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Abstract 15 

Concerns about widespread human-induced declines in insect populations are mounting, yet little 16 
is known about how land-use change modifies the dynamics of insect communities, particularly 17 
in understudied biomes. Here we examine how the seasonal patterns of ant activity, key drivers 18 
of ecosystem functioning, vary with human-induced land cover change on a subtropical island 19 
landscape. Using trap captures sampled biweekly from a biodiversity monitoring network 20 
covering Okinawa Island, Japan, we processed 1.2 million individuals and reconstructed activity 21 
patterns within and across habitat types. We determined that communities inside the forest 22 
exhibited more variability than those in more developed areas. Using time-series decomposition 23 
to deconstruct this pattern, we found that ant communities at sites with greater human 24 
development exhibited diminished seasonality, reduced synchrony, and higher stochasticity 25 
compared to those at sites with greater forest cover. We demonstrate that our results cannot be 26 
explained by variation in either regional or in situ temperature patterns, or by differences in 27 
species richness or composition among sites. We conclude that the breakdown of natural 28 
seasonal patterns of functionally key insect communities may comprise an important and 29 
underappreciated consequence of global environmental change that must be better understood 30 
across Earth’s biomes. 31 
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Introduction 36 
Insects comprise 95% of described terrestrial animal species on Earth and are key drivers of a 37 
multitude of ecosystem functions and services, including pollination, food provisioning, pest 38 
control, water filtration, carbon sequestration, and decomposition (Schowalter, 2013). There is 39 
also mounting concern about the possibility of long-term global insect declines due to human-40 
induced environmental change, which can disrupt key functions and services (Goulson, 2019; 41 
Wagner, 2020). But while such trends measured over broad timescales are informative for 42 
monitoring populations (Dornelas et al., 2013), they overlook changes in natural seasonal 43 
patterns that can only be detected at fine temporal resolutions. When these seasonal patterns are 44 
broken down by human pressures, it can result in the erosion of biodiversity (Tonkin et al., 2017) 45 
and degradation of the ecosystem functions and services on which human societies depend (Ross 46 
et al., 2021; Stevenson et al., 2015). For this reason, a better understanding is needed of how 47 
fine-scale temporal patterns of insect communities are affected in this era of global change. 48 
 49 
Land-cover modification is a major driver of biodiversity loss (Cardinale et al., 2012), and many 50 
studies have examined its consequences for insect diversity (e.g., Castro et al., 2018; Corro et al., 51 
2019; Knop, 2016; Oliver et al., 2016; Senapathi et al., 2015). However, the corresponding 52 
effects on temporal dynamics of insect communities are not well-known. For example, human-53 
altered land cover with higher densities of alien species can lead to boom-and-bust dynamics that 54 
cause high variability (Lester & Gruber, 2016; Simberloff & Gibbons, 2004). At the same time, 55 
urbanization can lead to biotic homogenization and reduced community variability over time 56 
(Hung et al., 2017; McKinney, 2006). Although these documented effects of land-cover change 57 
on insect temporal dynamics differ, investigations into how insect communities are affected are 58 
crucial for tropical and subtropical biomes undergoing rapid land-cover change (Janzen & 59 
Hallwachs, 2021), and also for islands that have restricted land area, frequent introductions of 60 
alien species, and exposure to increasingly extreme weather events (Russell & Kueffer, 2019).  61 
 62 
Here, we examine the effects of anthropogenic land-cover change on the fine-scale temporal 63 
variability of ant community activity. Ants are a dominant insect group in the many 64 
environments they inhabit around the world, underpinning a broad spectrum of ecological 65 
interactions and playing a major role in regulating ecosystem function (Hölldobler & Wilson, 66 
1990), which makes them ideal bioindicators for ecosystem change (Andersen & Majer, 2004). 67 
Community seasonality is linked to the maintenance of key ecosystem functions and services 68 
(Stevenson et al., 2015). However, even though ants can exhibit significant seasonality in 69 
tropical and subtropical regions (Basu, 1997; Samways, 1990), little is known about how land-70 
cover change affects ant community seasonality in these diverse biomes. 71 
