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A B S T R A C T

Detecting protein complexes is critical for studying cellular organizations and functions. The
accumulation of protein-protein interaction (PPI) data enables the identification of protein
complexes computationally. Although various computational approaches have been proposed
to detect protein complexes from PPI networks, most of them ignore the signs of PPIs
that reflect the ways proteins interact (activation or inhibition). As not all PPIs imply co-
complex relationships, taking into account the signs of PPIs can benefit the detection of protein
complexes. Moreover, PPI networks are not static, but vary with the change of cell states
or environments. However, existing protein complex identification algorithms are primarily
designed for single-network clustering, and rarely consider joint clustering of multiple PPI
networks. In this study, we propose a novel partially shared signed network clustering model
(PS-SNC) for detecting protein complexes from multiple state-specific signed PPI networks
jointly. PS-SNC can not only consider the signs of PPIs, but also identify the common and
unique protein complexes in different states. Experimental results on synthetic and real datasets
show that PS-SNC outperforms other state-of-the-art protein complex detection methods.
Extensive analysis on real datasets demonstrate the effectiveness of PS-SNC in revealing novel
insights about the underlying patterns of different cell lines.

1. Introduction
Proteins are key executors of almost all cellular processes and often perform their specific biological functions

through interactions with other proteins to form protein complexes. Disruptions or dysregulation of protein complexes
often lead to cell dysfunction that may manifest as disease [1, 2]. Therefore, the identification and analysis of protein
complexes is crucial not only for understanding the mechanisms behind the functional organization of cells but
also the pathogenesis of diseases, which could provide insights for disease diagnosis and drug development [3, 4].
Various biological experimental techniques, such as tandem affinity purification-mass spectrometry (AP-MS) [5, 6]
and yeast-two hybrid (Y2H) [7, 8], have been adapted for large-scale identification and study of protein complexes.
However, Y2H does not detect protein complexes directly but identify interaction between two proteins while AP-MS
often detect subsets of different protein complexes [9]. With the development of high-throughput protein interaction
profiling technologies, a large amount of protein-protein interaction (PPI) data has been accumulated, enabling the
identification of protein complexes from PPI networks using computational methods instead [10]. Recently, a great
number of computational efficient methods have been proposed to identify protein complexes from PPI networks
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Most of these methods are based on the assumption that interacting
protein pairs tend to belong to same complexes and densely connected subnetworks in PPI networks are potential
protein complexes.

Most existing protein complex detection methods do not consider the signs of PPIs (i.e., activation-inhibition
relationships). Studies have shown that proteins belonging to same complexes are mainly connected by positive
interactions, while negative interactions are more likely to occur between proteins belonging to different complexes
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[23]. Recently, Huttlin et al. [24] generated the most complete dataset of the human interactome to date, named
BioPlex 3.0, which includes two PPI networks obtained in HEK293T cells and HCT116 cells that were derived from
embryonic kidney tissue and colorectal carcinoma respectively. They calculated the correlation of interacting protein
pairs in the BioPlex networks, resulting in sign information of protein interactions, and found that positively correlated
proteins (i.e., positive PPIs) tend to belong to same complexes, while negatively correlated proteins (i.e., negative PPIs)
were more likely to belong to different complexes. As positive and negative correlations imply different functional
and structural relationships between proteins, considering the signs of PPIs can help to improve the accuracy of
protein complex identification and deepen our understanding of the mechanism of cellular function. Ou-Yang et al.
[25] proposed a signed network clustering model named SGNMF to identify protein complexes from a single signed
PPI network, and confirmed that considering the signs of PPIs can indeed improve the accuracy of protein complex
identification.

The above methods detect protein complexes by single-network clustering or multi-view network clustering
[26, 27]. However, they seldom consider the changes of protein complexes in different states. In fact, the interactions
between proteins are not static, but varies with the change in cell states or environments [24]. Protein complexes
may also dynamically assemble or dissociate as needed [28]. On one hand, core protein complexes that serve as the
backbone of cellular activities are often relatively stable but on another hand, some function-specific protein complexes
may be formed only under specific conditions [24]. For example, the ideal targets for cancer therapy should be found
in most cancer cells, instead of normal cells. Thus, complexes as ideal targets are those formed significantly different
in different tumor types [29]. Therefore, instead of analyzing each PPI network separately, we need to analyze multiple
PPI networks that under different cell states jointly to detect the common protein complexes that are shared across
different states as well as identifying protein complexes that uniquely exist in certain states. Adopting this strategy
could improve the accuracy of protein complex identification through joint analysis while at the same time helps to
reveal various protein complexes underlying various cell state transitions and adaptations.

To address the above challenges, in this study, we develop a novel partially shared signed network clustering
(PS-SNC) model to identify the common and unique protein complexes in two state-specific signed PPI networks
simultaneously. The overall framework of our model is shown in Fig. 1. Firstly, we introduce a partially shared non-
negative matrix factorization model to identify protein complexes in two state-specific signed PPI networks jointly,
and divide the predicted complexes of each network into two parts, i.e., the common complexes that are shared
across two networks and the unique complexes that are specific to each network. Secondly, to consider the sign
information of PPIs when detecting protein complexes, we introduce a signed graph regularization term. Furthermore,
we introduce Hilbert-Schmidt Independence Criterion (HSIC) as a diversity constraint to penalize the correlations
between network-specific parts, and a low-rank constraint is employed to control the number of generated clusters and
the overlap among clusters. Extensive experimental results on synthetic and real datasets show the superiority of our
proposed method over five state-of-the-art protein complex detection methods.

