-lesion relationships within patients, nor has been evaluated in
their capability to improve prediction by exploiting heterogeneity information af-
ter deconfusion.

In this work, we propose a multi-factor deconfusion algorithm better suitable
for the downstream analysis of multi-lesion/metastatic patients in multi-center
studies. The algorithm builds on the work of Dincer et al. (Dincer et al., 2020),
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which, in the context of gene expression analysis, proposes an Adversarial Decon-
founding AutoEncoder (AD-AE) model that requires no assumption on features’
distribution and jointly performs dimensionality reduction and cleaning of the em-
beddings, enhancing the signal-to-noise ratio. Here, we exploit the rationale of
this model for the context of multi-center PET/CT radiomics analysis, developing
a dual factor AD-AE (in the following, Dual AD-AE) model for the simultaneous
removal of both center and scanner confounding effects. We evaluate the proposed
model in terms of (1) its deconfusion power, (2) its ability to keep invariance of
intra-lesion relationship with respect to original data - despite dimensionality re-
duction - (3) and its prognostic power. In experiments (1) and (3) we compare the
results of Dual AD-AE to those of state-of-the-art ComBat-based approaches. In
experiment (2), we propose a statistical test to access the consistency of the data
transformation. We evaluate our proposed models on a multi-center dataset of HL
patients in order to predict response to first-line chemotherapy, demonstrating that
Dual AD-AE enables building exhaustive patient representations and delivering
more accurate analyses, especially when trying to exploit the predictive power of
intra-tumor heterogeneity.
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2. Methods

In this section, we describe the models and the experimental procedures used
in this study. Specifically, we include a description of the study population and
the sampling method, as well as the instruments or tools used to collect the data.
Additionally, we provide a mathematical overview of the proposed models along
with state-of-the-art approaches. We then further detail the design of the exper-
iments, stating the hypotheses and the research questions that the study aims to
address.

2.1. Data collection

Two centers were involved in the study; inclusion criteria were age � 16 years
old, newly diagnosed stage I-IV HL, baseline [18F]FDG-PET/CT availability, and
exclusion criteria were missing clinical/imaging/follow-up data; 128 HL patients
were recruited and treated at IRCCS Humanitas Research Hospital (Institution 1),
78 at Fondazione IRCCS Istituto Nazionale dei Tumori (Institution 2). Personal
information and clinical data were annotated for each patient in both hospitals
and [18F]FDG PET/CT imaging was inspected by experienced nuclear medicine
physicians. Descriptive statistics of patients are available in Table A.3 and Ta-
ble A.4 (Appendix A) for Institution 1 and Table A.5 and Table A.6 (Appendix
A) for Institution 2. All [18F]FDG-avid lesions bigger than 64 voxels were seg-
mented in each patient and radiomic features were extracted from each lesion
using LIFEx software (Nioche et al. 2018, www.lifexsoft.org). A total of 1340
and 794 lesions were collected at Institution 1 and Institution 2, respectively. In-
formation about scanners’ specification and acquisition settings is summarized in
Table B.7 and Table B.8 (Appendix B), while Imaging Biomarker Standardiza-
tion Initiative (ISBI)-compliant standardization and data harmonization have been
published elsewhere (Sollini et al., 2020). The study was approved by the local
ethics committees at Institution 1 (n. 2595 on Jun16, 2020) and Institution 2 (code
INT 212/20 on Sep28, 2020); given the observational retrospective design of the
study, the signature of a specific informed consent was waived.

2.2. Dual Adversarial Deconfounding Autoencoders

We propose Dual Adversarial Deconfounding AutoEncoders (Dual AD-AE)
to jointly tackle the denoising from both center- and scanner-related information.
The architecture of the Dual AD-AE is described in Figure 1. The network con-
sists of two parts: one autoencoder and an adversary branch. The autoencoder
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Figure 1: Architecture of the Dual Adversarial Deconfounding Autoencoder (AD-AE) model: the
model is made of three parts: an autoencoder (encoder: f , decoder: y), an adversary branch
network predicting the center confounder (n1) and a parallel adversary branch network predicting
the scanner confounder (n2). The network is trained by optimizing the input reconstruction task
(autoencoder loss) and the deconfusion task (adversary losses) as in Equation 1. The adversaries
unlearn to predict the confounding factors, i.e. the center and the scanner.
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takes as input the radiomic vector associated with a lesion and performs the di-
mensionality reduction. It is made of one input layer (number of input nodes:
[1⇥45]) two hidden layers (number of first hidden layer nodes: [1⇥32], number
of second hidden layer nodes: [1⇥ 16]), and one output layer (number of output
nodes: [1⇥45]). The autoencoder represents the backbone of the model and, from
its deepest layer, two adversary networks branch out for center and scanner pre-
dictions. Both adversary networks are made of two hidden layers (dimensions of
the first hidden layer and the second hidden layer are [1⇥50] and [1⇥50] respec-
tively) and one output layer ([1⇥2] for center prediction and [1⇥5] for the branch
predicting the scanners).

The loss is then made of three terms, where the reconstruction error, the ac-
curacy of the center classification, and the accuracy of the scanner classification
sum up as in Equation 1:

min
T

(f ,y,n)E[|x�gy( ff (x))|22 �l1L(hn1(x),c)�l2L(hn2(x),s)] (1)

where n1 is the center adversary branch, n2 is the scanner adversary branch,
l1 and l2 are weighting parameters and c and s are the true labels for center and
scanner respectively. Of note, weighting parameters can be tuned to tailor the
importance of the tasks to be optimized. For instance, one could prioritize one
confounding factor rather than the other, having a priori information about the
latent variability of the specific case study data.