 72 
To address this, we used high-resolution (biweekly) monitoring data on ant activity for 73 
subtropical Okinawa Island in southern Japan to examine whether, and how, the temporal 74 
variability of ant communities varies with land cover change. We then determined which 75 
temporal components of variability (i.e., seasonality, trend, or stochasticity) contribute the most 76 
to differences across the gradient (Fig. S1). We also tested whether other potential drivers, 77 
including differences across sites in climate seasonality, species richness, and community 78 
composition, could be responsible for observed differences in temporal community variability, 79 
and additionally examined the roles played by invasive species in moderating these effects. 80 
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Materials and Methods 81 

Study sites and land-cover data 82 
Our study focuses on the subtropical main island of Okinawa in the southern Ryukyu archipelago 83 
of Japan. The island has a historical land-cover gradient, spanning from the minimally developed 84 
north to the more urban south (Fig. 1). Okinawa’s extensive Yambaru Forest in the north was 85 
recently recognized as part of Japan’s newest Natural World Heritage Site for its high endemism 86 
and biodiversity. Although the island is only 0.3% of Japan’s total land area, it provides habitat 87 
to more than one-third of the country’s ant species (Terayama et al. 2009, Terayama et al. 2014). 88 
The few studies of ant communities in Okinawa include biodiversity surveys (e.g., Ito et al., 89 
1998) and comparisons between native and alien ant populations in Yambaru (Katayama & 90 
Tsuji, 2010; Suwabe et al., 2009; Yamauchi & Ogata, 1995). This study, the first to sample 91 
island-wide ant diversity and temporal patterns in Okinawa, uses data from a biodiversity 92 
monitoring system covering the land-cover gradient of the island, administered by the Okinawa 93 
Environmental Observation Network (OKEON) Churamori Project (https://okeon.unit.oist.jp/). 94 
 95 
We used a land-cover map for Okinawa (year 2015) to calculate representative land-cover values 96 
for the 24 OKEON monitoring sites. The sites (pairwise distances: minimum = 389 m, mean = 97 
33 km, maximum = 102 km) are located in or near forested areas across multiple land-cover 98 
types varying from broadly contiguous forest to highly agricultural or urban areas (Fig. 1). To 99 
characterize each site, we calculated the proportion of seven main land-cover classes (forest, 100 
agriculture, urban, grass, sand, freshwater, miscellaneous) around circular buffers with radius 1 101 
km (see Ross et al., 2018 for details). Buffers with this size were chosen to characterize 102 
representative land-cover values for areas surrounding sites without including regions that may 103 
have resident unsampled colonies. Sites near the coast included ocean area within the buffer, so 104 
we used relative proportions for all sites that considered only land area. As correlations were 105 
high between the main land-cover classes of interest (that is, forest, agriculture, and urban; Table 106 
S1), we used principal component analysis (R function prcomp) after applying an arcsine 107 
transformation to the proportions to improve normality (e.g., Van Buskirk, 2005) and retained 108 
the first and second axes (variance explained: PC1 = 81% and PC2 = 11%) for use as 109 
explanatory variables. PC1 represents the forested (high) to developed (low; urban and/or 110 
agriculture) gradient, while PC2 represents the rural (high; agriculture and/or grass) to urban 111 
(low) gradient (Fig. S2). All analyses were conducted in R (R Core Group, 2021), and spatial 112 
analyses were conducted with R packages sf (Pebesma, 2018) for vector data and raster 113 
(Hijmans, 2021) for gridded data. 114 
 115 

Ant activity data 116 
We sampled worker ant activity biweekly with Sea, Land, and Air Malaise (SLAM) traps for two 117 
years and identified samples to species level, resulting in 1,378,324 classified individuals. 118 
Specifically, we sampled one SLAM trap (Large BT1005, MegaView Science Co., Ltd.) at each 119 
of three stations per OKEON site (pairwise distances within sites: mean = 90 m, minimum = 19 120 
m, maximum = 195 m) every two weeks from March 2016 to March 2018 (further details in 121 
Supporting Information A). The stations are predominantly deployed under forest canopy, 122 
though several are in nearby open areas. This sampling method mainly targets terrestrial 123 
browsing species, though does occasionally catch arboreal and subterranean individuals. Insect 124 
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count data sampled with passive traps are usually interpreted as a measure of activity, or the rate 125 
