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Complex behavior is supported by the coordination of multiple brain regions.

We propose coordination is achieved by a controller-peripheral architecture

in which peripherals (e.g., the ventral visual stream) aim to supply needed

inputs to their controllers (e.g., the hippocampus and prefrontal cortex) while

expending minimal resources. We developed a formal model within this frame-

work to address how multiple brain regions coordinate to support rapid learn-

ing from a few example images. The model captured how higher-level activity

in the controller shaped lower-level visual representations, affecting their pre-

cision and sparsity in a manner that paralleled brain measures. Alternative

models optimized by gradient descent irrespective of architectural constraints

could not account for human behavior or brain responses, and, typical of stan-

dard deep learning approaches, were unstable trial-by-trial learners.
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1 Introduction

The ability to master complex tasks requires coordination of multiple perceptual, cognitive, and

motor processes subserved by numerous brain regions. Long before the advent of computational

neuroscience, philosophers like John Locke and David Hume appreciated that the “faculties”

of the mind must coordinate with one another to produce coherent thought (1, 2). The develop-

ment of cognitive architectures in the symbolic production system tradition was one attempt to

address the coordination challenge (3–5). In contrast, deep learning approaches in neuroscience

have largely focused on a single faculty (e.g., object recognition) and its supporting circuit (e.g.,

the ventral visual stream).

We aim to address this gap by developing a general solution to the coordination problem

and applying it to the domain of category learning, which requires the coordination of multiple

cognitive processes related to attention, learning, object recognition, memory encoding and

consolidation, and relies on coordinating multiple brain regions (e.g., (6, 7)).

Although cognitive models of category learning like SUSTAIN capture rapid human learn-

ing behavior and associated neural activity in the hippocampus and ventromedial prefrontal

cortex (vmPFC) (8–13), these models do not address perception (e.g., object recognition) nor

do they explain how higher-level notions of attention that rely on prefrontal cortex relate and

possibly affect visual processing along the ventral visual stream. Stated plainly, how perception

and cognition coordinate in the brain is not fully addressed.

Deep Neural Networks (DNNs) address aspects of perception neglected by cognitive mod-

els. Although not without their shortcomings (14–17), these models can achieve human-level

accuracy on object-recognition tasks involving photographs of real-world objects (18, 19), and

exhibit functional correspondence to the primate ventral visual stream (20–23). Like the afore-

mentioned cognitive models, they do not address the coordination problem. Indeed, DNNs’
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intended application is restricted to the relatively automatic feed-forward aspects of object

recognition referred to as “core object recognition” (24). Moreover, DNNs typically learn rep-

resentations from stationary batches of training data, lacking the ability to account for scenarios

where information becomes incrementally available over time (i.e., continual learning; see (25)

for a review).

Given the complementary roles cognitive and DNN models play in capturing cognition and

perception, one obvious path to integration is using the outputs of DNN models as inputs to

cognitive models (e.g., (26–28)). Although appealing straightforward, this approach does not

address how different cognitive processes and their underlying brain regions interact to create

intelligent behavior. Decades of work in top-down attentional control from neurophysiology

(29), functional neuroimaging (30–35), and neuropsychology (36, 37) suggest that top-down

processes from control regions modulate sensory regions. Rather than a simple hand-off from

perception to cognition, what is needed is a model that takes images as input, deploys top-down

attention, rapidly learns novel categories, and makes decisions in a manner that captures how

a multitude of brain regions, including the ventral visual stream, hippocampus, and vmPFC,

coordinate to support rich and adaptive behaviors.

To achieve this aim, we propose a general modeling framework that captures mental function

through coordinated interactions across multiple brain regions; a controller-peripheral architec-

ture (Fig. 1). Rather than directly optimize some external objective tied to behavior, peripherals

aim to supply information needed to maintain and support the operation of their controller or

controllers. For example, eye movements can be peripheral to higher-level control processes

that direct fixations toward information needed for the decision (40). By linking controllers

and peripherals, accounts of quasi-hierarchical control, multimodal processing, and modularity

can be specified. Although we will focus on an account of category learning in which there is

only one controller (a cognitive model of the hippocampus and vmPFC) and one peripheral (a
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Figure 1: The controller-peripheral architecture provides a general framework for how
different brain regions coordinate while performing a task. (A) Peripherals aim to sup-
ply their controllers with the information they require while expending minimal resources (i.e.,
costly energy principle). Here, we illustrate a number of possible arrangements of controllers
and peripherals. (ii) A single controller with multiple peripherals could offer an account of
multi-modal integration for the convergence of visual and somatosensory signals in parietal
cortex (38) or semantic hubs in the anterior temporal lobe (39). (iii) Conversely, multiple con-
trollers with a single peripheral could model eye movements in which multiple controllers re-
lated to visual search, obstacle avoidance, social cognition, etc. share this perceptual resource.
Controllers and peripherals can be arranged hierarchically as in (v). This arrangement is consis-
tent with hierarchical accounts of the ventral visual stream in object recognition. (B) We use the
controller-peripheral architecture to develop a model that can learn concepts from a few visual
examples. To simplify, we assume a single controller involving the hippocampus and ventro-
medial prefrontal cortex (vmPFC) and a single peripheral involving the ventral visual stream.
The model captures how higher-level goals and outcomes shape activity throughout the ventral
visual stream, which aims to provide its controller with needed information while minimizing
resource expenditure (i.e., the costly energy principle).
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perception model of the ventral visual stream), more complex arrangements of controllers and

peripherals are possible within the controller-peripheral architecture (Fig. 1A).

Here, we treat the hippocampus and vmPFC as one integrated module (a single controller)

because we view them as the primary drivers of overall system in the category learning tasks

we consider (10, 11). Depending on one’s scientific aims, one might instead decompose (13)

these regions into multiple controllers and/or peripherals. Indeed, the hippocampus and vmPFC

can serve different purposes when driving behavior, with vmPFC being chiefly responsible for

determining goal relevancy reflected in higher-level attention signals (10, 11).

Peripherals aim to serve their controllers in a way that minimizes energy, broadly construed.

Peripherals follow a costly energy principle that seeks to minimize resource expenditures in

accord with a broad range accounts of cognitive effort including those focused on depletion

of blood glucose (41, 42), opportunity costs (43–45), and interference across tasks relying on

shared resources (46, 47). Colloquially, a peripheral is like a worker who gives the boss (the

controller) what they want while putting forth minimal effort.

In the present contribution, we instantiate a model of category learning within the controller-

peripheral framework that offers an account of how vmPFC, the hippocampus, and ventral

visual stream coordinate to rapidly learn categories from images. To foreshadow our results,

the controller-peripheral approach better accounts for behavior and brain response than other

approaches that independently adjust parameters (e.g., weights) to maximize performance as is

common in machine learning (ML) systems (e.g., end-to-end optimization by gradient descent

learning).

2 Model Overview

The controller follows the principles of a successful model of category learning, SUSTAIN (48).

SUSTAIN provides a good foundation for the controller because SUSTAIN has successfully ac-
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counted for both behavior and brain activity (hippocampus and vmPFC) during category learn-

ing tasks (8–11). Like, SUSTAIN, the controller incrementally recruits clusters in response to

surprising events, such as discovering that a bat is a mammal and not a bird. In the absence of a

surprising error, the controller updates its existing clusters to reflect the current stimulus. Clus-

ters are activated according to how similar they are to the controller’s input. The controller’s

attentional mechanism learns which dimensions in the clusters’ representational space are most

informative and stretches the space along those dimensions, which increases their importance in

determining the clusters’ activations. Association weights from the clusters to the output units

(i.e., possible actions or responses) are learned to minimize error.