In our setting, hyperparameters were tuned according to grid search. The num-
ber of layers, the number of nodes, and weighting parameters were optimized
based on the reconstruction error. The number of epochs was optimized accord-
ing to early stopping strategy (Yao et al., 2007), i.e., iterations were stopped when
no relevant improvements of the validation loss were recorded. The batch size
was set to 128 and l1 = l2 = 1.

2.3. Benchmark state-of-the-art Methods

Among the methods proposed in the literature for imaging harmonization,
ComBat has been repeatedly elected as the best approach such that different im-
plementations and further improvements have been proposed in the last years.

ComBat was originally proposed by Johnson and Rabinovic (Johnson et al.,
2007) for removing the batch-effect seen in genetics microarray analysis. The
harmonization method consists of standardizing each batch according to its mean
and variance. Specifically, the correction takes place at a specific location and
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scale (L/S), wherein the batch-related error is supposed to be present. L/S model
states that the value Y for feature f from sample j in batch i follows the following
formulation:

Yi j f = a f +Xb f + gi f +di f ei j f (2)

where a f is the feature value, behaving as intercept; X is the design matrix
and b f is the features coefficients such that Xb f is the observed variability; gi f

and di f are the additive and multiplicative batch effects respectively and ei j f the
standard error. Accordingly, gi f and di f can be estimated (either in parametric and
non-parametric ways) from data, and Yi j f can be corrected as:

Y
⇤
i j f

=
Yi j f � â f �X b̂ f � ĝi f

di f

+ â f +X b̂ f (3)

One of the main advantages of ComBat is being effective even with small
batch sizes. Being A = X̃

T
X̃ positive-definite, the optimization problem is strictly

convex. However, when A happens to be singular the regression estimation does
not exist and, if the system is underdetermined, ComBat does not guarantee to
bring out a unique solution. For this reason, Adamer et al (Adamer et al., 2022)
proposed a regularized solution of ComBat (ReComBat) computationally more
efficient to facilitate the large-scale harmonization of data.

Applying ComBat or ReComBat in cascade to capture and remove the lin-
ear variability from more than one confounding factor may cause instabilities de-
pending on the specific order of the harmonization steps. Very recently, Horng
et al (Horng et al., 2022a,b) proposed an optimized procedure for sequentially
harmonizing data from multiple batch effects, namely OPNested ComBat. In our
experimental setting, besides ComBat and ReComBat, we included OPNested as
a benchmark model, to be tested in both deconfusion and predictive powers.

2.4. Evaluating Point-Cloud shape consistency

As stated in Section 1, a solid harmonization method for multi-lesion patient
representation needs to keep invariance of intra-lesion relationship with respect
to original data, even after the dimensionality reduction step. In multi-lesion
and/or metastatic tumor settings such as HL, patients can be modeled as clouds of
points (Cavinato et al., 2022), where each point is defined by the radiomic vec-
tor – whether original, reduced, or deconfounded – of a lesion, and the shape of
the cloud determines intra-patient tumor heterogeneity as the pairwise relation-
ship between lesions (Gil et al., 2021). To test the point-cloud shape consistency
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across transformation, we here define a novel approach: the Point Cloud Semantic
Drift (PCSD).

Before defining PCSD, let us introduce some necessary notation. Let Mi(1)...Mi(K)
be the scores associated with the ordered list Li, where Mi(1) is the best score,
Mi(2) is the second best, and so on. The best score can be the largest or the small-
est depending on the context. Let r

Li(A) be the rank of A in the list Li if element A

is within the top k elements, and be it equal to k+ 1 otherwise; r
d (A) is defined

likewise for a different list d . The Spearman’s footrule distance between Li and
any ordered list d can be defined as:

S(d ,Li) = Â
t2Li[d

|rd (t)� r
Li(t)|. (4)

Equation 4 is the sum of the absolute differences between the ranks of all the
unique elements of the union of the two ordered lists. The smaller the value of the
metric, the more similar the lists. To compute the Point Semantic Drift (PSD) for
an arbitrary point t, we exploit a weighted version of S. We estimate the PSD as
the weighted change in neighbor rankings, according to Equation 5.

PSD(d ,Li) = Â
t2Li[d

|M(rd (t))�M(rLi(t))|⇥ |rd (t)� r
Li(t)|. (5)

PSD is the sum of penalties for moving an arbitrary element (data point) t of
the list Li from a position r

d (t) to another position r
Li(t) within the list (second

term of the product) adjusted by the difference in scores between the two positions
(first term).

M(rd (t)) and M(rLi(t)) are the normalized distances between t and all other
points in the cloud, after and prior to any transformation, respectively. This
weighting scheme penalizes more the changes in the positions of very distant
points, than the neighboring shifts of observations lying close in the original cloud.
That is, higher weights are assigned to swaps between close-by and far-distant
points, compared to changes among close neighbors.

Once computed the PSD for each point in the cloud C, the Point Cloud Se-
mantic Drift is estimated as the average PSDk of the K points in C:

PCSD =
1
K

K

Â
k=1

PSDk (6)

where K is the number of lesions in the patient under consideration.
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In our setting, Li corresponds to the set of lesions of patient i as described
by the raw radiomic features (original set); d corresponds to the set of lesions
described by the transformed features after deconfusion (e.g. Dual AD-AE mode).
PCSD thus accesses and quantifies the invariance of each cloud (patient) to the
data transformation process.