at which individuals intersect a point in space, rather than direct estimates of abundance, though 126 
changes in abundance are generally reflected in ant activity data (Kaspari et al., 2022a).  127 
 128 
We additionally categorized all species by invasive status as either native, alien, or uncertain 129 
based on expert opinion and biogeographical databases (Guénard et al. 2017, Janicki et al. 2016, 130 
Terayama et al. 2009, https://www.antwiki.org/, https://www.antweb.org/). Native refers to 131 
species with enough data to establish historical occupancy in Okinawa without human-aided 132 
dispersal from other regions. Alien refers to species that definitively have native ranges in 133 
different regions and have dispersed to Okinawa via human activity. Uncertain species lack 134 
sufficient data to make such determinations. 135 
 136 
Some prevalent species had extreme count outliers, such as Technomyrmex brunneus 137 
(representing counts greater than 5,000), likely caused by large colony sizes and/or increased 138 
activity following mating flights, heterospecific competition, or other biological phenomena. We 139 
avoided bias in variability estimates by limiting count values to a conservative threshold of 500 140 
individuals for a given species at a station within a two-week period. We also examined changes 141 
in our results for a range of thresholds. For each species during each sampling period, we 142 
summed counts over the three stations per site to determine site-level activity (Fig. 2), and over 143 
all sites per land-cover group for grouped species-level activity. We then calculated total site 144 
density as the sum of all counts per site.  145 
 146 
Sampled abundance and variability can be correlated due to sampling error alone because of 147 
mean-variance scaling (McArdle & Gaston, 1995). For example, even if species dynamics are 148 
identical across two sites, if we sample fewer individuals from site A than site B (e.g., due to 149 
effects of sampling station placement), site B may have a higher temporal variability simply 150 
because its counts are higher. While in some sense this could reflect the actual variability of 151 
observed species at specific locations (that is, at the stations), we wanted to disentangle 152 
differences in community variability from those attributable to sampling error. Thus, we rarefied 153 
the data from all sites so that the total count (sum of all samples across the two years) for each 154 
site equals the total count at the site with the least abundance (Fig. S1, Supporting Information B; 155 
Gaston & McArdle, 1994). Finally, to determine whether species richness differences could 156 
drive any observed differences in temporal variability, we calculated site-specific total species 157 
richness, and the richness of each invasive status group from the observed and rarefied data, 158 
making extrapolations to account for incomplete sampling using Hill numbers (q = 0) with the R 159 
package iNEXT (Hsieh et al., 2016). 160 
 161 

Temporal variability and time-series decomposition 162 
We calculated two aspects of temporal variability: functional and compositional (Supporting 163 
Information C). Functional variability refers to activity changes at the aggregate scale (e.g., 164 
Hillebrand & Kunze, 2020) and is calculated as the coefficient of variability (ratio of the 165 
standard deviation to the mean) of total ant counts across all species per site (McArdle & Gaston, 166 
1995). Compositional variability estimates the variation in community composition over time 167 
and is calculated as temporal beta diversity (Legendre & De Cáceres, 2013) using the R package 168 
adespatial (Dray et al., 2022), which additionally records species’ individual contributions to 169 
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beta diversity. As we use ant count data, compositional changes would thus represent changes in 170 
relative activity rates of different species in the local species pool, which in turn is a function of 171 
the abundance and patterns of behavior (Kaspari et al., 2022a).  172 
 173 
Next, we used temporal decomposition models to determine the relationships of temporal 174 
variability components with observed patterns. Time series can be decomposed into components 175 
describing different underlying temporal patterns in the data: “seasonal” processes that repeat 176 
cyclically over some temporal scale (i.e., phenology), “trend” that describes directional change, 177 
and “remainder” that represents any residual variation not captured by the other components (i.e., 178 
short-term stochastic fluctuations; Hyndman & Athanasopoulos, 2021). A community with high 179 