2. Method
In this section, we describe the details of our proposed Partially Shared Signed Network Clustering (PS-SNC)

model.

2.1. Model formulation
Given two signed PPI networks 𝐺1 and 𝐺2, let 𝑉 𝑚 denotes the set of proteins in 𝐺𝑚 for 𝑚 = 1, 2, and 𝑁 denotes

the total number of proteins in both networks, i.e., 𝑁 = |𝑉 1 ∪𝑉 2
|. Each signed network is described by an adjacency

matrix 𝐴𝑚 ∈ R𝑁×𝑁 , where 𝐴𝑚
𝑖𝑗 = 1 means there is a positive PPI between 𝑖-th and 𝑗-th proteins, 𝐴𝑚

𝑖𝑗 = −1 means
there is a negative PPI between 𝑖-th and 𝑗-th proteins, and 𝐴𝑚

𝑖𝑗 = 0 means there is no known interaction between 𝑖-th
and 𝑗-th proteins. Moreover, we divide 𝐴𝑚 into two parts, i.e., 𝐴𝑚 = 𝐴𝑚+ − 𝐴𝑚−, where 𝐴𝑚+ and 𝐴𝑚− denote the
positive and negative parts of 𝐴𝑚 respectively. Here, 𝐴𝑚+

𝑖𝑗 = 𝐴𝑚
𝑖𝑗 if 𝐴𝑚

𝑖𝑗 > 0, and 𝐴𝑚+
𝑖𝑗 = 0 otherwise. 𝐴𝑚−

𝑖𝑗 = −𝐴𝑚
𝑖𝑗 if

𝐴𝑚
𝑖𝑗 < 0, and 𝐴𝑚

𝑖𝑗 = 0 otherwise. Our goal is to identify protein complexes from these two signed PPI networks jointly,
and identify the common complexes that are shared across two networks and the unique complexes that are specific
to each network simultaneously.

As positive interactions usually take place between proteins belong to same complexes [23], the elements in the
positive adjacency matrix 𝐴𝑚+ describe the co-complex relationships between proteins. Thus, we first introduce a
nonnegative indication matrix 𝐹𝑚 ∈ R𝑁×𝐾𝑚

+ to mine the underlying co-complex relationships between proteins by
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Fig. 1. The overall framework of PS-SNC. Given two PPI networks with positive edges and negative edges, our PS-SNC
can detect the common protein complexes that are shared across two networks (the complex with purple color) and
the unique complexes that are specific to each network (a complex with yellow color for network 𝐺1 and a complex with
pink color for network 𝐺2). In particular, PS-SNC is a NMF framework with 3 additional regularization terms.

approximating 𝐴𝑚+ as follows:

𝐴𝑚+
𝑖𝑗 ≈

𝐾𝑚
∑

𝑘=1
𝐹𝑚
𝑖𝑘𝐹

𝑚
𝑗𝑘, 𝑓𝑜𝑟 𝑖, 𝑗 = 1, ..., 𝑁. (1)

Here, 𝐾𝑚 denotes the number of complexes in 𝑚-th network and each element 𝐹𝑚
𝑖𝑘 of 𝐹𝑚 describes the propensity

of 𝑖-th protein to belong to 𝑘-th complex. A higher value of 𝐹𝑚
𝑖𝑘 indicates a higher propensity of 𝑖-th protein to belong

to 𝑘-th complex. As we allow a protein to have high propensities on more than one complex, our model supports the
identification of overlapping protein complexes.

To measure the distance between 𝐹𝑚(𝐹𝑚)𝑇 and 𝐴𝑚+, following previous studies [30], we adopt Kullback-Leibler
(KL) divergence. Since different networks may cover different numbers of proteins, for each network, we introduce
a vector 𝜃𝑚 ∈ {0, 1}𝑁×1 to indicate the proteins belong to each network, where 𝜃𝑚𝑖 = 1 means that 𝑖-th protein is
included in network 𝐴𝑚+, and 𝜃𝑚𝑖 = 0 otherwise. The loss function is defined as follows:

𝐷𝐾𝐿

(

𝐴𝑚+ |

|

|

𝐹𝑚 (𝐹𝑚)𝑇
)

=
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝜃𝑚𝑖 𝜃

𝑚
𝑗

⎡

⎢

⎢

⎣

𝐴𝑚+
𝑖𝑗 log

⎛

⎜

⎜

⎝

𝐴𝑚+
𝑖𝑗

∑𝐾𝑚

𝑘=1 𝐹
𝑚
𝑖𝑘𝐹

𝑚
𝑗𝑘

⎞

⎟

⎟

⎠

− 𝐴𝑚+
𝑖𝑗 +

𝐾𝑚
∑

𝑘=1
𝐹𝑚
𝑖𝑘𝐹

𝑚
𝑗𝑘

⎤

⎥

⎥

⎦

. (2)

Instead of exploring the consistent patterns of different networks and forcing 𝐹 1 = 𝐹 2, we try to identify the
common and unique complexes in different networks jointly. Thus, in this study, 𝐹𝑚 is divided into two parts, i.e.,
𝐹𝑚 = [𝐶, 𝑆𝑚], where 𝐶 ∈ R𝑁×𝐾𝐶

+ is the common part that reflects the consistent information shared across the two
networks and 𝑆𝑚 ∈ R𝑁×𝐾𝑆

+ is the unique part that reflects the specific information of each network, and 𝐾𝐶 and
𝐾𝑆 are the dimensions of the common and unique latent factors respectively. Similar to the choice of [31], we set
𝐾𝐶 ∶ 𝐾𝑆 = 2 ∶ 1 in our experiments. Accordingly, the above loss function can be modified as follows:

𝐷𝐾𝐿 = −
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝜃𝑚𝑖 𝜃

𝑚
𝑗

[

𝐴𝑚+
𝑖𝑗 log

(𝐾𝐶
∑

𝑘=1
𝐶𝑖𝑘𝐶𝑗𝑘 +

𝐾𝑆
∑

𝑙=1
𝑆𝑚
𝑖𝑙𝑆

𝑚
𝑗𝑙

)

−
𝐾𝐶
∑

𝑘=1
𝐶𝑖𝑘𝐶𝑗𝑘 −

𝐾𝑆
∑

𝑙=1
𝑆𝑚
𝑖𝑙𝑆

𝑚
𝑗𝑙

]

. (3)

2.2. Signed graph regularization
As positive PPIs usually take place between proteins belonging to same complexes and negative PPIs are more

likely to be inter-module interactions [32], we need to take into account the signs of PPIs when detecting protein
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complexes. Graph Laplacian regularizer is widely used to measure the smoothness of latent representations of nodes
based on their similarities [33]. In this study, considering the signs of PPIs, we introduce a signed graph Laplacian
term to regularize the propensities of interacting proteins on the same complexes [25]. As positive PPIs indicate
co-complex relationships and negative PPIs indicate inter-module relationships, the signed Laplacian regularization
for 𝐹𝑚 is defined as follows:

𝑅 =1
2

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

|

|

|

𝐴𝑚
𝑖𝑗
|

|

|

𝐾𝑚
∑

𝑘=1

(

𝐹𝑚
𝑖𝑘 − sgn

(

𝐴𝑚
𝑖𝑗

)

𝐹𝑚
𝑗𝑘

)2

=1
2

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

|

|

|

𝐴𝑚
𝑖𝑗
|

|

|

[𝐾𝐶
∑

𝑘=1

(

𝐶𝑖𝑘 − sgn
(

𝐴𝑚
𝑖𝑗

)

𝐶𝑗𝑘

)2
+

𝐾𝑆
∑

𝑙=1

(

𝑆𝑚
𝑖𝑙 − sgn

(

𝐴𝑚
𝑖𝑗

)

𝑆𝑚
𝑗𝑙

)2
]

=𝑇 𝑟
(

𝐶𝑇𝐿𝑚𝐶
)

+ 𝑇 𝑟
(

(𝑆𝑚)𝑇 𝐿𝑚𝑆𝑚
)

,

(4)

where 𝑇 𝑟(⋅) represents the trace of the matrix and sgn(𝐴𝑚
𝑖𝑗) denotes the sign of 𝐴𝑚

𝑖𝑗 . 𝐿
𝑚 = �̃�𝑚 −𝐴𝑚+ +𝐴𝑚− is the

Laplace matrix, where �̃�𝑚 is the diagonal matrix defined by �̃�𝑚
𝑖𝑖 =

∑𝑁
𝑗=1

|

|

|

𝐴𝑚
𝑖𝑗
|

|

|

.

2.3. Diversity regularization
In order to explore the unique complexes specific to certain networks, we introduce a diversity constraint to

measure the difference between unique parts 𝑆1 and 𝑆2. In particular, we employ the Hilbert-Schmidt Independence
Criterion (HSIC) to construct the diversity constraint. HSIC can measure the dependence of variables by mapping
variables to a Reproducing Kernel Hilbert Space (RKHS), which can measure more complicated correlations.
Moreover, HSIC is computationally efficient as it does not need to estimate the joint distribution of random
variables explicitly [34]. Therefore, we adopt HSIC to penalize the correlation between 𝑆1 and 𝑆2, encouraging
the identification of unique complexes. Here, we use an inner product kernel for HSIC, and the estimator of
𝐻𝑆𝐼𝐶(𝑆1, 𝑆2) is given as follows [35]:

𝐻𝑆𝐼𝐶
(

𝑆1, 𝑆2) = (𝑁 − 1)−2 𝑇 𝑟
(

𝐻𝑆1 (𝑆1)𝑇 𝐻𝑆2 (𝑆2)𝑇
)

= (𝑁 − 1)−2 𝑇 𝑟
(

(

𝑆1)𝑇 𝐻𝑆2 (𝑆2)𝑇 𝐻𝑆1
)

,
(5)

where 𝐻 = 𝐼 − 1∕𝑁 , and 𝐼 is the N-order identity matrix.

2.4. Low-rank constraint
Note that 𝐹𝑚(𝐹𝑚)𝑇 represents the potential co-complex propensities between proteins, its rank should, ideally, be

equal to the number of complexes. As we have no prior knowledge about the number of complexes in each network, we
introduce a low-rank constraint on 𝐹𝑚(𝐹𝑚)𝑇 such that our model could determine the number of clusters adaptively.
We adopt the trace norm constraint ‖𝐹𝑚 (𝐹𝑚)𝑇 ‖∗, which is a relaxation of the low-rank constraint [26], to achieve this
goal. According to the above definition, we have ‖𝐹𝑚 (𝐹𝑚)𝑇 ‖∗ = ‖𝐹𝑚

‖

2
𝐹 , where ‖⋅‖𝐹 denotes the Frobenius norm.