Given that PCSD can take on values ranging from 0 to infinity, we need to
establish a suitable test to assess the significance of the results obtained from our
deconfounded point clouds. To accomplish this, we can build a null distribu-
tion of PCSD values (PCSDnull) which serves as an upper bound for the drift.
That is, it represents the change in the cloud’s shape that would occur if an arbi-
trary embedding function was employed, completely disregarding the initial data
structure. Operationally, we randomly transform the original cloud by adding a
random Gaussian noise with mean µ = 0 and variance s = 3 to a different subset
of the lesions’ vectors. We do this iteratively for 100 times, each time comput-
ing the PCSD each time. Upon these values we build the Empirical Cumulative
Distribution Function. If the true PCSD value obtained from our deconfounded
embeddings fall within the limits of the left tail of this empirical null distribu-
tion, significant evidence is obtained on the ability of our algorithm to maintain
the original cloud structure. The empirical p-value is computed from the Empiri-
cal Cumulative Distribution Function by computing the ratio between the number
of trials where the PCSD is lower than the current and the total number of trials
(100).

2.5. Experimental outline

To test the robustness of any post-image-acquisition method aimed at harmo-
nizing multi-lesion radiomics data from multi-center studies, one needs to con-
sider several aspects. We performed a series of experiments on different harmo-
nization strategies (in the following, modalities), including our proposed Dual
AD-AE model and different ComBat-based methods.

We recall that the center confounding factor relates to the hospital’s imaging
facility, the clinical guidelines, and the personnel who segments and carries out the
acquisition. On the other hand, the scanner confounding factor supplies informa-
tion on the scanners’ specifications and reconstruction parameters. The scanner
variable is intrinsically subordinated to the center variable, as usually different
scanners are found in different centers. That is, the two sources entail some extent
of nesting nature and may then partially overlap in their confounding information.

For the sake of comparison with state-of-the-art approaches, we tested three
major ComBat implementations, namely Combat (Johnson et al., 2007), ReCom-
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Bat (Adamer et al., 2022) and OPNested Combat (Horng et al., 2022a), comparing
the results to quantify the improvements of our solution. We employed different
pipelines to test their performance from different perspectives. ComBat was used
for deconfounding the imaging data from the center and scanner information. The
two ComBat models were applied in cascade to the data: (1) one label was used
as a batch effect to be removed and (2) the obtained denoised vector was further
deconfounded by the effect of the other label. We followed two different orders,
namely ComBat-center-scanner and ComBat-scanner-center. The very same pro-
cedure was investigated by employing ReComBat implementation. Two different
pipelines were thus derived, namely ReComBat-center-scanner and ReComBat-
scanner-center. OPNested Combat was instead applied once on center and scan-
ner effects at the same time, as it was specifically developed for multi-factor effect
removal.

On these models, we performed three different quantitative experiments. We
tested the deconfusion power of the different modalities, comparing the proposed
method to the state-of-the-art models (Experiment 1). Furthermore, considering
that the Dual AD-AE encompasses dimensionality reduction as part of the decon-
fusion process, leading to a potentially detrimental transformation of intra-lesion
relationships, we implemented our PCSD test to assess this impact quantitatively
(Experiment 2). Finally, we tested and compared all modalities on their ability
to keep predictive information intact. We transformed the deconfounded features
of each modality into different all-lesions patients’ representations, to be fed into
prognostic models (Experiment 3). Details are provided in the following.

2.5.1. Experiment 1

To evaluate the strength of the confounders’ effect, one can verify the pre-
dictability of the confounding variables (i.e. the center and the scanner) starting
from the data. A high prediction performance denotes the presence of a strong
confounder-related signal. Therefore, to quantify the effect of the deconfusion
process, we employed a cross-validated Logistic Regression model, with 100 tri-
als and replacement. Testing accuracy was annotated in each trial to compute
the mean trend and the standard deviation of the performance of each modality.
Additionally, to compare the performance of the models, given the normality of
the data, we used a two-sided parametric t-test for paired samples and evaluated
the improvements of the different harmonization strategies compared to the pure
radiomics description.

13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.01.16.524181doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.16.524181
http://creativecommons.org/licenses/by-nd/4.0/


2.5.2. Experiment 2

To ensure that the information on the clouds’ shape has been preserved, Dual
AD-AE embeddings must keep invariance concerning the relative positions of le-
sions, despite the reduced dimensionality of the resulting vectors. Patient-wise le-
sions’ rankings and pairwise lesions’ distances should hold after deconfusion, un-
der the hypothesis that they are not independently impacted by exogenous noise.
Given this assumption, to test for the cloud shape-invariance of the feature trans-
formations, we implemented the Point Cloud Semantic Drift (PCSD) quantitative
method. As explained in Section 2.4, PCSD quantifies the extent of the change
in peer lesions’ distance rank order within a patient. Furthermore, to define a
quantitative test of hypothesis for PCSD, we estimated an empirical null distribu-
tion of the PCSD values when point clouds are transformed at random, inducing
random neighbor swaps by injecting repeatedly Gaussian noise in subsets of the
embeddings. The PCSD was computed for each patient and a population test for
testing the transformation consistency was carried out in the context of the Dual
AD-AE. The empirical p-values of the Dual ADAE transformation were then ob-
tained from the Empirical Cumulative Distribution Function (ECDF) of this null
PCSD distribution.

2.5.3. Experiment 3

Despite its unsupervised nature, the proposed approach aims to enable the
design of exhaustive patient representations to deliver accurate analyses for treat-
ment planning on multi-center datasets. Here we provide an example of down-
stream analysis where to quantify the improvement in predicting the first-line
chemotherapy outcome of patients affected by HL after correcting for confound-
ing factors. Specifically, the predictive power of the imaging features has been
evaluated with Cox proportional hazard survival models in a cross-validation fash-
ion.