temporal variability may have strong cyclical patterns, increasing or decreasing trends, high 180 
stochasticity, or some combination of these. For temporal datasets spanning many annual cycles, 181 
models that can estimate complex seasonal responses (e.g., wavelet analysis; Tonkin et al., 2017) 182 
are often employed, but for studies spanning few annual cycles at a fine temporal resolution, 183 
simpler models with fewer assumptions and problems with overfitting are preferable. We 184 
estimated additive temporal components for the ant activity data by fitting time-series linear 185 
models with temporal predictors using the R package fable (O’Hara-Wild et al., 2021). As our 186 
time-series was short, we used simple predictors consisting of a linear trend and a seasonal signal 187 
approximated with an annual Fourier term with the simplest maximum order (K) of 1—this 188 
models seasonality as a sine wave (Hyndman & Athanasopoulos, 2021). We fitted this model to 189 
the rarefied data at both the site-level and species-level for land-cover groups, then decomposed 190 
the count value at each time-step. For each site, we measured the absolute variance of each 191 
temporal component, but also the relative component variance, defined here as the individual 192 
component variance divided by summed variance of all components (Supporting Information D). 193 
 194 
Finally, as spatial autocorrelation between sites did not affect results (Table S3; Supporting 195 
Information E), we used simple linear models to estimate relationships between land cover and 196 
our focal metrics of temporal variability. Specifically, we fitted models for total ant counts 197 
(before rarefaction), functional and compositional temporal variability, and absolute and relative 198 
variances of time-series components. To explore differences between native and alien species, 199 
we also fitted models separately by invasive status for site richness and summed species’ 200 
contributions to beta diversity. We performed model selection on linear combinations of the 201 
predictor variables land-cover PC1 and PC2 using the Akaike Information Criterion corrected for 202 
small sample sizes (AICc). 203 
 204 

Assessing effects of differences in temperature and community composition on observed 205 
seasonality patterns 206 
To determine if other differences among sites may be responsible for any observed variation in 207 
ant community activity and relationships with land cover, we additionally examined differences 208 
in 1) regional and site-level temperature and 2) tested whether seasonality differences persisted 209 
after standardizing community composition between land-cover groups. For (1), we downloaded 210 
regional climate data for the collection period from the Japan Meteorological Agency (JMA) 211 
database (http://www.jma.go.jp/en/amedas_h/map65.html, accessed 04/01/2020) and calculated 212 
temperature means and extremes from the six climate stations that collect temperature data 213 
(Miyagijima, Itokazu, Naha, Ashimine, Nago, Oku). We also collected in situ site-level data 214 
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throughout the collection period at one station per site to characterize local air and soil 215 
temperature patterns (WatchDog 2900ET Weather Station 1.5 m above ground and SMEC 216 
WaterScout 300 Soil Sensor 10 cm below ground, Spectrum Technologies). With the same 217 
workflow as for the ant activity data, we calculated absolute variance of seasonality for regional 218 
and site-level temperature time-series, then estimated relationships with land-cover PC1 using 219 
linear models. 220 
 221 
For (2), we conducted analyses to test whether differences in community composition alone, 222 
without variation in seasonality within species, could be driving the observed patterns in 223 
seasonality, or alternatively if habitat-dependent dynamics of species occurring in both habitat 224 
types were responsible. We used land-cover PC1 to partition the sites into two groups with eight 225 
sites each—forested and developed (comprising sites with more agricultural and/or urban land 226 
cover)—and retained only those species shared between groups and with total counts greater 227 
than 100. We excluded the eight sites with intermediate values of PC1 to better represent the 228 
most characteristic sites for each land-cover group. To make balanced comparisons between 229 
land-cover groups, we rarefied each species’ activity data to the minimum count of that species 230 
between groups (Fig. S1, Supporting Information B). To determine whether community 231 
composition affected our results, we fitted time-series linear models to each species in the land-232 