2.5. Objective function
Considering the above factors, the overall objective function of our PS-SNC model can be expressed as:

min
𝐶,𝑆1,𝑆2≥0

−
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

2
∑

𝑚=1
𝜃𝑚𝑖 𝜃

𝑚
𝑗

[

𝐴𝑚+
𝑖𝑗 log

(𝐾𝐶
∑

𝑘=1
𝐶𝑖𝑘𝐶𝑗𝑘 +

𝐾𝑆
∑

𝑙=1
𝑆𝑚
𝑖𝑙𝑆

𝑚
𝑗𝑙

)

−
𝐾𝐶
∑

𝑘=1
𝐶𝑖𝑘𝐶𝑗𝑘 −

𝐾𝑆
∑

𝑙=1
𝑆𝑚
𝑖𝑙𝑆

𝑚
𝑗𝑙

]

+ 𝛽
2
∑

𝑚=1

[

𝑇 𝑟
(

𝐶𝑇𝐿𝑚𝐶
)

+ 𝑇 𝑟
(

(𝑆𝑚)𝑇 𝐿𝑚𝑆𝑚
)]

+ 𝛾𝐻𝑆𝐼𝐶
(

𝑆1, 𝑆2) + 2𝜆‖𝐶‖

2
𝐹 + 𝜆

2
∑

𝑚=1
‖𝑆𝑚

‖

2
𝐹 ,

(6)

where 𝛽, 𝛾 and 𝜆 control the trade-off between smoothness, diversity and low-rank constraints, respectively.
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Algorithm 1 Algorithm for PS-SNC

Input: adjacency matrix 𝐴1, 𝐴2, parameters 𝐾 , 𝛽, 𝜆, 𝛾 , 𝜏.
Output: 𝐹 1⋆, 𝐹 2⋆. // The final protein-complex indication matrix.
1: Initialize matrix 𝐶 , 𝑆1 and 𝑆2 randomly;
2: while Stop Condition do
3: Fix 𝐶 , update 𝑆1 and 𝑆2 :

𝑆1
𝑖𝑙 ←

𝑆1
𝑖𝑙
2

+ 1
2
𝑆1
𝑖𝑙

∑𝑁
𝑗=1

𝜃1𝑖 𝜃
1
𝑗𝐴

1+
𝑖𝑗

∑𝐾𝐶
𝑧=1 𝐶𝑖𝑧𝐶𝑗𝑧+

∑𝐾𝑆
𝑙=1 𝑆

1
𝑖𝑙𝑆

1
𝑗𝑙

𝑆1
𝑗𝑙 + 𝛽

(

𝐴1+𝑆1)
𝑖𝑙

∑𝑁
𝑗=1 𝜃

1
𝑖 𝜃

1
𝑗𝑆

1
𝑗𝑙 + 𝜆𝑆1

𝑖𝑙 + 𝛽
(

�̃�1𝑆1 + 𝐴1−𝑆1
)

𝑖𝑙 + 𝛾 (𝑁 − 1)−2
(

𝐻𝑆2
(

𝑆2
)𝑇 𝐻𝑆1

)

𝑖𝑙

(7)

𝑆2
𝑖𝑙 ←

𝑆2
𝑖𝑙
2

+ 1
2
𝑆2
𝑖𝑙

∑𝑁
𝑗=1

𝜃2𝑖 𝜃
2
𝑗𝐴

2+
𝑖𝑗

∑𝐾𝐶
𝑧=1 𝐶𝑖𝑧𝐶𝑗𝑧+

∑𝐾𝑆
𝑙=1 𝑆

1
𝑖𝑙𝑆

1
𝑗𝑙

𝑆2
𝑗𝑙 + 𝛽

(

𝐴2+𝑆2)
𝑖𝑙

∑𝑁
𝑗=1 𝜃

2
𝑖 𝜃

2
𝑗𝑆

2
𝑗𝑙 + 𝜆𝑆2

𝑖𝑙 + 𝛽
(

�̃�2𝑆2 + 𝐴2−𝑆2
)

𝑖𝑙 + 𝛾 (𝑁 − 1)−2
(

𝐻𝑆1
(

𝑆1
)𝑇 𝐻𝑆2

)

𝑖𝑙

(8)

4: Fix 𝑆1 and 𝑆2, update 𝐶 :

𝐶𝑖𝑧 ←
𝐶𝑖𝑧
2

+ 1
2
𝐶𝑖𝑧

∑2
𝑚=1

∑𝑁
𝑗=1

𝜃𝑚𝑖 𝜃
𝑚
𝑗 𝐴

𝑚+
𝑖𝑗

∑𝐾𝐶
𝑧=1 𝐶𝑖𝑧𝐶𝑗𝑧+

∑𝐾𝑆
𝑙=1 𝑆

𝑚
𝑖𝑙 𝑆

𝑚
𝑗𝑙

𝐶𝑗𝑧 + 𝛽
∑2

𝑚=1
(

𝐴𝑚+𝐶
)

𝑖𝑧

∑2
𝑚=1

∑𝑁
𝑗=1 𝜃

𝑚
𝑖 𝜃

𝑚
𝑗 𝐶𝑗𝑧 + 2𝜆𝐶𝑖𝑧 + 𝛽

∑2
𝑚=1

(

�̃�𝑚𝐶 + 𝐴𝑚−𝐶
)

𝑖𝑧

(9)

5: Update the value of objective function according to Eq. (6)
6: end while
7: Calculate the final protein-complex indication matrix 𝐹 1⋆, 𝐹 2⋆.
8: return 𝐹 1⋆, 𝐹 2⋆

2.6. Parameter estimation
As the objective function is not a joint convex function over all variables 𝐶 , 𝑆1, and 𝑆2, we utilize an alternating

optimization strategy to solve the optimization problem in Eq. (6). Specifically, we optimize one variable of the
objective function each time while fixing other variables. According to the multiplicative update rule [30, 36], we can
get the update rules for 𝐶 , 𝑆1, and 𝑆2 as shown in Algorithm 1.