Three patient representation strategies were implemented to summarize the
multi-lesion information in a single vector object to be properly fed into the mod-
els. First, the centroid of each patient’ point cloud was computed as the mean
profile of peer lesions belonging to them (“centroid representation”). Then, as a
second patient representation, only the distribution of the lesions over the statisti-
cal space was described and used as model input. For each patient, we computed
the pairwise distances between all lesions in the patient and we calculated the
mean and the standard deviation as indexes for lesions’ variability. Moreover,
we took the distances between every lesion of the patient and their centroid and
kept the average and the standard deviation of these distances to quantify the le-
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sions’ spreading from their center. Thus, the four indexes were exploited as “point
cloud description representation” to be fed into the survival model. Finally, the
two abovementioned representations were merged in a “complete representation”
of the patient encompassing both the mean disease profile of patients and the
variability of their lesions. For each of the modalities under testing, the three rep-
resentations were computed and fed into a Cox proportional hazard model (Lin
and Wei, 1989) to predict the time-varying response to therapy. Of note, raw ra-
diomic, ComBat- and ReComBat-based standardized radiomic features were re-
duced using PCA prior to being input to any model. To result in a dimensionality
comparable to the embeddings, we kept the first sixteen principal components,
accounting for at least 90% of the variability. Training and testing sets were re-
peatedly split multiple times (20 splits) and Concordance Index (CI, Harrell et al.
1982) scores were reported to assess the improvements that the harmonization
step brings in terms of prognostic power. To do this, given the normality of the
data, one-sided parametric t-tests for paired samples were employed to establish
the optimal harmonization strategy. Specifically, the Dual AD-AE embeddings’
performance was compared to ComBat-center-scanner, ComBat-scanner-center,
ReComBat-center-scanner, ReComBat-scanner-center, and OPNested ComBat.
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Table 1: Experiment 1 results: comparison between the performance of the Logistic Regression
models for predicting the two confounding factors: the center and the scanners. The modalities
that have been evaluated are raw radiomic data, Dual AD-AE embedding, ComBat-standardized
data (both with center-scanner order and with scanner-center order), ReComBat-standardized data
(both with center-scanner order and with scanner-center order) and OPNested-standardized data
(with scanner-center order). The Logistics Regression models are fitted on each of these modal-
ities, in a cross-validated fashion. Values are annotated as mean pm standard deviation. The
models evaluate (1) the binary prediction of the center labels, and (2) the multi-class prediction
of the scanner labels. The performances of the radiomics-based models are taken as reference,
while the performances of the other modalities are analyzed in terms of decrease compared to
the baseline models’ performance. Statistical tests have been performed and the models that are
significantly different from radiomics are highlighted in bold.

Accuracy CENTER Accuracy SCANNER

Baseline Radiomics 0.8559 ± 0.0117 0.8617 ± 0.0104
Embedding Dual AD-AE 0.6251 ± 0.0131 0.3308 ± 0.0146

ComBat
ComBat-center-scanner 0.6220 ± 0.0137 0.2968 ± 0.0278

ComBat-scanner-center 0.6236 ± 0.0134 0.3006 ± 0.0307

ReComBat
ReComBat-center-scanner 0.6228 ± 0.0150 0.3009 ± 0.0362

ReComBat-scanner-center 0.6276 ± 0.0124 0.2997 ± 0.0359

Opnested Opnested (scanner-center) 0.6239 ± 0.0118 0.2967 ± 0.0349

3. Results

Three tests have been implemented to test for (1) deconfusion power, (2) trans-
formation consistency, and (3) predictive power of the proposed algorithm com-
pared to the current literature.

3.1. Experiment 1: Checking deconfusion power

Table 1 shows the results for the dual AD-AE, the two ComBat models, the
two ReComBat models, and OPNested ComBat.

While radiomics, as expected, scored very high in predicting both the cen-
ter and the scanner, the embedding showed evidence of deconfusion, comparable
to state-of-the-art benchmarks. Both the Dual AD-AE and all the Combat-based
modalities aligned to the same performance, outperforming the non-deconfounded
radiomic vectors. Indeed, values highlighted in bold in Table 1 correspond to
non-significantly different, yet lower than radiomics, performances. All modali-
ties were thus equally powerful at the deconfusion task. Of note, the OPNested
algorithm selected scanner-center as the optimal order, thus the two models are
expected to perform similarly. Additionally, the proposed Dual AD-AE model
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Figure 2: Results of patient-wise tests on PCSD for dual AD-AE embedding: (Panel A) The
density plot displays the overall distribution of PCSDs in the population. (Panel B) The density
plot shows the score of the dual AD-AE results over a bootstrap random distribution. Fiducial
values are marked with vertical lines in the left plot and our model performances are displayed
with a vertical red line in the right plot.

showed a smaller standard deviation of the accuracy in predicting scanner type,
supporting the robustness of the model.

3.2. Experiment 2: Cloud-shape invariance test

Figure 2 shows the results of the proposed method. The population distribu-
tion of PDSC from Dual AD-AE transformation is displayed alongside the Empir-
ical Distribution Function (EDF) of 100 random transformations. From the visual
inspection of the plots, the model produced PCSD values skewed toward zero,
suggesting the shape-invariance of the clouds. Moreover, the empirical p-value
was equal to zero, thus we can further sustain that Dual AD-AE successfully
kept cloud-shape invariance and that the change in inter-lesion distance, which
occurred during deconfusion, was significantly far from being random.