cover groups and calculated the relative variance of their seasonality (forested versus developed 233 
sites). As differences between the land-cover groups were not normally distributed (Shapiro-234 
Wilk test; p = 0.011), we used the nonparametric Wilcoxon signed-rank test to determine 235 
whether the same species between groups exhibit significant differences in relative seasonality 236 
variance. Additionally, to determine how temporal mismatch changes with invasive status, we 237 
calculated the synchrony of seasonality for each invasive status between land-cover groups and 238 
standardized them to the same scale. We used the R package codyn (Hallett et al., 2016) to 239 
calculate synchrony using the method described by Loreau & De Mazancourt (2008). We then 240 
compared seasonal curves to the average seasonality curve for each land-cover group to visualize 241 
the degree of temporal mismatch by invasive status. 242 
 243 

Results 244 
Our sampling for 2016–2018 resulted in the recovery of >1.2 million individuals (before 245 
thresholding) and 16,595 unique count records at the site-level across 91 ant species. Total count 246 
was less than 5 individuals for 21 species and greater than 10,000 individuals for 15 species, with 247 
a minimum of 1 (Aenictus ceylonicus, Crematogaster c.f. matsumurai, Ectomomyrmex sp., 248 
Erromyrma latinodis, Hypoponera sp., Leptogenys confucii, Strumigenys hirashimai, 249 
Strumigenys mazu) and a maximum of 259,180 (Tetramorium bicarinatum). The pattern of ant 250 
activity dropping in the winter and rising in the summer qualitatively diminished as human 251 
disturbance increased (Fig. 2). Total ant activity (after thresholding to 500) had a nearly 23-fold 252 
difference between the site with the minimum count (Yona Forest, n = 3616) and that with 253 
maximum count (Sueyoshi Forest, n = 82,781). The natural log of total density had a strong 254 
negative relationship with land-cover PC1 (R2 = 0.71, p < 0.001), indicating that ant activity 255 
overall was higher in developed areas than forested areas (Fig. 3). Rarefaction resampled all sites 256 
to the minimum site count before analysis.  257 
 258 
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The linear models suggested strong relationships with the land-cover PC1 for most metrics of 259 
temporal variability (Figs. 3, 4). Based on model selection via AICc, all models included PC1 as 260 
the sole predictor except the relative variances of seasonality and stochasticity, which also used 261 
PC2 (Table S3). Functional and compositional temporal variability both had strong positive 262 
relationships with PC1 (functional: R2 = 0.67, p < 0.001; compositional: R2 = 0.60, p < 0.001; 263 
Fig. 3), and these two variabilities also had a strong relationship to each other (R2 = 0.62, Fig. 264 
S3). The species’ contributions to beta diversity (Fig. S4) that explained individual species’ 265 
impacts on compositional variability were also positively correlated with PC1 for native species 266 
(R2 = 0.40, p < 0.001), but uncertain (R2 = 0.28, p < 0.01) species had a weaker, negative 267 
relationship (alien species showed no relationship). Absolute seasonality and stochasticity 268 
variance had positive relationships with PC1, though that for seasonality (R2 = 0.57, p < 0.001) 269 
was stronger than that for stochasticity (R2 = 0.15, p < 0.05; Fig. 4). On the other hand, relative 270 
seasonality variance (R2 = 0.23, p < 0.05) was positively related to PC1, while relative 271 
stochasticity variance (R2 = 0.36, p < 0.01) had a negative relationship (both had p > 0.05 for 272 
PC2; Fig. 4). All linear regression results are found in Table S3. 273 
 274 
We found no evidence that differences in species richness, temperature at different scales, or 275 
species composition are candidates as drivers of observed differences in ant community temporal 276 
variability. We found no relationship between PC1 and total species richness (either observed or 277 
extrapolated), and a weak correlation with rarefied richness (R2 = 0.15, p < 0.05) due to the loss 278 
of rare species during the rarefaction process, though we consider this unlikely to bias our results 279 
(Fig. S5). We did find strong positive relationships with PC1 for native richness values 280 
(observed: R2 = 0.47, p < 0.001; extrapolated: R2 = 0.35, p < 0.005; rarefied: R2 = 0.61, p < 281 
0.001) indicating that more native species can be found in the more forested sites, and weaker 282 
negative relationships with alien richness values (observed: R2 = 0.29, p < 0.005; extrapolated: 283 
R2 = 0.20, p < 0.05; rarefied: R2 = 0.20, p < 0.05) (Table S3, Fig. S5). Moreover, we found no 284 