Given the initial values of 𝐶 , 𝑆1, and 𝑆2, we update 𝐶 , 𝑆1, and 𝑆2 iteratively, until the stopping criterion is
satisfied. In this study, we stop the iterations until the relative change of the objective function is less than 1e-6 or the
number of iterations reaches a predefined maximum value, which is set to 200. As the objective function in Eq. (6) is
non-convex, updating 𝐶 , 𝑆1, and 𝑆2 according to the update rule may converge to a local optimum, and the estimators
of 𝐶 , 𝑆1, and 𝑆2 rely on their initial values. In order to reduce the risk of local minimum, the entire updating process
is repeated 10 times with random restarts and the minimizer of the objective function are treated as the final estimators
of 𝐶 , 𝑆1, and 𝑆2, denoted as �̂� , �̂�1, �̂�2, respectively.

Since the elements in 𝐹𝑚 are all continuous values, describing the propensity of the 𝑖-th protein to belong to the
𝑘-th predicted complex. Following previous studies [25], we use the following rules to discretize 𝐹𝑚 and obtain the
final protein-complex indication matrix 𝐹𝑚⋆.

𝐹𝑚⋆
𝑖𝑘 =

{

1, 𝑖𝑓 𝐹𝑚
𝑖𝑘 ≥ 𝜏,

0, 𝑖𝑓 𝐹𝑚
𝑖𝑘 < 𝜏.

(10)

Here, 𝐹𝑚⋆

𝑖𝑘 = 1 means the 𝑖-th protein is belong to the 𝑘-th predicted complex. In the experiments, we found that
𝜏 = 0.1 can always get reasonable results, so we fix 𝜏 = 0.1 in this study. Algorithm 1 summarizes the implementation
details of our PS-SNC model. The computational complexity of updating 𝐶 and 𝑆𝑚 once is 𝑂(𝑁2𝐾𝐶 ) and 𝑂(𝑁2𝐾𝑆 ),
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respectively. If the number of iterations is the predefined maximum value 𝐼𝑡𝑒𝑟, the total time cost of PS-SNC is
𝑂(𝐼𝑡𝑒𝑟(𝑁2𝐾𝐶 + 2𝑁2𝐾𝑆 )). Considering that the true PPI networks are usually very sparse, the overall computational
cost is 𝑂(𝐼𝑡𝑒𝑟(|𝐸+

| + |𝐸−
|)(𝐾𝐶 + 2𝐾𝑆 )), where |𝐸+

| and |𝐸−
| denote the number of positive and negative PPIs,

respectively.

3. Experiments
In this section, we demonstrate the advantages of PS-SNC through experiments on both synthetic and real datasets.

3.1. Experimental settings
3.1.1. Evaluation metrics

We adopt three evaluation metrics to comprehensively evaluate the performance of various methods, i.e., accuracy
(ACC) [37], F-measure, and fraction of matching complexes (FRAC) [16].

ACC is defined as the geometric mean of sensitivity (Sn) and positive predictive value (PPV). Let 𝐵𝑖𝑗 denote
the number of proteins shared between true complex 𝑡𝑖 and predicted complex 𝑝𝑗 . Sn, PPV and ACC are defined as
follows:

𝑆𝑛 =
∑

𝑖max𝑗 𝐵𝑖,𝑗
∑

𝑖
|

|

𝑡𝑖||
, 𝑃𝑃𝑉 =

∑

𝑗 max𝑖 𝐵𝑖,𝑗
∑

𝑗 | ∪𝑖
(

𝑡𝑖 ∩ 𝑝𝑗
)

|

,

𝐴𝐶𝐶 =
√

𝑆𝑛 × 𝑃𝑃𝑉 .

(11)

Given a true complex 𝑡𝑖 and a predicted complex 𝑝𝑗 , the overlap fraction between them is defined as:

𝑂𝑆
(

𝑡𝑖, 𝑝𝑗
)

=
|

|

|

𝑡𝑖 ∩ 𝑝𝑗
|

|

|

2

|

|

𝑡𝑖||
|

|

|

𝑝𝑗
|

|

|

. (12)

According to previous studies [12, 38], we consider two complexes to be matched if the overlap score between
them is greater than or equal to 0.2. Let TP (true positive) be the number of predicted complexes that are matched by
the true complexes, and FN (false negative) be the number of true complexes that are not matched by the predicted
complexes, and FP (false positive) be the number of predicted complexes minus TP. Precision, Recall and F-measure
are defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

,Re𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

,

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × Re𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + Re𝑐𝑎𝑙𝑙

.
(13)

FRAC measures what fraction of complexes in the benchmark are matched by at least one predicted complex.
FRAC is defined as follows:

𝐹𝑅𝐴𝐶 =
|

|

|

{

𝑡𝑖|𝑡𝑖 ∈ 𝑇 ∧ ∃𝑝𝑗 ∈ 𝑃 , 𝑝𝑗 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑡𝑖
}

|

|

|

|𝑇 |
, (14)

where 𝑇 is the set of true complexes and 𝑃 is the set of predicted complexes.