Several aspects of SUSTAIN are generalized in the current formulation, such as allowing

multiple clusters to govern key operations (see Methods). For the present purposes, the key

improvement over SUSTAIN is that our controller, like the peripheral, is fully differentiable

which allows us to evaluate model variants that are trained through end-to-end optimization

rather than relying on the controller-peripheral architecture.

The peripheral module is based on VGG-16 (19). VGG-16 is a deep convolutional neural

network that was trained to perform object recognition tasks. DNNs, such as VGG-16, are

commonly used by neuroscientists to model activity along the ventral visual stream (20–22,

22). We chose VGG-16 because it is a well known model, has a relatively straightforward

architecture, and performs well on benchmarks that assess recognition behavior and agreement

with brain responses along the ventral visual stream (49, 50).

We made a number of changes and extensions to VGG-16 so that it could function as the

peripheral. VGG-16 is an object recognition model that takes an image as input and outputs a

label from a fixed set of pre-existing categories (e.g., penguin, house, car, etc.) after training

on millions of image-label pairings. Instead, we focus on the challenge rapid learning of novel

categories from a small set of examples. For this task, we need the peripheral to take an image
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as input and output a perceptual representation that the controller can take as input (Fig. 1B).

To achieve this, we only preserved the layers of VGG-16 that correspond to regions along

the ventral visual stream up to and including LOC (51). These layers should provide the visual

features necessary for the controller to learn novel categories. In a process akin to familiarizing

human participants to the experimental stimuli, we fine-tuned the peripheral model to output

three binary features in response to a stimulus (an image of a bug; see Table S.6).

One key aspect of the controller-peripheral account is that the peripheral aims to provide the

controller with the information it needs while expending minimal resources (i.e., costly-energy

principle). The peripheral altered its operation in response to the controller by adjusting its at-

tention weights. The peripheral’s attention mechanism was closely modeled on (52)’s approach

in which a nonzero attention weight modulated the output of each DNN filter. To solve the

coordination problem, the peripheral’s attention weights change in response to the controller’s

state, which is determined by its attention weights and clustering solution (see Methods section

6.3). The costly energy principle is reflected by an l1 penalty on the sum of peripheral attention

weights. We consider the sparsity of the attention weights (i.e., proportion that are zero) in the

DNN module as an indicator for resource expenditure.

Notice this controller-peripheral approach diverges from standard ML approaches in which

all parameters (including peripheral attention weights) are optimized to improve the decisions

of the overall system. Another key difference with ML models is that our controller-peripheral

model learns in a trial-by-trial manner consistent with procedures used in human experiments

(see Methods). Unlike most DNN models of perception, our peripheral model alters its opera-

tion in response to higher-level goals, as reflected by the current state of the controller.
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3 Controller-Peripheral Model Optimized to Costly Energy
Principle Captures Complex Learning Behaviors

We first evaluated if our model can account for learning performance on six learning problems

in (53) and preserve SUSTAIN’s strategies in solving these problems (48). (53) described six

category learning tasks and participants showed learning curves that revealed the difficulty order

of the category structures (Fig. 2A). Specifically, Type I was the easiest to master, followed by

Type II, followed by Types III–V, and Type VI was the hardest. (53) is a challenging human

category learning dataset to fit and has proven difficult for models that take images as inputs

(27).

Here, we used images of the insect stimuli from (10), who replicated aspects of (53) in an

fMRI scanner. The eight insects varied along three binary features (thick/thin legs, thick/thin

antennae, and pincer/shovel mouths; see Table S.6).

The model successfully captured human learning performance (Fig. 2B). Despite the sys-

tem taking images as inputs, the controller’s clustering solutions paralleled SUSTAIN’s in terms

of the modal number of clusters recruited (2, 4, 6, 6, 6, 8 for Types I–VI respectively; for full

results see Table S.1). Likewise, the controller’s attention weights paralleled SUSTAIN’s so-

lution by selectively weighting the relevant stimulus dimensions (Fig. 2C). Operating over

images instead of experimenter-defined stimulus representations enables additional predictions.

The peripheral module had the most difficulty ascertaining the value of the mandible dimen-

sion from the images. In accord with the model, when this dimension was relevant for human

learners they made more errors and their response times were longer (see Fig. S.3).
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Figure 2: The controller-peripheral framework consisting of a clustering module captur-
ing HPC and PFC and a DNN module capturing ventral visual stream, captures human
category learning behavior in (53). (A) Six category learning tasks where human partici-
pants learnt to classify geometric shapes into one of two categories where stimuli were made
up of three binary-valued features (color, shape and size). Typically, models operate over hand-
coded three-dimensional vectors. Instead, we trained on actual images, in this case using the
insect stimuli from (10), a replication of these classic learning problems with image stimulus
inputs. The peripheral part of the model, reflecting the ventral visual stream, extracts these three
higher-level dimensions for the controller (Fig. 1B). (B) The model (right) captured the diffi-
culty ordering of the six categorization problems described in (53)(left). Probability of error is
plotted as a function of learning block for each problem type. (C) The controller exhibited the
same attention strategies as SUSTAIN, solving Type I by attending to one dimension, Type II
by attending to two dimensions and Type III–VI by attending to all three dimensions.

Although the model fits are impressive, one obvious question is whether the architecture

was necessary. One alternative to the controller-peripheral architecture is to simultaneously

optimize all aspects of the model to mimize categorization errors, much like how most modern

neural networks are trained. Because the model is fully differentiable, this change amounts to

the DNN’s learning target shifting from serving the controller as a peripheral to adjusting itself

to minimize categorization errors. Although the difference is subtle, this model variant proved

unstable and could not account for human learning behavior in (53) or exhibit the task-specific

resource expenditure patterns found in (54). This instability arose because there was no pressure

for the DNN to respect the higher-level clustering solutions. In effect, the different parts of the

model lost coordination and became out-of-sync with each other (full results see Fig. S.1;

Table S.2-S.4). Rapid, trial-by-trial learning appears to require the coordination provided by

our architecture.
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4 Controller-Peripheral Framework Explains Cross-System
Neural Activities

Having established a model that takes images as input and built within the controller-peripheral

framework accounts for complex learning behaviors, we evaluate whether the model can cap-

ture how brain regions, such as ventral medial prefrontal cortex (vmPFC) and lateral occipital

cortex (LOC) (11,40,54) in the ventral visual stream, coordinate to support these behaviors. Be-

cause the previous section established that our controller’s clustering solutions matched those of

SUSTAIN which have been related to hippocampal activity (9, 10), we assume the controller’s

clusters provide a good account of hippocampal activity during these learning tasks. Here, we

fitted the model to individuals’ behavior and compared model activity to human fMRI data

from (10) in which participants learned the Type I, II and VI problems. We trained the model

on each participant’s stimulus sequence in a trial-by-trial manner (see Methods).

Controller attention tracks neural compression in vmPFC Prefrontal cortex (PFC) is be-

lieved to direct attention toward goal-relevant information (55, 56). In particular, vmPFC may

perform information compression by filtering out task-irrelevant information during category

learning (57–60).