clear patterns in the absolute variance of regional temperature seasonality from JMA climate 285 
stations spanning the island from north to south, nor did we find relationships between the 286 
absolute seasonality variance of in situ air or soil temperature and PC1 (Fig. S6). Only two sites 287 
had exposed sensors that were not located below canopy cover (Oyama Park and OIST Open 288 
[OYA and OIT, respectively, in Fig. S6]), and these had higher absolute variances than the other 289 
sites. Concerning the tests of different threshold sizes, although we observed some differences, 290 
our results remained similar (Supporting Information F, Fig. S7). 291 
 292 
Lastly, individual species showed differing seasonality between land-cover groups (more 293 
forested and more developed). Comparisons revealed that, in general, the same species have a 294 
higher relative seasonality variance at forested sites than at sites with more human development 295 
(p < 0.005), though the alien species Tetramorium lanuginosum was a notable exception (Tlanu 296 
in Fig. 5). While seasonality was stronger in the forested group for all species, when separated by 297 
invasive status we observed higher synchrony in the forested group for native (n = 11, forested: 298 
0.75, developed: 0.58) and uncertain species (n = 8, forested: 0.5, developed: 0.28), but the 299 
opposite pattern for alien species (n = 4, forested: 0.73, developed: 0.86) (Fig. 5).  300 
 301 
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Discussion 302 
Our study sheds light on how ant community activity dynamics vary across a gradient of human-303 
induced land-cover change in a subtropical island environment. Our results complement an 304 
extensive number of recent studies focusing on the temperate zone that examine change of insect 305 
populations over time (Hallmann et al., 2017; Kaspari et al., 2022a; Seibold et al., 2019; Uhler et 306 
al., 2021), including those with enough intra-annual sampling to examine changes to seasonality 307 
(Kaspari et al., 2022b). The notable difference is that because climatic seasonality is much 308 
weaker in the subtropics, differences in seasonality of insect populations across environmental 309 
gradients are likely to be more difficult to detect than for populations in the temperate zone that 310 
experience stronger seasonal contrasts (Kishimoto-Yamada & Itioka, 2015). 311 
 312 
We found that temporal variability diminishes for the subtropical ant communities of Okinawa 313 
Island as land cover transitions from forested to more developed, and that this is related to a 314 
breakdown in seasonality. Forested sites were more variable overall, but their resident ant 315 
communities were more seasonal and synchronous, while community variability for developed 316 
sites (i.e., urban and agricultural) was characterized by stochastic variation. Although native ant 317 
richness was higher in forested sites, we determined the observed differences in seasonality 318 
across the land-cover gradient were not due to differences in regional or local temperature 319 
patterns, nor to species composition among sites. Compositional differences between 320 
communities in different land-cover types, such as the prevalence of one or more highly seasonal 321 
species, could drive observed relationships between community seasonality and land cover. 322 
However, we found that populations of the same species occupying forested sites were more 323 
seasonal than those with more human development. Further, when we separated species by 324 
invasive status, we found that the strong seasonal patterns we observed in the forest were more 325 
synchronous for native than alien species, though both synchrony values are reasonably high and 326 
the considerably smaller sample size for alien species should be taken into consideration.  327 
 328 
Our results suggest that increasing agricultural and urban development can dampen seasonal 329 
community variability and thus disrupt phenological patterns for insects. In a number of studies, 330 
loss of seasonality has been explained by biotic homogenization, whereby communities become 331 
more similar and generalist, and this has been linked with urbanization for a variety of taxa, 332 
including bees (Hung et al., 2017), bugs and leafhoppers (Knop, 2016), flowering plants and 333 
butterflies (Uchida et al., 2018), and birds (La Sorte et al., 2014; Leveau, 2018). However, the 334 
majority of studies on the temporal variability of natural communities compare measurements 335 
between years and rarely within them (e.g., Cottingham et al., 2001; de Mazancourt et al., 2013; 336 
Olivier et al., 2020; Tilman et al., 2006), meaning that loss of seasonality due to environmental 337 