3.1.2. Baselines
To evaluate the performance of PS-SNC, we compare PS-SNC with 5 state-of-the-art protein complex identifica-

tion methods, including ClusterONE [16], IPCA [13], NCMine [21], PSMVC [26] and SGNMF [25]. Among these
baseline methods, only SGNMF could take into account the signs of PPIs. Hence, we apply SGNMF and our PS-
SNC on signed PPI networks. Meanwhile, we apply the remaining four methods, i.e., ClusterONE, IPCA, NCMine
and PSMVC, on unsigned PPI networks, where the signs of interactions are ignored. Furthermore, since the four
methods ClusterONE, IPCA, NCMine and SGNMF are designed to identify complexes from a single PPI network,
we apply them on each PPI network separately, and evaluate the performance of these algorithms on the two networks
respectively. For all algorithms, we discard their predicted complexes with less than three proteins (i.e., interactions
only). Optimal parameters are set for IPCA, NCMine, PSMVC, SGNMF to obtain their best performance, while
ClusterONE used the default parameters set by the authors.
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Table 1
The results of different methods on synthetic datasets

Datasets Methods
network # 1 network # 2

# complexes # proteins ACC F-measure FRAC # complexes # proteins ACC F-measure FRAC

Dataset # 1

PS-SNC 102 1517 0.711 0.849 0.765 102 1515 0.711 0.833 0.765
SGNMF 292 1763 0.574 0.817 0.753 294 1771 0.570 0.804 0.765
PSMVC 140 2966 0.649 0.710 0.765 143 2966 0.649 0.701 0.765
NCMine 257 586 0.327 0.332 0.306 198 489 0.315 0.290 0.282

IPCA 1017 2671 0.390 0.268 0.565 1002 2693 0.371 0.219 0.518
ClusterOne 161 600 0.309 0.204 0.200 145 533 0.290 0.196 0.212

Dataset # 2

PS-SNC 96 1621 0.780 0.874 0.765 96 1611 0.802 0.890 0.765
SGNMF 296 1772 0.562 0.849 0.765 295 1778 0.557 0.850 0.765
PSMVC 107 2907 0.641 0.751 0.753 101 2936 0.620 0.708 0.729
NCMine 414 801 0.354 0.513 0.482 390 739 0.343 0.545 0.435

IPCA 1069 2663 0.464 0.469 0.647 1019 2679 0.445 0.343 0.635
ClusterOne 193 735 0.338 0.321 0.376 215 812 0.338 0.310 0.388

Dataset # 3

PS-SNC 106 1654 0.807 0.890 0.765 109 1603 0.804 0.888 0.765
SGNMF 284 1751 0.627 0.861 0.765 286 1758 0.637 0.850 0.765
PSMVC 129 2956 0.670 0.763 0.765 120 2939 0.656 0.741 0.753
NCMine 609 842 0.372 0.771 0.424 637 882 0.381 0.782 0.412

IPCA 304 767 0.337 0.533 0.329 301 800 0.357 0.533 0.365
ClusterOne 201 842 0.366 0.416 0.412 228 933 0.374 0.337 0.376

Dataset # 4

PS-SNC 63 1395 0.694 0.828 0.741 63 1417 0.704 0.814 0.729
SGNMF 200 2072 0.549 0.713 0.741 200 2091 0.551 0.686 0.718
PSMVC 225 2477 0.219 0.077 0.141 225 2489 0.169 0.039 0.071
NCMine 335 812 0.259 0.107 0.165 323 784 0.266 0.125 0.200

IPCA 210 591 0.230 0.054 0.082 213 597 0.217 0.040 0.071
ClusterOne 191 688 0.183 0.029 0.047 176 648 0.184 0.031 0.047

Dataset # 5

PS-SNC 89 1529 0.761 0.876 0.765 90 1535 0.755 0.878 0.765
SGNMF 290 2023 0.596 0.728 0.729 290 2042 0.592 0.729 0.741
PSMVC 116 2970 0.309 0.289 0.341 118 2966 0.294 0.227 0.271
NCMine 424 931 0.298 0.282 0.247 476 977 0.313 0.336 0.318

IPCA 236 671 0.272 0.140 0.188 259 711 0.267 0.081 0.141
ClusterOne 191 743 0.204 0.065 0.094 204 754 0.208 0.055 0.094

Dataset # 6

PS-SNC 94 1572 0.772 0.873 0.753 96 1544 0.769 0.851 0.765
SGNMF 69 969 0.636 0.688 0.576 84 989 0.638 0.736 0.635
PSMVC 75 2918 0.362 0.360 0.329 75 2920 0.342 0.313 0.294
NCMine 603 1046 0.340 0.568 0.329 640 1078 0.340 0.552 0.329

IPCA 329 866 0.308 0.338 0.306 292 808 0.307 0.314 0.259
ClusterOne 193 781 0.226 0.086 0.118 188 750 0.227 0.102 0.153

Datasets # 1, 2, and 3 are balanced networks with different density 𝑝𝑐1. Datasets # 4, 5, and 6 are unbalanced
networks with different density 𝑝𝑐1. The best results for each network using each metric are in bold.