For example, (11) compared patterns of activity in vmPFC to the learned attention weights

in SUSTAIN, a cognitive model that is the inspiration for the controller’s clustering model, and

found that vmPFC performs goal-directed information compression during learning (see Meth-

ods 6.5.3 for information on compression scores which also matched the cognitive model’s

attention weights). Indeed, vmPFC, mirroring changes in attention weights over learning, had

a unique pattern of neural compression, marked by two main effects and their interaction. Neu-

ral compression increased over learning blocks, was higher for learning problems with fewer

relevant dimensions, and these two factors interacted such that problems with fewer relevant
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Figure 3: vmPFC performs goal-directed information compression during learning and
mirrors changes in attention weights in models. (A) A whole-brain voxel-wise linear mixed
effects regression was performed in (11), which revealed a vmPFC region that showed a signifi-
cant interaction between learning block and problem complexity. Neural compression increased
over learning blocks and was higher for learning problems with fewer relevant dimensions (each
fMRI run consists four learning blocks; see the original paper for more details). (B) Functional
correspondence between the clustering module of the controller-peripheral system and vmPFC
in the human brain. The clustering module deploys attention strategies (in terms of attention
compression) that tracks the degree of neural compression in vmPFC across category learning
tasks over learning across category structure complexity.

dimensions (i.e., lower complexity) showed greater compression over learning (Fig. 3A).

We evaluated whether a similar relationship exists between the controller’s attention weights

and vmPFC. Unlike previous models, the attention mechanism in the controller is part of a con-

trol system directing the DNN peripheral. We found that compression scores for the controller’s

attention weights matched the unique signature of vmPFC’s compression scores with both main

effects and the interaction found (Fig. 3B; Two-way ANOVA main effects: problem complex-

ity, F (2, 42) = 78.17, p < 0.001; Learning block, F (15, 315) = 28.06, p < 0.001; Interaction:

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.16.524194doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.16.524194
http://creativecommons.org/licenses/by/4.0/


F (30, 630) = 13.56, p < 0.001; Table S.5), reflecting greater compression over learning for

learning problems with fewer relevant features (Fig. 1B).

Peripheral activity aligns with neural representation in ventral visual stream We found

that the controller provides a good account of hippocampal activity in terms of its clustering

solutions and of vmPFC compression patterns in terms of its attention weights. Here, we eval-

uate how the peripheral part of the model adapts itself to provide useful inputs to the controller

following the costly energy principle. We focus on the end stage of the peripheral model, which

we hypothesize corresponds to LOC.

Category learning modulates activity in LOC, accentuating information that is goal relevant

(40, 61). (40) found that more highly attended features were better decoded from multi-voxel

activity patterns in LOC. Attention was assessed by SUSTAIN’s attention weights after fits

to individuals’ behavior. (54) found that the intrinsic dimensionality of the BOLD response in

LOC was greater when more aspects of the stimulus were relevant to the categorization decision.

Both these findings are consistent with LOC activity reflecting higher-level goals.

Such findings are consistent with our controller-peripheral account and costly energy prin-

ciple. Under this account, LOC should provide needed information to the controller but with

minimal resource expenditure. One measure of resource expenditure is the number of nonzero

peripheral attention weights. In agreement with (54), the number of nonzero peripheral atten-

tion weights reflected task complexity (Fig. 4C). Specifically, attention layer learning produced

the most sparse representation (fewest active units) in Type I, followed by Type II, with the least

sparse representation in Type VI (b = −0.044, t(22) = −5.10, p < 0.001).

Unlike other models of the ventral visual stream, we offer an account of how the controller’s

needs modulate peripheral activity. One prediction is that the precision of information coded

by the peripheral should reflect the needs of the controller. Information sources that are highly
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attended by the controller should be more more precisely coded, whereas those not attended by

the controller can also be ignored by the peripheral in accord with the costly energy principle.

We observed this pattern in the outputs of the peripheral (Fig. 4A). Information loss was cal-

culated as the cross-entropy error between the output of the DNN peripheral and the true value

for the feature (see Methods; Section 6.5.3). Consistent with neural decoding patterns found in

LOC (40), the peripheral’s output showed low information loss across Types I, II and VI (Fig.

4A) for stimulus dimensions that were highly attended by controller (Fig. 2C).

In contrast to cognitive models like SUSTAIN that take handcrafted features as inputs, our

peripheral model processes images to provide a stimulus coding for the controller. Previous

work from (40) found that more attended features (according to SUSTAIN) were better decoded

from the LOC’s BOLD response. Removing this featural assumption, we trained linear support

vector classifiers to discriminate each pair of stimuli for each task based on LOC activity. We

predicted that classifier error should track mean information loss in the peripheral’s feature

outputs. When the controller demands precise inputs, the peripheral should provide them and,

accordingly, we predicted LOC activity will better discriminate between items. As predicted

decoding error (i.e., neural information loss) tracked peripheral information loss, which was

greatest for Type I (one feature relevant), followed by Type II (two features relevant), followed

by Type VI (all three features relevant). The decoding error (b = −0.008, t(22) = −3.20, p =

0.002; Fig. 4B, left) and model information loss decreased as task complexity increased (b =

−0.060, t(22) = −3.94, p < 0.001; Fig. 4B, right).

The peripheral’s operation is modulated by the needs of the controller, which change over

learning. Therefore, as the controller optimizes its high-level attention for the learning task,

the peripheral’s attention weights should adjust, which in turn should affect the precision of

the peripheral’s feature outputs. As predicted, we found that as the controller’s attention to a

feature decreases the information loss in the peripheral’s feature output increases and that as
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Figure 4: Performance of the DNN peripheral and its relation to LOC activity during
learning. (A) Following the controller’s needs and the costly energy principle, task-relevant
features (shaded) are more precisely coded than task-irrelevant features (unshaded). (B) The
error-rate for a classifier applied to LOC activity to discriminate (decode) between pairs of
stimuli mirrored the precision of the peripheral’s feature outputs, consistent with our claim that
the peripheral’s advanced layers correspond to LOC. (C) Following the costly energy principle,
the fewer relevant features for a learning problem (VI>II>I), the more zero-valued peripheral
attention weights there are.
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the compression of the controller’s attention weights increases the sparsity of the peripheral’s

attention weights increases (see Fig. S.2).

5 Discussion

One challenge for neuroscience is explaining how multiple brain regions coordinate to complete

a task. According to the controller-peripheral framework, peripherals aim to supply needed

inputs to controllers while minimizing resource expenditure. Working within this framework,

we developed a formal model of category learning in which the peripheral corresponded to

the ventral visual stream and the controller to the hippocampus and vmPFC. The controller-

peripheral framework enabled us to construct a model of category learning that explains the role

of and interactions among a number of brain regions, taking images as inputs and generating

behavioral outputs (i.e., decisions).

The model detailed how higher-level goals and knowledge state, reflected in the clustering

solution and attention weights of the controller, influenced the peripheral’s attentional alloca-

tion. The peripheral was implemented as a DNN model of object recognition that we augmented

with its own attentional mechanism (62). The overall model, consisting of this peripheral and

controller, captured a number of findings. The model was able to account for complex learning

behaviors that only a subset of successful cognitive models can address, while taking images as

inputs as opposed to relying on hand-crafted inputs.