or anthropogenic factors may be overlooked. Yearly samples taken for highly seasonal 338 
communities at peak productivity over many annual cycles should show higher stability than for 339 
a more stochastic community, yet more frequent sampling would reveal considerable variation 340 
due to higher synchrony and seasonality. As other studies have demonstrated, temporal scale is a 341 
crucial factor that determines how stability should be interpreted (Clark et al., 2021; McArdle et 342 
al., 1990), and as community variability and its drivers vary across temporal scales (Hatosy et al., 343 
2013), it is important to measure community responses to the environment and anthropogenic 344 
disturbance across scales to improve future predictions.  345 
 346 
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We found a positive relationship between functional and compositional temporal variability, 347 
meaning that those sites with communities that varied more as a whole tended also to have 348 
higher total variation of the individual species in the local pool. The relationship between 349 
functional and compositional variability can range from positive to negative depending on the 350 
system and exposure to disturbance (Hillebrand et al., 2018; Ross et al., 2022; White et al., 351 
2020). Two characteristics of more forested sites may help explain this positive relationship. The 352 
first is that more forested sites had higher variability in general at the biweekly timescale. The 353 
second is that, at more forested sites, native species had higher richness and the highest 354 
contributions to beta diversity. Sites with high richness that include substantial numbers of alien 355 
species can have community dynamics that differ considerably from similar sites in which native 356 
species dominate (Krushelnycky & Gillespie, 2008; Sanders et al., 2003), thus including alien 357 
species in richness estimates can affect how diversity-stability relationships are interpreted (e.g., 358 
Moore & Olden, 2017).  359 
 360 
Our results raise the question of what mechanisms drive these patterns. We outline several 361 
hypotheses for why seasonal variation in activity could vary across the land-cover gradient. First, 362 
there is a possibility that ants are simply responding to the temperature they experience on a 363 
physiological level, reflecting temperature and microclimatic variation across habitats. Ants are 364 
well-known to be sensitive to temperature variation, with foraging limited to certain temperature 365 
ranges (Bernstein 1979, Stuble et al., 2013). Regional climatic variation across the island is very 366 
modest, and with no consistent differences in seasonality. Further, we found no relationships 367 
between the seasonal variance of in situ air and soil temperature and the main land-cover 368 
gradient PC1. However, differences in canopy openness, vegetation, and urbanization (via heat-369 
island effects, etc.) may create conditions that are relevant for promoting and depressing ant 370 
foraging, and the prevalence of such conditions might be higher in more degraded habitats. 371 
Comprehensive measurements with small sensors at various habitat strata for representative sites 372 
could help elucidate whether this phenomenon could differ across land-cover types. Another 373 
possibility is that ants are responding to resource availability patterns. In this scenario, it is 374 
possible that resources are more seasonal inside the forest rather than more human-impacted 375 
areas. This could occur, for example, because of anthropogenic food sources that are more static 376 
throughout the year, or because of differences in phenology of vegetation inside or outside the 377 
forest (Penick et al., 2015). A related question is whether these differences in seasonality are 378 
limited to ants or are observed across the arthropod community. Were arthropod seasonality 379 
responding more generally to land cover, this would provide a resource pattern that could affect 380 
ant activity.  Related to this, it is unclear why there seems to be little seasonal niche 381 
differentiation for ant species in forested areas, which have activity patterns that follow 382 
temperature quite closely in synchrony. One possibility is that species become most active at 383 
different times during the same warm season to avoid competition—we saw some evidence of 384 
this in the standardized seasonal curves (Fig. 5). This could be due to the inability to achieve 385 
high activity levels during cooler months due to physiological limitations, which may be absent 386 
in more developed environments with anthropogenic temperature refugia. Other potential 387 
explanations relating to differences in the ecology or physical environments across the two 388 