3.2. Simulation studies
3.2.1. Synthetic datasets

We evaluate the performance of various algorithms on synthetic datasets to validate the benefits of joint clustering
of multiple networks and considering the signs of PPIs. We generate two synthetic signed networks as follows. First,
3000 nodes are generated and then divided into 100 clusters with equal size, i.e, each cluster has 30 nodes. Among
them, 50 clusters are shared to both networks. For another 20 clusters, each cluster is split into two sub-clusters with
10 overlapping nodes, which are considered as two partially shared clusters from two networks respectively. As such,
each network has 20 partially shared clusters. For the remaining 30 clusters, we randomly select half of them for each
network as network-specific clusters, i.e., each network has 15 network-specific clusters. Finally, each network has 85
clusters in total.
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Then we generate edges in each of the two networks. Nodes within the same partially shared cluster or network-
specific cluster have a probability 𝑝𝑝𝑜𝑠 = 0.15 to form a positive edge. Meanwhile, to further take noises into
consideration, the signs of edges have a probability 𝑝𝑛𝑜𝑖𝑠𝑒 = 0.02 to be flipped. To demonstrate the benefit of joint
clustering of multiple networks, we enforce the information contained in the shared clusters of the two networks more
complementary. In network 1, nodes within the first 25 shared clusters have a probability 𝑝𝑐1 to form a positive edge
and are flipped with a probability 𝑝𝑛𝑜𝑖𝑠𝑒1 = 0.02. While nodes within the last 25 shared clusters have a probability
𝑝𝑐2 = 0.05 to form a positive edge and are flipped with a probability 𝑝𝑛𝑜𝑖𝑠𝑒2 = 0.05. And it is the opposite in network
2. In addition, nodes within different clusters will have a probability 𝑝𝑛𝑒𝑔 to form negative edges and be flipped
with probability 𝑝𝑛𝑜𝑖𝑠𝑒 = 0.02. And the value of 𝑝𝑛𝑒𝑔 varies from {0.0005, 0.005}, generating two types of networks:
balanced networks and unbalanced networks. The value of 𝑝𝑐1 varies from {0.1, 0.2, 0.3} to adjust the density of
edges within the shared clusters of the two networks. Finally, a total of 6 datasets are generated. All the 6 datasets are
available via https://github.com/Zyl-SZU/PS-SNC.

We evaluate the performance of various algorithms on each network separately, using the ground truth clusters of
each network as the gold standard.

3.2.2. Results on synthetic datasets
There are four parameters in our model: 𝐾 , 𝛽, 𝛾 , and 𝜆. 𝐾 is the number of possible complexes, where

𝐾 = 𝐾𝐶 + 2𝐾𝑆 . 𝛽, 𝛾 , and 𝜆 control the effects of the signed graph regularization term, diversity regularization
term and low-rank constraint, respectively.

We find from the experiment results that 𝛽 = 4 always achieves competitive results, so we fixed 𝛽 = 4 in the
following experiments. We perform grid search for 𝐾 from {100, 200, 300}, for 𝜆 from {20, 21, ..., 26} and for 𝛾 from
{0, 𝑁2 × 2−1, 𝑁2 × 20, ..., 𝑁2 × 24} to obtain the best performance.

As show in Table 1, Datasets # 1, 2, and 3 are balanced networks with different density 𝑝𝑐1, while Datasets # 4,
5, and 6 are unbalanced networks with different density 𝑝𝑐1. We have the following observations. On all the synthetic
networks, PS-SNC and SGNMF significantly outperform PSMVC, NCMine, IPCA and ClusterONE. Especially in
unbalanced networks with a large number of negative edges, the performance of PSMVC, NCMine, IPCA and
ClusterONE is greatly degraded due to the interference of negative edges. As both PS-SNC and SGNMF take into
account the signs of interactions, the above results show that distinguishing between negative and positive interactions
facilitates more accurate identification of protein complexes.

Among methods that do not consider the signs of interactions, PSMVC achieves the best performance in balanced
networks, and has the same FRAC as PS-SNC and surpasses SGNMF in terms of ACC. Moreover, we can observe
from Table 1 that the performance of PS-SNC is much more stable than SGNMF in terms of all evaluation metrics,
demonstrating the benefits of joint clustering of multiple networks.

3.3. Real data analysis
3.3.1. Real datasets

By considering the correlations of interacting protein pairs in the BioPlex networks as the signs of PPIs [24], we
collected two signed networks, named Sign-293T and Sign-HCT116, to evaluate the performance of various protein
complex identification methods. We summarize the statistics of the dataset in Table 2.

To measure whether the predicted complexes match known complexes, we employ the CORUM database [39]
as the gold standards. To avoid selection bias, we filtered out proteins that are not involved in both PPI networks.
Furthermore, we only considered complexes containing at least 3 or more proteins. Finally, CORUM contains 1774
complexes covering 2807 proteins. Since CORUM does not provide the state and cell line information of protein
complexes, for single-network clustering methods, we merge their predicted complexes from the two networks. In
particular, for predicted complexes 𝑎 and 𝑏, if 𝑂𝑆(𝑎, 𝑏) ≥ 0.8, we consider them to be highly overlapping, and they
are merged into one complex [38, 40].

3.3.2. Results on real datasets
In this section, we present the experiment results of different methods with respect to CORUM on two real signed

PPI networks: Sign-293T and Sign-HCT116. Since the reference complexes in CORUM are far from complete, the
predicted complexes that do not match with any reference complexes are not necessarily undesired results. Instead,
they may be potential protein complexes not covered by the reference set [16, 37]. Thus, following previous studies
[26, 41, 27], in real data analysis, we do not use F-measure to evaluate the performance of various methods. The results
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Table 2
The statistics of real datasets

Network # Proteins # PPIs # Positive PPIs # Negative PPIs

Sign-293T 11727 73716 41489 32227

Sign-HCT116 9324 61693 35073 26620

Table 3
The results of various methods on real datasets

Methods # complexes # proteins ACC FRAC

PS-SNC 2351 8363 0.656 0.378

SGNMF 2842 9201 0.626 0.350

PSMVC 4128 10158 0.606 0.359

NCMine 2869 4363 0.559 0.346

IPCA 7241 9908 0.626 0.360

ClusterOne 760 3448 0.566 0.236

The best results for each network using each metric
are in bold.