3.3. Experiment 3: Checking prognostic power

Performances on both the training and testing phases were produced by re-
peated sampling of 20 independent data splits. Table C.9 (Appendix C) reports
the means and standard deviations of the trials. For visual reference, Figure 3 dis-
plays the boxplots of the distributions of the performance indexes of the modali-
ties, grouped by patients’ representation strategy and deconfusion approach. Pair-
wise tests were performed between settings to be compared and can be appreciated
in Table 2.
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Figure 3: Experiment 3 results: the boxplots of the distributions of algorithms’ performances. The
three different patients’ representation strategies are considered per modality and one representa-
tion is displayed per plot. The top row plots show training results while the bottom row plots show
testing performances. All plots report on the y-axis the CIs of ComBat-center-scanner radiomics
(light green, ComBat1 for short), ComBat-scanner-center radiomics (dark green, ComBat2 for
short), ReComBat-center-scanner radiomics (dark yellow, reComBat1 for short), ReComBat-
scanner-center radiomics (light yellow, reComBat2 for short), and OPNested ComBat radiomics
(fuchsia), dual AD-AE embeddings (blue) and original radiomics (grey). The red dots highlight
the mean CIs, which are also reported on the right of each respective boxplot.

Table 2: Experiment 3 results: p-values of the tests comparing different survival models. The
Dual AD-AE model is considered according to its three different patient representations: (1) the
patient is described by the centroid of its point cloud, (2) the patient is described by the topological
characteristics of its point cloud and (3) the patient is described by both the centroid and the topo-
logical characteristics of its point cloud. These are compared with the radiomics-based models,
the ComBat-based models, the ReComBat-based models, and with the OPNested-based models.
Comparisons are made upon the same patient representation: for instance, the Dual AD-AE model
fed with centroid representation is compared to the models described in the columns which were
fed with centroid representation as well, and so on. Significant values are highlighted in bold.

Comparison wrt
Centroid Cloud description Centroid + cloud description

P-value (train) P-value (test) P-value (train) P-value (test) P-value (train) P-value (test)

Radiomics model <<0.001 <<0.001 <<0.001 0.0001 <<0.001 <<0.001

ComBat-center-scanner model <<0.001 0.1065 <<0.001 0.0003 <<0.001 0.0230

ComBat-scanner-center model <<0.001 0.0473 <<0.001 0.0002 <<0.001 0.0160

ReComBat-center-scanner model <<0.001 0.1381 <<0.001 0.0005 <<0.001 0.0368

ReComBat-scanner-center model <<0.001 0.0676 <<0.001 0.0003 <<0.001 0.0274

OPNested ComBat model <<0.001 0.0676 <<0.001 0.0003 <<0.001 0.0274
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As displayed in Table 2, the model performance of the Dual AD-AE modal-
ity was significantly higher than radiomics’, suggesting how the deconfusion step
does also benefit the prediction and the signal-to-noise ratio. Of note, the patient
representations including cloud topology descriptors (i.e. when using heterogene-
ity as a predictor) always achieved better performance than the benchmarks, being
the most predictive and generalizable (i.e. test set performance) overall. For what
centroid representation is concerned, ComBat-center-scanner, ReComBat-center-
scanner, ReComBat-scanner-center, and OPNested ComBat scored similarly to
the Dual AD-AE. We remind that the OPNested algorithm implemented the same
sequence of ComBat-scanner-center, however, this latter model had lower perfor-
mance, being significantly outperformed by our model.

3.4. Alternative to deconfusion: frailty Cox proportional hazards model

Deconfusion methods ultimately allow the effective modeling of patients’ rep-
resentations across scanners and centers. However, instead of removing the con-
founding factor, an alternative yet the well-established approach to model multi-
source samples (i.e. multi-center/multi-scanner data, where we have dependence
within groups) is the explicit modeling of the group-specific variability within
the prediction model. For time-to-event data, this can be done via the frailty
Cox proportional hazards model (Kosorok et al., 2004), which estimates center
and/or scanner random effects together with the baseline hazard function. To ver-
ify whether this approach would make the deconfusion step irrelevant, the centroid
representation derived from the raw radiomics features was reduced by PCA and
fed into a frailty Cox proportional hazard model with center-specific and scanner-
specific random intercepts. Unfortunately, this test dramatically failed due to a
lack of model convergence. This result is motivated by the small sample size of
the data at hand, combined with the high dimensionality of the radiomic variable
(even after PCA) and the large number of censored patients, which did not allow
the model to properly estimate the effects’ parameters neither on the training sets,
on the testing sets, nor the dataset as a whole.
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4. Discussion

In this work, we developed a deconfusion algorithm to harmonize multi-center
imaging data, with a particular focus on multi-lesion/metastatic cancers, such as
Hodgkin Lymphoma. The Dual AD-AE model performed dimensionality reduc-
tion of radiomic features while removing center- and scanner-related information
simultaneously. The proposed approach was trained on a dataset of Hodgkin Lym-
phoma patients from two centers and outperformed the state-of-the-art methods in
the prediction of response to first-line chemotherapy.

Three experiments were performed to evaluate the model’s properties, raising
some major points of discussion. First, the deconfounding power of the Dual AD-
AE was granted. In fact, the accuracy of Logistic Regression models predicting
the scanner and the center target variable sensibly decreased after deconfusion.
The Dual AD-AE demonstrated a comparable deconfusion power to ComBat-
based models, showing no statistical differences in cross-validation. However,
removing both confounding factors at the same time may uncover and discard
inter-confounder relationships which may contribute to undesirable noise in the
signal. Interestingly, the standard deviation of the accuracy of the dual AD-AE
model in predicting the scanner type was lower than other models, suggesting the
robustness and stability of the proposed model. The ComBat (and ReComBat)
algorithm applied twice showed variable results when changing the order of ap-
plication. This inconsistency is not surprising, as it motivated the development of
OPNested ComBat in the first place (Horng et al., 2022a,b). Despite the slight al-
gorithmic differences between ComBat and OPNested, OPNested performed very
similarly to ComBat-scanner-center.