As predicted, the pattern of attention weights in the controller matched compression patterns

in vmPFC (11) while the clustering solution was consistent with representational similarity

patterns in the hippocampus. The controller’s state influenced that the peripheral, leading to

sparser representations when the controller was concerned with fewer aspects of the stimulus

(54). Following the costly energy principle, the precision of stimulus information transmitted

to the controller from the peripheral decreased as the controller’s need for that information
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decreased. In accord with our framework, the peripheral preserved resources to the extent that

it could while serving the controller. In summary, the model accounted for how people rapidly

learn novel concepts from examples, how this behavior is supported by the ventral visual stream,

hippocampus, and vmPFC, and how these regions coordinate with higher-level learning goals

shaping the precision and dimensionality of object representations in the ventral visual stream.

Our controller-peripheral framework is a domain-agnostic modeling blueprint for theoriz-

ing and developing models of coordinated cognitive processes across interactive brain systems.

Category learning is one possible application of this framework, which we focused on in this

contribution. However, a variety of controller-peripheral arrangements can be tailored to study

different brain regions, cognitive processes or systems across multiple modalities (Fig. 1A).

For example, an account of multimodal integration for convergence of visual and somatosen-

sory information in parietal cortex could be captured by a framework with a single controller

directing multiple peripherals. The flexible modular nature of the controller-peripheral frame-

work can also help to test predictions and offer integrative explanations across levels of mech-

anism (63, 64). For example, a controller capturing cognitive constructs tied to behavior can

be decomposed into many controllers and/or peripherals that capture lower-level mechanisms

such as populations of or neural assemblies across different brain regions (13). While we com-

bined a DNN model with a cognitive model in the current contribution, different computational

architectures could also be adopted for different brain regions within the proposed framework.

For example, one direction is to incorporate recurrent connections to better understand inter-

connected brain networks (e.g., (65, 66)).

Whereas we focused on rapid learning from a few examples, the controller-peripheral archi-

tecture could be extended to explain change over longer time-scales. For example, neural prun-

ing (i.e., programed neuron death), which is essential to brain development (67), may unfold in

accord with the controller-peripheral architecture and costly energy principle. Likewise, wiring
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patterns over evolutionary time may be explained by our framework. These proposals parallel

recent developments in machine learning that find advantages for starting with large models and

sparsifying them to reduce resource requirements while maintaining performance (68).

We hope the controller-peripheral approach will help neuroscientists develop more encom-

passing accounts of brain function that address how multiple regions coordinate to perform the

tasks of interest. The controller-peripheral architecture may strike the proper balance between

strict modularity in which regions operate in prescribed ways versus unstructured approaches

in which each unit alters its operation to maximize some global objective, such as maximizing

reward, accuracy, etc. In our task, comparable alternative models that reflected these two ex-

tremes could not account for human performance. For example, models that treated the DNN

peripheral as an independent perceptual module did not capture how learning higher-level cat-

egory representations affects ventral visual stream activity. On the other extreme, alternative

models that sought to globally optimize all parameters proved too unstable for trial-by-trial

learning because learning updates from different parts of the model were often at odds with one

another.

Like other frameworks, the controller-peripheral architecture itself is not a theory, but a

medium in which theories can be constructed as we did here for the case of category learning.

There are relatively few general frameworks for brain function and it bears considering how the

controller-peripheral approach compares. The energy referred to in the controller-peripheral’s

costly energy principle should not be confused with what is minimized in variational Bayesian

inference under the free energy principle (69). In costly energy, energy refers to some com-

putational resource, which in our category learning model were neuron-like units. While pre-

dictive processing models can make predictions at the level of neural implementation (70), the

controller-peripheral architectures also makes information processing or algorithmic claims by

specifying how controllers and peripherals are organized, as evidenced by the different behav-
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iors manifested by comparable models in our simulations that did not use the architecture to

coordinate processing. Finally, broad frameworks can be compatible with one another. For ex-

ample, the controller-peripheral focus on coordination may benefit accounts of brain function

consisting of differentiable modules (71) given the instability we observed for such approaches

in trial-by-trial learning.
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Supplementary Materials

6 Methods

6.1 The Peripheral DNN Module

DNN architecture and fine-tuning We instantiated the peripheral of our model under the

controller-peripheral framework with a well-known deep convolutional neural network, VGG-

16 (19), a feed-forward architecture consisting of millions of parameters pre-trained on 1.3

million real-world images from the ImageNet database (72). VGG-16 was originally trained

to map real-world images to one-hot vectors across 1, 000 pre-defined categories. In our work,

this DNN module is to be integrated with a controller (a clustering module), which requires the

VGG-16 to be fine-tuned such that the DNN module outputs three-dimensional vectors whose

dimensions encode psychological features of the stimulus, such as “0” for thin legs and “1” for

thick legs on the first dimension (see full mapping in Table S.6). The fine-tuning process can be

viewed as akin to familiarizing human participants to the experimental stimuli.

To fine-tune the DNN module appropriately, we preserved the layers of VGG-16 that are

believed to correspond to regions along the ventral visual stream up to and including LOC

(51). We then replaced layers succeeding “block4 pool” with a three-unit fully-connected layer

(301, 056 connection weights; randomly initialized using glorot uniform distribution) whose

output units correspond to psychological features of the stimulus. The new layer outputs are
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gated by a sigmoid function (Eq. 1) which squeezes each unit’s raw activation xi (unbounded)

to ai.

ai =
1

1 + exp (−xi)
(1)

The position to add the new output layer is critical. Intuitively, we should place the new

layer deep into the network so we preserve most hierarchical features of the DNN in order to

parallel the DNN module to the ventral visual stream. However, not all stimulus features are

represented at the same position of the DNN in the same capacity (73). While DNNs can diverge

from important aspects of how humans process visual information, we found a similar pattern

in human behaviors that suggest participants are more sensitive to some stimulus features than

others (see Fig. S.3).

In light of this trade-off, we chose the best layer position by evaluating whether the output

layer can produce binary-valued stimulus representations under two training procedures. We

used binary-valued representations as ground true targets because they represent idealized stim-

ulus features prior to category learning without attentional modulation. We provide the mapping

between pixel-level stimulus images and corresponding binary-valued features in Table S.6.

To prepare the input data for fine-tuning, we applied data augmentation to the original stim-

uli. For each stimulus, we applied a random combination of flipping (horizontal or vertical),

rotation (0 − 45 degree) and shear (0 − 15 degree), determined by a unique random seed. We

randomly chose 1, 024 different seeds which resulted in 1, 024 augmented samples per stimu-

lus. For the first training procedure, we trained the output layer positioned at different locations

of VGG-16 on a random 80% of the augmented samples and used the rest 20% for validation

(early-stopping). We then tested each candidate DNN module on predicting psychological rep-

resentations of the eight original stimuli. Each candidate module was scored based on the suc-

cess rate of predicting binary-valued representations. The second training procedure provided
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a stricter evaluation for choosing the best layer position. We trained candidate DNN modules

on augmented stimuli (same train and validation split ratio applied) but holding out samples of

a particular stimulus. We repeated this procedure eight times holding out one type of stimulus

at a time. We then tested candidate modules on predicting psychological representation of the

corresponding original stimulus that was held out during training. This test is stronger in that

it prevented the DNN module from memorizing (i.e., overfitting) the mapping from stimulus

images to abstract psychological representations. Each candidate module was scored based on

the success rate of predicting binary-valued representations of the held-out stimulus.

We repeated the two procedures over a range of learning rates (3e−3, 3e−4, 3e−5, 3e−6)

and selected the layer position based on overall performance on the two procedures. If there

were two layers with the same performance, we chose the layer that is higher up in the network.