Fig. 2. The proportion of positive PPIs per complex. The box in each violin plot shows the IQR and the median are
highlighted by white dots.

are shown in Table 3. We can find from this table that PS-SNC outperforms other 5 methods in terms of ACC and
FRAC. For instance, PS-SNC achieves ACC 0.656 and FRAC 0.378, which is 4.8% and 5% higher than the second
best ACC and FRAC. FRAC can clearly indicate the effectiveness of algorithms in identifying reference complexes.
The size and quality of predicted complexes is another important factor measured by ACC. Overall, the performance
of PS-SNC on the real dataset is generally better than all the compared algorithms.

Furthermore, we calculate the proportion of positive PPIs within predicted complexes and reference complexes,
and show the results of various methods in Fig. 2. As shown in this figure, the proportion of positive PPIs in most
complexes predicted by PS-SNC and SGNMF are close to 1. Compared with the other four algorithms that do not
consider the signs of PPIs, the predicted complex sets of PS-SNC and SGNMF have the same median and more similar
data distributions as the reference complex set, indicating that considering the signs of PPIs can improve the quality
of the predicted complexes by using the sign information to guide the clustering, while reducing the interference of
negative PPIs.
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Fig. 3. The parameter sensitivity results of 𝜆 and 𝛾 in terms of (A) ACC and (B) FRAC.

Fig. 4. The parameter sensitivity results of 𝐾.

3.3.3. Parameter sensitivities
In this section, we investigate the parameter sensitivities of PS-SNC. We set the ranges of 𝜆 and 𝛾 according

to the performance of PS-SNC on synthetic datasets, and the range of 𝐾 according the scales of PPI networks. In
particular, we first keep 𝐾 = 12000, and run PS-SNC with different combination values of 𝜆(𝜆 ∈ {22, 23,… , 27})
and 𝛾(𝛾 ∈ {0, 𝑁2 × 1, 𝑁2 × 2,… , 𝑁2 × 5}), and assess how well the predicted complexes match with CORUM
reference set. Then we fix the values of 𝜆 and 𝛾 which result in the best performance, and study the effect of 𝐾 on the
performance of PS-SNC by setting 𝐾 = 2000, 4000,… , 14000.

As shown in Fig. 3, for a fixed value of 𝛾 , as the value of 𝜆 increases, the ACC increases initially and decreases
after reaching the maximum. Similarly, for a fixed value of 𝜆, ACC first increases and then decreases as the value of
𝛾 increases. Thus, both 𝜆 and 𝛾 contribute to improve the performance of PS-SNC. Meanwhile, when 𝜆 < 27, we
observe that FRAC is not sensitive to the settings of 𝜆 and 𝛾 . On the other hand, we can find from Fig. 4 that with
the increase of 𝐾 , the FRAC increases initially and decreases after reaching the maximum, and ACC tend to be stable
after increasing. Overall, PS-SNC achieves competitive performance when 𝐾 = 12000, 𝜆 = 26 and 𝛾 = 𝑁2 × 4 on
the real dataset.
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Negative InteractionNegative InteractionPositive InteractionPositive Interaction Negative InteractionPositive Interaction

A BA B

Fig. 5. (A) The predicted complex I in Sign-293T network. (B) The predicted complex II in Sign-HCT116 network. The
shadow areas show the predicted complexes I and II in Sign-293T network and Sign-HCT116 network respectively,
yellow nodes represent the proteins shared across the two predicted complexes, red nodes represent proteins specific
to the Sign-293T network, and blue nodes represent other proteins.

3.4. Case study
To illustrate the effectiveness of our model in identifying the common and unique protein complexes in different

states, we introduce two partially overlapping protein complexes identified by PS-SNC from the Sign-293T network
and Sign-HCT116 network.

Figures 5A and 5B show the sub-networks in Sign-293T network and Sign-HCT116 network, respectively, from
which PS-SNC detected two partially shared protein complexes, i.e., complexes I and II. In particular, complex
I contains the 293T cell-specific protein CDH2 [24]. We also check the most significantly enriched GO term for
each predicted complexes using the web service of GO Term Finder (http://go.princeton.edu/cgi-bin/GOTermFinder).
Complex I is enriched with GO term (GO:0045216) cell-cell junction organization. Complex II is enriched with GO
term (GO:0030178) negative regulation of Wnt signaling pathway. Note that HCTT116 cells are colorectal carcinoma-
derived cells. Colorectal cancer is one of the common malignancies worldwide and the Wnt signaling pathway is
recognized as the main disrupted pathway in this malignancy [42, 43]. Therefore, PS-SNC can detect biologically
meaningful complexes in different states effectively. Using PS-SNC to cluster the PPI networks of normal cells and
cancer cells jointly can detect protein complexes related to cancer-induced mutations, which helps to explain the
pathogenesis.

4. Conclusion
In this study, we propose a novel multi-network clustering model, named PS-SNC, to discover protein complexes

from two signed PPI networks jointly. Our model can not only utilize the sign information of PPIs to guide the
identification of protein complexes, but also explore the common and unique protein complexes in different networks.
Extensive experimental results on synthetic and real datasets show that PS-SNC can improve the accuracy of protein
complex identification effectively, and provide new insights for understanding the underlying mechanisms of disease
and cell cycle developments. Furthermore, our model is a flexible framework which can be easily extended to the joint
clustering of multiple signed networks.
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