Additionally, as the context of multi-lesion/metastatic data may benefit from
the exploitation of intra-tumor heterogeneity as predictive information, we de-
signed a novel metric (PCSD) and an associated empirical test to quantify the
impact of AD-AEs deconfusion and dimensionality reduction on intra-lesion rela-
tionships shaping the spatial conformation of patients’ point clouds. Overall, the
Dual AD-AE resulted in a significantly low PCSD value, rejecting the null hypoth-
esis of no correlation between the original (raw radiomics) and the deconfounded
clouds of lesions. On one hand, this was expected and desired as lesions of one
patient share both the same center and scanner variability, that is, noise can be
considered constant within a single patient. Indeed, the relationship among peer
lesions should in principle not be spoiled by center and scanner deconfusion. On
the other hand, it might be possible that minor shifts could be appreciated in spe-
cific lesions, especially where massive non-linear transformations were needed to
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properly clear the data. This might be true for some patients lying on the far-right
tail of the PCSD population distribution. As proved by the test, such results do not
translate into a detrimental data transformation, rather they show that a trade-off
between deconfusion and cloud-shape invariance has to be tuned and rigorously
assessed. On purpose, the PCSD metric can be exploited to highlight the pres-
ence of such additional sources of latent and interactive noise, that once removed
would release the true predictive power of intra-lesion heterogeneity.

This point was further validated in the third experiment presented in this work,
where we assessed the increase in the prognostic power of the deconfounded rep-
resentation of patients in terms of response to therapy, against ComBat-based al-
ternative approaches. In principle, a proper deconfusion allows the shape and
location of the point clouds coming from different sources to be meaningfully
compared. Thus, one can expect that predictive models built on these clouds’
representation, that is lesions’ characteristics and intra-tumor heterogeneity, ben-
efit from the deconfusion process. Dual AD-AE embeddings showed significant
improvements compared to the baseline and the benchmarks. This testifies how
the proposed model can identify and remove the complex and potentially non-
linear portion of confounders’ noise that the competitors ignore. Moreover, it
demonstrates the relevance of removing all confounders simultaneously when in
presence of multiple factors of variance in the data.

A further particularly relevant result was the difference in performance when
using heterogeneity (i.e. cloud description indexes) as a predictor. While this
cloud shape representation was merely a simple proof-of-concept example, Dual
AD-AE embedding was seen to allow for a much better prediction than the base-
line model and competitors. Conversely, ComBat-based and ReComBat-based
benchmarks seemed to corrupt the heterogeneity signal to the point of achieving
lower CI than the original radiomics features during training, and they grant just
a very limited performance increase during testing. Additionally, to the best of
our knowledge, none of the previous studies comparing deconfusion algorithms
for radiomics data (Da-Ano et al., 2020, Ligero et al., 2021, Mali et al., 2021)
evaluated their impact on the predictive power of groups of lesions. Here, our
proposed approach was the only deconfounding algorithm truly releasing the pre-
dictive power of heterogeneity, which became the most generalizable predictor.

This finding leads to two relevant considerations. Clinically speaking, it sup-
ports the hypothesis that intra-lesion heterogeneity does carry predictive informa-
tion, once properly corrected for linear and non-linear confounders. Technically,
it endorses the use of a more complex non-linear model like the AD-AE, that can
uncover and remove explicit and latent types of noise effectively. Although not
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explicitly enforcing inter-lesion relationships consistency in the model we pro-
pose, so that it could be in principle applied as-is to single-lesion data, this result
testifies in favor of its application (as opposed to the state-of-the-art) to contexts
in which heterogeneity information is crucial for prediction.

Of course, training complex, non-linear, and heavily parametrized models
such as the Dual AD-AE has higher computational, time, and memory demands
compared to the simpler ComBat-based methods. Nevertheless, the latter algo-
rithms rely on Gaussian distribution assumptions for estimating the parametric
definitions of the statistical moments across batches (i.e. the mean and the vari-
ance across centers or scanners), prior to standardization. However, this strong hy-
pothesis of underlying data structure may not always be appropriate for radiomics
data, leading to underpowered and biased transformations. Conversely, we pro-
posed a non-parametric algorithm removing linear and non-linear confounder-
induced noise without any prior assumption. Furthermore, the Dual AD-AE was
the only method that dealt with two confounders simultaneously. This permitted
the reduction of the risk of ignoring the portion of noise induced by center and
scanner interactions (for instance, if one center uses way more frequently a set of
parameters for a specific scanner, compared to other centers). Moreover, thanks
to its modular nature, one could easily extend the model to adversarially predict -
that is, unlearn - more than two confounders. Additional branches could be added,
and the overall loss in Equation 1 might be updated with the maximization of the
corresponding accuracies. Further, the weighting parameters li (with i being the
number of adversary branches) enable defining the impact of each confounder,
rebalancing the expected (or measured) relative effect of noising factors on the
data. Both these aspects could hardly be integrated into the ComBat approach.
Finally, as opposed to ComBat-based methods, Dual AD-AE performs dimen-
sionality reduction together with cleaning the embeddings. While this may affect
the interpretability of the deconfounded data, we argue that radiomics features are
not easily interpretable per se, and they usually need a dimensionality reduction
(such as PCA) before modeling, as they are highly collinear.

Additionally, we tested the performance of multi-level models as an alterna-
tive to deconfusion. Indeed, disregarding the deconfounding algorithm employed,
the two-step pipeline of removing confounding effects and then analyzing the cor-
rected data has raised several critiques (Nygaard et al., 2016, Zindler et al., 2020).
Oppositely, the most sponsored solution when the confounder information is avail-
able is including it within the final prediction model. Nevertheless, we have shown
in our last tentative experiment how a frailty CoxPH model (even if with only one
confounder) does not converge when the sample size is small and the number of
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censored patients is high. This is quite common in multi-center studies of rare
diseases.