All training used the Adam optimizer (with default hyper-parameter settings) and a batch size

of 16. We trained each candidate module for 1, 000 epochs unless the performance stopped

improving on the validation set for 20 consecutive epochs, in which case training would be

terminated early. We used the standard cross-entropy error as our loss function and stopping

metric. We found “block4 pool” layer achieved the highest metric scores (full results see Table

S.7-S.8).

Peripheral attention layer We inserted a goal-directed attention layer between the “block4 pool”

layer and the fine-tuned output layer of the fine-tuned DNN. The peripheral attention layer was

implemented in the same fashion as (52). Additionally, we applied l1 regularization on the

parameters (weights) of the attention layer. In accord with the costly-energy principle, this is

to enforce task-driven sparsity over the attention weights. We defined attention modulation as

the Hadamard product (filter-wise multiplication) between the preceding layer’s activations and

the attention weights. Formally, we denote pre-attention activation for a given stimulus from a

29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.16.524194doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.16.524194
http://creativecommons.org/licenses/by/4.0/


DNN layer as xn, where xn ∈ RH×W×F (H and W are the spatial dimensions of the repre-

sentation and F are the number of filters). We denote the corresponding attention weights as

g ∈ RF . The attention modulation is then defined as:

x∗
n = xn ⊙ g (2)

where x∗
n are the post-attention activations that will be passed onto the output layer. The at-

tention layer is trained in conjunction with the clustering module with all attention weights

initialized at one. We detailed the training procedure below (Section 6.3).

6.2 The Controller Clustering Module

The controller of our proposed model is a clustering module, which follows and extends key

principles of a successful category learning model, SUSTAIN (48). The clustering module is a

three-layer feed-forward network. The input layer has a number of nodes each represents one

of the psychological features of the stimulus, output from the DNN module (in this case, three

nodes). The activation of the ith input node is denoted aini . A complete stimulus is denoted

ain = (ain1 , ain2 , ...)T .

The hidden layer is initialized with no clusters and new clusters are recruited based on the

difficulty of the task. For a given stimulus (output from the DNN), each cluster is activated

according its psychological similarity to the stimulus captured by the following equation:

Hact
j = exp(−c(

∑
i

αi|hji − aini |r)q/r) (3)

where |hji − aini |r is the dimensional distance between the center of the cluster and the stim-

ulus. In this work, we set r = 2 and q = 1 (Euclidean distance). The dimensional attention

strength αi, acts as a multiplier on the corresponding dimension. Both the center of the cluster

and the attention strength are trainable parameters of the clustering module. Initially, attention

strength is equal across dimensions (initialized at 1
3

for three-dimensional inputs). As learning
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proceeds, more attention will be allocated to the task relevant dimensions and less to the irrele-

vant dimensions. Attention weights are always non-negative and normalized to sum to one (74).

Specificity parameter c is fixed (a hyper-parameter).

Clusters compete to respond to input patterns and in turn inhibit one another following

Hact
j =

exp(t ·Hact
j )∑N

i=1 exp(t ·Hact
i )

Hact
j (4)

where t is an inverse temperature parameter. When t is large, inhibition is weak. Contrary

to SUSTAIN’s winner-take-all (WTA) scheme where only the activation of the most activated

cluster is passed onto the output layer, we allow all clusters contribute to model decision subject

to normalization:

Hout
j =

exp(u ·Hact
j )∑N

i=1 exp(u ·Hact
i )

Hact
j (5)

where u is a decision parameter. Adjusting u can change how much the module’s overall activity

(output response) is dependent on a single cluster. When using an extremely large u, model

decision reduces to WTA. It is worth noting that while Equation 4 and Equation 5 share the

same expression, they are intended to capture different processes the brain might implement.

Every cluster has association weights connected to the output layer, hence the activation of

output layer unit k is denoted:

Cout
k =

N∑
j=1

wkjH
out
j (6)

Association weights are trainable parameters of the module, which are initialized from zero.

Output activations are further converted to a probability response using

pk =
exp(d · Cout

k )∑K
i=1 exp(d · Cout

i )
(7)

where the probability of a given stimulus belonging to category k is the magnitude of output

unit k’s activation, scaled by a real-valued decision parameter d relative to the sum of all K

output units’ activations (exponentiated).
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6.3 Controller-Peripheral Learning Framework

We train the model within the controller-peripheral learning framework. As the controller, the

clustering module is first updated to optimize the global learning objective (i.e., categorization

error). As the peripheral, the DNN module is then updated to optimize an intermediate learn-

ing objective instructed by the controller (see below). Both modules are iteratively optimized

throughout learning. In a given trial, the DNN module receives an image stimulus and outputs a

psychological representation of the stimulus for the clustering module. The clustering module

receives the stimulus and completes a single learning step that involves cluster recruitment and

loss optimization.

Cluster recruitment The clustering module is initialized with no clusters and learning always

begins with the module creating a new cluster centering on the first trial. In subsequent learning

trials, cluster recruitment takes into account all clusters at once to the degree they are activated.

Each cluster has a measure of “support” (i.e., consistency) for the correct response which is

determined by the direction and magnitude of the association weights (see Eq. 9). Importantly,

this measure of support is determined by the ratio of its association weights, as opposed to their

absolute magnitude which would advantage older clusters with established association weights.

The totalSupport (−1 and 1 inclusive) of the current clustering, which determines whether

a new cluster is recruited should totalSupport fall below some threshold parameter, is

totalSupport =

∑N
i supporti ·Hout

i∑N
i Hout

i

(8)

where Hout
i is the output of cluster i and supporti (−1 and 1 inclusive) is the support from

cluster i defined as,

supporti =
wi,correct − wi,incorrect

|wi,correct|+ |wi,incorrect|
(9)

where wi,correct is the association weight from cluster i to the correct output unit and wi,incorrect

32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.16.524194doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.16.524194
http://creativecommons.org/licenses/by/4.0/


is the association weight to the incorrect output (i.e., response) unit. If we only consider the

most activated cluster, this recruitment rule reduces to the WTA procedure previously used in

SUSTAIN (48).

Loss optimization After the cluster recruitment step, parameters of the clustering module,

namely the association weights, attention weights and all cluster positions will be updated via

gradient descent in order to minimize the global categorization loss as well as a regularization

loss:

En = −Ek∈K [yk log(pk) + (1− yk) log(1− pk)] + γ
∑
i

αi log (αi) (10)

The first half of the loss is the cross-entropy error between a stimulus yn = (y1, y2, ..., yk)
T

and its prediction by the module pn = (p1, p2, ..., pk)
T . The second half of the loss is the en-

tropy of the dimensional attention strength (weighted by a hyper-parameter γ). The entropy

term encourages the model to develop selective (non-uniform) attention weights. This is in ac-

cordance with eye-tracking results that humans tend to optimize attention to only task diagnostic

dimensions when solving Shepard et al.’s problems (75).

DNN module update After the clustering module is updated, the DNN module will update

to optimize learning objective determined by the clustering module with no direct access to the

global categorization error. Specifically, DNN module is directed by the costly-energy principle

to both reduce the number of non-zero peripheral attention weights (i.e., increasing sparsity) and

to avoid disrupting existing cluster representations in the clustering module (computed by Eq.

3). We define the overall loss as follows:

L = λ[
1

N

N∑
n=1

(Hout
true;n −Hout

pred;n)
2] + ||g|| (11)

where the first half is a reconstruction loss (mean-squared-error; weighted by λ) between the
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true outputs of all clusters Hout
true;n before attention optimization begins at each trial and the

predicted outputs of all clusters Hout
pred;n given the same stimulus after attention optimization.

The second half is a l1 regularization loss on the peripheral attention weights g that encourages

sparsity. The peripheral attention weights are updated using the entire stimulus set to avoid

over-fitting to a single stimulus. We set a fixed number of iterations (a hyper-parameter) for this

optimization within each trial.

6.4 Alternative Models

To validate that both the controller-peripheral learning framework and costly-energy principle

are necessary for the model to capture human performance and neural responses, we consider

three alternative models that lack either or both elements (Fig. S.1A). We compare competing

models based on two criteria. First, we evaluate whether the model is able to account for

human learning performance in (53). Second, we evaluate whether the peripheral of the model

exhibits patterns of resource expenditure that are in accord with those reported in the prior

literature (54,76,77). Specifically, we test whether the sparsity of peripheral attention weights –

reflecting less energy expenditure – increases with decreasing task difficulty, mirroring results

shown in brain imaging studies (54).

Training procedures are identical across these models but they differ in terms of the op-

timization objectives. For Model 2, which follows the costly-energy principle but not the

controller-peripheral framework, it is optimized to the following loss:

L = −λ{[Ek∈K [yk log(pk) + (1− yk) log(1− pk)]}+ ||g|| (12)

The only difference to Model 1 is that in Model 2, both the DNN module and the clustering

module are updated to minimize the global categorization error (first half) in addition to the

l1 regularization loss on the peripheral attention weights (second half). For Model 3, which
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follows the controller-peripheral framework but not the costly-energy principle, it is optimized

to:

L = λ[
1

N

N∑
n=1

(Hout
true;n −Hout

pred;n)
2] (13)

The only difference to Model 1 is that Model 3 does not have the regularization term on the pe-

ripheral attention weights. For Model 4, which follows neither the controller-peripheral frame-

work nor the costly-energy principle, it is optimized to the global categorization loss without

the l1 regularization over peripheral attention weights:

L = −λ{[Ek∈K [yk log(pk) + (1− yk) log(1− pk)]} (14)

6.5 Human Behavioral and Neuroimaging Studies
6.5.1 Stimulus Set

We applied the model to account for human category learning behavior described in (53) and

replicated in (78). We used insect stimuli created by (10) with the same category structures as

the geometric shape stimuli used in the original study (Fig. 2A). The stimulus set consisted

of insects with three binary features (thick/thin legs, thick/thin antennae, and pincer/shovel

mouths). There are in total eight images representing all combinations of the three binary-

valued features (Table S.6).

(53) described six learning tasks where participants learn to classify stimuli into two cat-

egories in each task and showed learning curves that revealed the difficulty ordering of the

category structures. Type I was the easiest to master, followed by Type II, followed by Types

III–V, and Type VI was the hardest. For solving Type I, only one stimulus dimension is relevant

whereas two dimensions are relevant for solving Type II (i.e., XOR with an irrelevant dimen-

sion). All three dimensions are relevant in Types III–VI. There are a few regularities for Type

III-V as they can be classified as rule-plus-exception problems, and solving Type VI requires

memorizing all stimuli.
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6.5.2 Modeling Shepard et al., (1961)

We set out to evaluate whether our model can capture the classic learning behaviors from (53)

and retain SUSTAIN’s strategies in solving the six learning problems (48). To that end, we

trained our model to mirror the learning curves from (78), which is a replication of (53). We

simulated our model in a trial-by-trial manner consistent with the procedures in the original

experiment. Unlike the human results, which are averages of relatively small groups of individ-

uals, we trained the model over 500 independent restarts (analogous to individual participants),

each time with a different stimulus sequence. For each restart, the eight stimuli were presented

in a randomized order for a total of 32 repetitions. To maintain consistency, we seeded each

restart with a specific number, resulted in the same stimulus sequence across problems. We

also counterbalanced feature-to-task mappings across restarts. To obtain learning curves to fit

to the human data, we computed the probability of error (i.e., 1−proportion correct) for each

repetition over all stimuli and restarts.

6.5.3 Modeling Mack et al., (2016)

To explore how the computational model’s learning mechanism is implemented in the brain

during category learning, we set out to fit our model to human category learning behavior and

relate the model’s internal representations to human fMRI data during category learning.

Building on (53)’s paradigm, (10) applied a model-based fMRI approach focusing on how

HPC and PFC are involved in concept learning. In their study, participants learned the Type I,

II and VI problems whilst during an fMRI scan. All of the participants learned to perform the

Type VI problem first, the order of the Types I and II problems was then counterbalanced across

participants. Each problem type lasted four scanner runs. There were four blocks within each

run and for each behavioral block there were right trials. During scanning, whole-brain images

were acquired. Whole brain activation patterns for each stimulus within each run were estimated
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using an event-specific univariate GLM approach. For details about data preprocessing and

GLM modeling, see Methods (Section 6.5.3). For details about data acquisition and behavior

experiments, we refer readers to the original paper (10).

We trained one instance of the model for each participant (with a unique stimulus sequence)

in a trial-by-trial basis and fitted their learning curves independently. For each participant, we

performed a hierarchical grid search to find the best hyper-parameters. The quality of fits was

evaluated based on the average mean-square-error between learning curves of participants and

models.

To evaluate whether our model captures learning mechanisms in the brain, we measured the

correspondence between model representations to brain regions hypothesized to be involved in

different aspects of category learning (vmPFC and LOC).

Model correspondence to vmPFC To relate high-level clustering module of our model to

vmPFC, we evaluated the correspondence between neural compression in vmPFC and attention

strategy used by the clustering module during category learning. For each fitted model and a

given task, we computed a block-wise attention compression score using the average attention

weights within a block of eight trials with unique stimuli based on,

entropy = −
3∑

i=1

αilog2αi (15)

compression = 1 +
entropy

log2(
1
3
)

(16)

Intuitively, the compression score is formulated as normalized entropy (bounded between 0 and

1 inclusive) indexing the dispersion of attention across stimulus dimensions. If the task com-

plexity is high, requiring attention to multiple features, attention weights will be less selective,

which will lead to a low compression score. If the task complexity is low, attention will be

allocated to some features more than others, which will lead to a high compression score (see
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results in Fig. 4A). We tested the significance of the main effects (problem complexity and

learning block) and their interaction with a two-way analysis of variance (ANOVA; see full re-

sults in Table S.5). Additionally, we quantified the change of attention compression over time

by fitting a linear regression model for each participant model using the compression score as

the dependent variable and time (learning block) as the independent variable for each problem

type. We further tested the significance of the regression coefficients with an one-sample t-test

(see results in Sec. 4).

Model correspondence to LOC To test whether there is a correspondence between the atten-

tion modulated output layer of the DNN and LOC, we evaluated whether stimulus information

coding from the model layer is consistent with neural stimulus coding in LOC during category

learning.