A limitation of the present study is the lack of further data to test our pro-
posed approach. However, no additional comparable data was available to the au-
thors at the time of writing. Nevertheless, we believe that the comprehensive tests
and benchmark studies performed on these cohorts represent a valuable proof-of-
concept of the method’s potential.

In conclusion, we provided a modular and effective approach for harmonizing
imaging data coming from different sources. We proved that our approach could
efficiently correct for multiple batch-related differences so that data appear as if
they were acquired under a common set of conditions. This translates to higher
prognostic performances, above all for what regards intra-tumor heterogeneity of
multi-lesions/metastatic cancers. Finally, it is well known that NN models such as
the Dual AD-AE can benefit from Transfer Learning (Tan et al., 2018) to aid the
problem of suboptimal and/or overfitting parameters when training data is limited.
Therefore, we provide a tutorial to apply our method to new data, available in
GitHub. We currently share the weights of our pre-trained network on this study’s
cohorts. Researchers might thus decide to use such weights to pre-train their
Dual AD-AE model, “borrowing” information from additional samples without
privacy concerns. This model-sharing framework could be pushed forward with
the contribution of the scientific community sharing their fine-tuned parameters,
paving the way for a virtuous cycle of open science. Insightful knowledge could
be thus derived from more exhaustive models to optimally impact the clinical
practice.
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5. Conclusions

In this work, we developed a Dual AD-AE algorithm for harmonizing multi-
center imaging data, with a focus on multi-lesion/metastatic cancers like Hodgkin
Lymphoma. The proposed model performed dimensionality reduction of radiomic
features while removing center- and scanner-related information. The algorithm
was trained on a dataset of Hodgkin Lymphoma patients from two centers and out-
performed state-of-the-art methods in predicting response to first-line chemother-
apy. Three experiments were performed to evaluate the algorithm’s properties,
which showed its deconfounding power and robustness compared to ComBat-
based models. We also introduced a novel metric (PCSD) to quantify the impact of
AD-AEs on intra-lesion relationships. The Dual AD-AE resulted in a low PCSD
value and improved the prognostic power of the deconfounded representation of
patients compared to ComBat-based models. The Dual AD-AE also showed bet-
ter prediction performance using heterogeneity as a predictor. This supports the
hypothesis that intra-lesion heterogeneity carries predictive information and en-
dorses the use of a more comprehensive deconfounding algorithm for radiomics
data.
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Appendix A. Patients’ characteristics

Table A.3: Patients’ characteristics in Institution 1: variables are divided into categorical (number,
percentage on the total) and numerical (mean, standard deviation). In the first group, they are listed
the stage (four statuses), the sex (female F and male M), the presence of B symptoms like fever,
sweats, weight loss (yes Y and no N), status of the disease (extranodal disease: yes Y and no N;
bone disease: yes Y and no N), administration of radiotherapy (yes Y and no N), the outcome of
interim PET (iPET, Deauville Score DS of the PET), end of treatment PET (EOT PET, Douville
Score DS of the PET). Statistics are stratified by the treatment response, thus patients are divided
into responders and non-responders.

Categorical variables – N (%) Responders (N=107) Non-responders (N=21)

Stage I 9 (8%) 0 (0%)
II 57 (53%) 11 (52%)
III 12 (11%) 2 (10%)
IV 30 (28%) 8 (38%)

Sex F 62 (58%) 14 (67%)
M 45 (42%) 7 (33%)

B symptoms N 60 (56%) 7 (33%)
Y 47 (44%) 14 (67%)

Extranodal disease N 74 (69%) 11 (52%)
Y 33 (31%) 10 (48%)

Bone disease N 80 (75%) 18 (86%)
Y 27 (25%) 3 (14%)

Radiotherapy N 38 (35%) 17 (81%)
Y 69 (65%) 4 (19%)

iPET DS1 82 (77%) 10 (48%)
DS2 12 (11%) 2 (9%)
DS3 11 (10%) 1 (5%)
DS4 2 (2%) 5 (24%)
DS5 0 (0%) 3 (14%)

PET EOT DS1 77 (72%) 13 (62%)
DS2 11 (10%) 3 (14%)
DS3 10 (9%) 1 (5%)
DS4 3 (3%) 1 (5%)
DS5 6 (6%) 3 (14%)
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Table A.4: Patients’ characteristics in Institution 1: variables are divided into categorical (num-
ber, percentage on the total) and numerical (mean, standard deviation). Among the numerical
variables, there are age, number of nodal lesions of the patients, number of extranodal lesions
of the patients, and time to relapse (for censored patients, the time to last follow-up is taken).
Statistics are stratified by the treatment response, thus patients are divided into responders and
non-responders.

Numerical variables – mean (std deviation)

Age 39.252 (15.875) 40.143 (15.963)
# Nodal lesions 6.673 (4.813) 6.619 (6.184)
# Extranodal lesions 1.916 (5.750) 3.857 (10.256)
Time to relapse [days] 1126.97 (704.94) 358.86 (322.854)

Table A.5: Patients’ characteristics in Institution 2: variables are divided into categorical (number,
percentage on the total) and numerical (mean, standard deviation). In the first group, they are listed
the stage (four statuses), the sex (female F and male M), the presence of B symptoms like fever,
sweats, weight loss (yes Y and no N), status of the disease (extranodal disease: yes Y and no N;
bone disease: yes Y and no N), administration of radiotherapy (yes Y and no N), the outcome of
interim PET (iPET, positive or negative), end of treatment PET (EOT PET, positive or negative).
Statistics are stratified by the treatment response, thus patients are divided into responders and
non-responders.