Stimulus information coding at the output layer of the DNN module is subject to distortion

as a result of task-oriented attention in the clustering module, which in turn modulates the psy-

chological representation of the stimulus. We expected that the representation of the irrelevant

features will slowly degrade, leading to information loss. Therefore, stimuli with a low informa-

tion loss would suggest stimulus information is largely preserved in the network which implies

that most features are task relevant and can be reconstructed from the network. On the contrary,

a high information loss would suggest most features are task irrelevant which can no longer be

reconstructed. We quantified the information loss as the cross-entropy error between the stim-

ulus representation before and after category learning. We computed the average information

loss over participants per stimulus dimension and per task (see results in Fig. 4A-B)

In the model, information loss can be directly computed using network activities in that

we have access to both stimulus representations before and after learning. In the brain, how-

ever, such a direct measure is not available. Therefore, we used multivariate pattern analysis

38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.16.524194doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.16.524194
http://creativecommons.org/licenses/by/4.0/


(MVPA) to we determined how linearly separable (i.e., confusable) two neural activity patterns

are in LOC for every pair of stimuli in each task (decoding error; 1 - decoding accuracy). Intu-

itively, neural patterns of stimulus pairs that differ by a task-relevant dimension should be more

easily separable (less confusable) than stimulus pairs that differ by a task-irrelevant dimension

in that information about task relevant dimensions should be better preserved in the brain, akin

to less information loss in the model. Information loss should be the lowest for Type VI, as

most stimulus pairs differ by at least one relevant dimension (as all features are relevant), and it

is desirable to maintain information about relevant features. On the contrary, information loss

in Type I should be the highest as many stimulus pairs will differ by an irrelevant dimension

(having one relevant and two irrelevant features) and it is not necessary to maintain information

irrelevant to the task. We trained linear support vector classifiers on neural activity patterns of

stimulus pairs in LOC (SVC; C = 0.1; using the Scikit-learn python package; (79)). Neural ac-

tivity patterns for each stimulus within each scanner run were estimated using an event-specific

univariate GLM approach (see Sec. 6.5.3 for details). We fitted the support vector classifiers

using a three-fold cross-validation procedure (the first run was excluded from training because

learning at the start could be unstable). We computed the average decoding error (1 - classifier

accuracy) over stimuli pairs and participants across tasks.

To test the prediction that information loss in both brain and model would linearly scale with

the amount of stimulus information required to solve the task (i.e., the number of dimensions

relevant to the task), we performed a linear regression analysis on information loss as the depen-

dent variable and the number of relevant dimensions per task as the independent variables. This

was done separately for decoding error in LOC, and information loss in the participant-fitted

model. We then performed one-sample t-test over regression coefficients obtained for partic-

ipants and models separately. A significant downward trend in both cases would support our

prediction.
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Furthermore, we computed the percentage of zeroed out attention weights on the peripheral

attention layer, as a measure of energy efficiency and related it to neural dimensionality esti-

mated in LOC. We assessed the average percentage of zeroed out attention weights over partic-

ipants and over tasks at the end of learning. We predicted that the dimensionality of attention

weights should linearly scale with the amount of stimulus information (i.e., feature dimensions)

relevant to the task. To verify such a relationship, we again performed linear regression analy-

sis as above, but using percentage of zero attention weights as the dependent variable and the

number of relevant dimensions per task as the independent variables. We performed linear re-

gression on each behaviour-fitted model and performed a one-sample t-test over the regression

coefficients to test the significance of the predicted relationship (see results in Sec. 4).

fMRI Data Processing

Results included in this manuscript come from preprocessing performed using fMRIPrep 21.0.1

( (80, 81); RRID:SCR 016216), which is based on Nipype; (82, 83); RRID:SCR 002502).

Anatomical data preprocessing A total of 22 T1-weighted (T1w) images were found within

the input BIDS dataset.The T1-weighted (T1w) image was corrected for intensity non-uniformity

(INU) with N4BiasFieldCorrection (84), distributed with ANTs 2.3.3 ( (85),

RRID:SCR 004757), and used as T1w-reference throughout the workflow. The T1w-reference

was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow

(from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cere-

brospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-

extracted T1w using fast (FSL 6.0.5.1:57b01774,

RRID:SCR 002823, (86)). Volume-based spatial normalization to one standard space

(MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration

(ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. The
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following template was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical

template version 2009c [ (87), RRID:SCR 008796; TemplateFlow ID: MNI152NLin2009cAsym].

Functional data preprocessing For each of the 12 BOLD runs found per subject (across all

tasks and sessions), the following preprocessing was performed. First, a reference volume and

its skull-stripped version were generated using a custom methodology of fMRIPrep. Head-

motion parameters with respect to the BOLD reference (transformation matrices, and six corre-

sponding rotation and translation parameters) are estimated before any spatiotemporal filtering

using mcflirt (FSL 6.0.5.1:57b01774, (88)). The BOLD time-series (including slice-timing cor-

rection when applied) were resampled onto their original, native space by applying the trans-

forms to correct for head-motion. These resampled BOLD time-series will be referred to as

preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD reference was

then co-registered to the T1w reference using mri coreg (FreeSurfer) followed by flirt (FSL

6.0.5.1:57b01774, (89)) with the boundary-based registration (Greve and Fischl 2009) cost-

function. Co-registration was configured with six degrees of freedom. Several confounding

time-series were calculated based on the preprocessed BOLD: framewise displacement (FD),

DVARS and three region-wise global signals. FD was computed using two formulations fol-

lowing Power (absolute sum of relative motions, (90)) and Jenkinson (relative root mean square

displacement between affines, (88)). FD and DVARS are calculated for each functional run,

both using their implementations in Nipype (following the definitions by Power et al. 2014).

The three global signals are extracted within the CSF, the WM, and the whole-brain masks. Ad-

ditionally, a set of physiological regressors were extracted to allow for component-based noise

correction (CompCor, (91)). Principal components are estimated after high-pass filtering the

preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two

CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components
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are then calculated from the top 2% variable voxels within the brain mask. For aCompCor, three

probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical space.

The implementation differs from that of (91) in that instead of eroding the masks by 2 pixels on

BOLD space, the aCompCor masks are subtracted a mask of pixels that likely contain a volume

fraction of GM. This mask is obtained by thresholding the corresponding partial volume map at

0.05, and it ensures components are not extracted from voxels containing a minimal fraction of

GM. Finally, these masks are resampled into BOLD space and binarized by thresholding at 0.99

(as in the original implementation). Components are also calculated separately within the WM

and CSF masks. For each CompCor decomposition, the k components with the largest singular

values are retained, such that the retained components’ time series are sufficient to explain 50

percent of variance across the nuisance mask (CSF, WM, combined, or temporal). The remain-

ing components are dropped from consideration. The head-motion estimates calculated in the

correction step were also placed within the corresponding confounds file. The confound time

series derived from head motion estimates and global signals were expanded with the inclusion

of temporal derivatives and quadratic terms for each (92). Frames that exceeded a threshold of

0.5 mm FD or 1.5 standardised DVARS were annotated as motion outliers. All resamplings can

be performed with a single interpolation step by composing all the pertinent transformations

(i.e. head-motion transform matrices, susceptibility distortion correction when available, and

co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were per-

formed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize

the smoothing effects of other kernels (93). Non-gridded (surface) resamplings were performed

using mri vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.8.1 ( (94), RRID:SCR 001362), mostly

within the functional processing workflow.
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fMRI General Linear Model We used the general linear model (GLM) in using NiPype (82),

using SPM functions (SPM version 12; (95)), to obtain estimates of the task-evoked signals for

the multivariate pattern analyses (MVPA) where we quantified information loss across category

structures. Whole brain activation patterns for each stimulus within each run were estimated

using an event-related GLM. For each scan run, we included a GLM with one explanatory

variable (EV) for each of the eight stimuli, modelled as 3.5-s boxcar convolved with a canonical

hemodynamic response function (HRF) to extract voxel-wise parameter estimates to each of

the stimuli. Stimulus EVs for the feedback stimulus (2-s boxcar) and six motion parameters

were also included in the GLM (not used in subsequent analyses). This resulted in whole brain

activation patterns for each participant for all stimuli across Type I, II and VI learning problems.

We conducted a GLM for each run separately for leave-one-run-out cross-validation for MVPA.

No spatial smoothing was applied.

Stimulus EVs were 3.5s with stimulus-feedback intervals ranging from 0.5-4.5 (jittered).

A feedback was shown for 2s followed by a 4-8s fixation. There were 4 repetitions of each

stimulus (eight stimuli) in each scan run (for full details of the task, see (10)).

Regions of interest We tested the correspondence between the novel aspects of our model

and the brain. Specifically, we hypothesized that activity of the DNN’s attention-layer modu-

lated output would correspond to LOC, higher-level visual regions later in the ventral stream.

Therefore, we focused the LOC as a region of interest (ROI).

The LOC anatomical masks were taken from (96). The masks are provided in T1 structural

MRI space (1-mm3), and when transformed into individual functional space (3-mm3), some

gray matter voxels are excluded. Therefore, minor smoothing was applied to the T1 mask

(Gaussian kernel of 0.2 mm, using fslmaths) for a liberal inclusion of neighboring voxels before

transforming to functional space. Left and right masks were smoothed and merged using ANTs.
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Supplementary Figures and Tables

Clusters
Type I II III IV V VI

2 71% – – 3.8% – –
3 3.4% – – – – –
4 18% 67% 7.0% 0.80% 1.6% –
5 0.60% 3.4% 4.8% 6.0% 3.2% –
6 1.8% 4.0% 61% 65% 59% –
7 2.4% 6.6% 22.6% 22.8% 18.2% 3.0%
8 3.4% 19% 4.8% 1.8% 18% 97%

Table S.1: The clustering module of our model solves six category learning problems by re-
cruiting varying number of clusters. The modal number of clusters recruited is 2, 4, 6, 6, 6, 8
for Type I–VI respectively, which is consistent with SUSTAIN.

Clusters
Type I II III IV V VI

2 59% – – 2.6% – –
3 3.6% – – – – –
4 19% 28% 3.0% 0.2% – –
5 1.0% 3.0% 2.6% 3.4% 1.4% –
6 4.4% 9.0% 47% 61% 48% –
7 3.4% 12% 34% 30% 24% 3.0%
8 8.8% 47% 13% 3.4% 27% 97%

Table S.2: Model 2 cluster recruitment.

Clusters
Type I II III IV V VI

2 71% – – 4.2% – –
3 3.4% – – – – –
4 18.2% 69% 7.4% 0.40% 1.6% –
5 0.40% 3.2% 5.8% 6.6% 2.0% –
6 2.2% 3.8% 59% 65% 62% –
7 1.6% 7.0% 22% 22% 18% 3.6%
8 3.2% 17% 5.0% 1.6% 16% 96%

Table S.3: Model 3 cluster recruitment.
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Clusters
Type I II III IV V VI

2 71% – – 4.2% – –
3 2.4% – – – – –
4 20.8% 65% 6.8% 0.20% 1.0% –
5 0.40% 3.0% 5.2% 4.8% 1.8% –
6 1.2% 4.4% 61% 67% 62% –
7 1.6% 6.4% 22% 22% 19% 2.0%
8 2.8% 21% 4.8% 1.8% 17% 98%

Table S.4: Model 4 cluster recruitment.
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Figure S.1: Comparison to alternative models in the model space. (A) Apart from our model
(Model 1) which implements controller-peripheral framework and is optimized based on the
costly-energy principle, we consider three alternative models which lack one or both elements.
For Model 2 and 4 which lack the controller-peripheral architecture, they are optimized to min-
imize the standard global categorization error. For Model 3 and 4 which lack costly-energy
principle, there are no constraints on the perceptual attention weights of their peripheral mod-
ule; (B-C) All three alternative models (Model 2-4) cannot account for human learning behavior
of (53) or show task-specific resource expenditure patterns as those found in (54). For Model 2,
while the energy expenditure (in terms of the sparsity of learned peripheral attention weights)
across problem types is in the right order, it is not as significant as Model 1 and Model 2 cannot
capture human behavior with global error optimization; A key reason for this pattern is because
there is no pressure for the peripheral of Model 2 to respect representations of the controller,
subsequently there is no constraint on how the DNN module learns, causing it to learn out-of-
sync with the controller (leading to instability in how many clusters can the controller recruits;
Table S.2). For both Model 3 and 4, while they show correct difficulty ordering of six problem
types, they do not demonstrate energy expenditure patterns that can reflect task difficulty.
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ddof1 ddof2 MS F P

Problem Complexity 2 42 41.27 78.18 < 0.001
Learning Block 15 315 0.66 28.07 < 0.001
Interaction 30 630 0.21 13.56 < 0.001

Table S.5: Two-way ANOVA showed significant main effects (Problem Complexity and Learn-
ing Block) as well as significant interaction between the two.

Stimulus Leg Antenna Mandible

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Table S.6: Mapping between pixel-level stimuli and binary-valued psychological representa-
tions.
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Position
Learning rate

3e− 3 3e− 4 3e− 5 3e− 6

fc2 0.833 1 1 0.833
block5 pool 1 1 1 1
block5 conv3 0.833 1 1 1
block5 conv2 1 1 1 1
block5 conv1 1 1 1 1
block4 pool 1 1 1 1
block3 pool 1 1 1 1

Table S.7: Fine-tuning performance of the first training procedure. Layer positions are listed
(top to bottom) from advanced to intermediate.

Position
Learning rate

3e− 3 3e− 4 3e− 5 3e− 6

fc2 0.643 0.661 0.679 0.625
block5 pool 0.839 0.768 0.768 0.750
block5 conv3 0.750 0.679 0.696 0.750
block5 conv2 0.893 0.857 0.893 0.946
block5 conv1 0.786 0.804 0.786 0.821
block4 pool 0.964 0.946 0.929 0.929
block3 pool 0.929 0.911 0.911 0.875

Table S.8: Fine-tuning performance of the second training procedure. Layer positions are listed
(top to bottom) from advanced to intermediate.
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Figure S.2: Controller-peripheral interaction in the proposed model overtime. (A) Change
in controller attention strength drives change in information loss of stimulus feature represen-
tations in the peripheral. For irrelevant dimensions of a problem type, decreasing controller
attention strength leads to increasing information loss of the irrelevant dimensions; (B) The
sparsity of peripheral attention weights corresponds to the compression level of controller at-
tention weights. Decreasing compression level of controller attention over increasing task diffi-
culty leads to decreasing sparsity level of peripheral attention weights.
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Figure S.3: Participants response time and accuracy differ by task relevant stimulus di-
mensions. We evaluated whether the three visual features of the stimulus (leg, antenna and
mandible) were equally perceived by participants by measuring the difference in response time
and categorization accuracy when different stimulus features are relevant for the task. We fo-
cused on Type I with only one relevant feature for the best contrast. We computed the average
response time and accuracy over participants and learning blocks for each relevant feature. We
found that when feature “mandible” was the relevant dimension, response time became signif-
icantly slower than when either of the other two dimensions was relevant. We also found that
categorization accuracy was significantly lower when mandible was the relevant dimension than
the other dimensions.
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