Categorical variables – N (%) Responders (N=59) Non-responders (N=17)

Stage I 1 (2%) 0 (0%)
II 31 (52%) 4 (23%)
III 6 (10%) 1 (6%)
IV 21 (36%) 12 (71%)

Sex F 34 (58%) 8 (47%)
M 25 (42%) 9 (53%)

B symptoms N 35 (59%) 4 (23%)
Y 24 (41%) 13 (77%)

Extranodal disease N 39 (65%) 7 (41%)
Y 20 (45%) 10 (59%)

Bone disease N 44 (75%) 13 (77%)
Y 15 (25%) 4 (23%)

Radiotherapy N 20 (45%) 14 (82%)
Y 39 (65%) 3 (18%)

iPET Negative 55 (93%) 8 (47%)
Positive 4 (7%) 9 (53%)

PET EOT Negative 59 (100%) 0 (0%)
Positive 0 (0%) 17 (100%)
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Table A.6: Patients’ characteristics in Institution 2: variables are divided into categorical (num-
ber, percentage on the total) and numerical (mean, standard deviation). Among the numerical
variables, there are age, number of nodal lesions of the patients, number of extranodal lesions
of the patients, and time to relapse (for censored patients, the time to last follow-up is taken).
Statistics are stratified by the treatment response, thus patients are divided into responders and
non-responders.

Numerical variables – mean (std deviation)

Age 36.478 (13.915) 42.867 (17.868)
# Nodal lesions 7.271 (5.499) 9.706 (6.362)
# Extranodal lesions 2.288 (5.789) 3.706 (7.355)
Time to relapse [days] 1105.72 (546.490) 257.59 (167.17)
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Appendix B. Scanners’ specifications

Table B.7: Image acquisition protocols and scanner specification in Institution 1: 85 patients
were scanned with Siemens Biograph scanner; 51 patients were scanned with General Electric
Discovery 690 scanner; 5 were scanned with other unspecified scanners.

Institution 1
Biograph – Siemens Discovery 690 – General Electric

PET CT PET CT

Min/bed position (static/dynamic) 2.5 (static) – 2 (static) –
Crystal LSO – LYSO –
Reconstruction Iterative – Iterative, TOF Sharp IR –
Attenuation correction On CT data – On CT data –
Matrix (pixels) 128×128 512×512 256×256 512×512
Resolution (mm) 5.3×5.3 0.98×0.98 2.73×2.73 1.37×1.37
Slice thickness (mm) 2.0 4.0 3.27 3.27
Slices – 6 – 64

Table B.8: Image acquisition protocols and scanner specification in Institution 2: 34 patients
were scanned with General Electric Discovery 710 scanner; 38 patients were scanned with Philips
Gemini scanner; 1 patient was scanned with other unspecified scanners.

Institution 2
Discovery 710 – General Electric Gemini - Philips

PET CT PET CT

Min/bed position (static/dynamic) 2 (static) – 2 (static) –
Crystal LYSO – BGO –
Reconstruction VPFX – Iterative –
Attenuation correction On CT data – On CT data –
Matrix (pixels) 192×192 512×512 169×169 512×512
Resolution (mm) 3.65×3.65 1.37×1.37 4×4 1.37×1.37
Slice thickness (mm) 3.27 3.75 4 4
Slices – 64 – 64
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Appendix C. Results of experiment 3

Table C.9: Experiment 3 results: performance of the Cox proportional hazard models trained and
tested in cross-validation using different patient representations. Each modality – i.e. radiomics,
Dual AD-AE embeddings, ComBat-based standardization, ReComBat-based standardization, and
OPNested-based standardization – is fed in the survival model according to three different patient
representations: (1) the patient is described by the centroid of its point cloud (“centroid represen-
tation”), (2) the patient is described by the topological characteristics of its point cloud (“cloud
description representation”) and (3) the patient is described by both the centroid and the topolog-
ical characteristics of its point cloud (“complete representation”). Best values are highlighted in
bold.

Models
Centroid representation Cloud description representation Complete representation

C-index (train) C-index (test) C-index (train) C-index (test) C-index (train) C-index (test)

Radiomics 0.6962 ± 0.0190 0.4344 ± 0.1779 0.5828 ± 0.0141 0.5184 ± 0.1203 0.7077 ± 0.0207 0.4026 ± 0.1460
Dual AD-AE 0.7803 ± 0.0132 0.6100 ± 0.1382 0.6728 ± 0.0135 0.6481 ± 0.1305 0.7803 ± 0.0132 0.6100 ± 0.1382

ComBat-center-scanner 0.7041 ± 0.0201 0.5525 ± 0.1358 0.5611 ± 0.0162 0.5101 ± 0.1228 0.7173 ± 0.0180 0.5063 ± 0.1279
ComBat-scanner-center 0.7016 ± 0.0195 0.5366 ± 0.1266 0.5625 ± 0.0159 0.5075 ± 0.1262 0.7291 ± 0.0185 0.5066 ± 0.1234
ReComBat-center-scanner 0.7064 ± 0.021 0.5595 ± 0.1344 0.5621 ± 0.0161 0.5128 ± 0.1239 0.7153 ± 0.0186 0.5201 ± 0.1224
ReComBat-scanner-center 0.7019 ± 0.0194 0.5444 ± 0.1240 0.5635 ± 0.0160 0.5101 ± 0.1244 0.7260 ± 0.0192 0.5120 ± 0.1348
OPNested ComBat 0.7019 ± 0.0194 0.5444 ± 0.1240 0.5635 ± 0.0160 0.5101 ± 0.1244 0.7260 ± 0.0192 0.5120 ± 0.1348
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