habitats likely exist, but more targeted research is needed to address this question. 389 
 390 
We measured variability over two years, but there may be other types of variability that only 391 
manifest on longer timescales and are also correlated with land cover. For example, introduced 392 
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ants are known to have boom-bust dynamics when they reach new localities (Lester & Gruber, 393 
2016). Over longer timescales, communities in more human-dominated areas may prove to be 394 
more dynamic with successive shifts in the community. Indeed, we witnessed such an event in 395 
our two-year period at one of our sites (Sefautaki Forest), where Pheidole megacephala, a 396 
notoriously impactful invasive ant, arrived and quickly reached high abundance, raising 397 
variability of this site beyond what was typical of others with similar land-cover characteristics. 398 
Recent research in Yambaru Forest has documented resilience of native ant communities to 399 
disturbance based on surveys of invasions at developed areas after regrowth (Shimoji et al., 400 
2022), so this site too may eventually recover to its previous structure. Thus, successive regime 401 
shifts in these more disturbed communities could occur over longer timescales, but only 402 
monitoring over more years would reveal such dynamics.  403 
 404 

Conclusions 405 
This study provides novel insight into the seasonal dynamics of subtropical insect communities 406 
across differing levels of human development. Importantly, it is the first study to our knowledge 407 
to measure seasonality of ant activity with high-frequency sampling across a human disturbance 408 
gradient. The results of our study, which link anthropogenic disturbance in the form of 409 
agricultural and urban development to a reduction in intra-annual temporal variability due to 410 
weakening seasonality, support the growing evidence that human development reduces natural 411 
seasonal patterns (Hung et al., 2017; La Sorte et al., 2014; Leveau, 2018; Uchida et al., 2018). 412 
Although this study focuses on correlative relationships and thus cannot fundamentally 413 
demonstrate causal mechanisms, it does provide compelling evidence that continuing habitat loss 414 
and fragmentation can lead to increasing homogenization of insect communities in parts of the 415 
globe with the highest insect diversity, the subtropics and tropics. As loss of seasonal patterns 416 
has been linked to a subsequent reduction in key ecosystem functions and services (Ross et al., 417 
2021; Stevenson et al., 2015), increasing development could result in disruptions to nutrient 418 
cycling and food security (Bommarco et al., 2013). To better understand the generality of these 419 
patterns, future studies using high-frequency sampling should focus on monitoring a greater 420 
diversity of insect communities across different habitat strata (i.e., arboreal, subterranean; Gotelli 421 
et al., 2011) in a variety of biomes. Greater focus on the impacts of land-cover change on insect 422 
community seasonality should aid ongoing management and conservation efforts to help 423 
preserve the important ecosystem functions and services insects provide. 424 
 425 

Data Availability 426 
Raw species’ count data before processing and R code used for analysis will be found on Data 427 
Dryad after article acceptance. Please contact <jamie.m.kass (at) gmail.com> with data requests. 428 
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 651 

 652 

Figure 1. Major land-cover classes of Okinawa Island with locations of the OKEON 653 
monitoring stations, which cover the full gradient of human development across the 654 
island. Ants were sampled from three stations at each sampling site biweekly from 2016–655 
2018 (total of 52 sampling periods).  656 
 657 

  658 
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 659 

Figure 2. Heat map showing the standardized ant activity (i.e., logs of summed site counts 660 
divided by the log of the grand total count) over two years in Okinawa. Mean temperature 661 
measurements from the Japan Meteorological Agency across the island, ordered from south to 662 
north, are included for reference. Heat map sites are ordered by values of land-cover PC1, 663 
explaining the anthropogenic stress gradient (top: more forested, bottom: more urban). Dotted 664 
lines show the last sampling period before the new year.   665 
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 666 
 667 
Figure 3. Trends in total log activity, functional variability, and compositional variability for ants 668 
across a gradient of anthropogenic impact. Relationships with PC1, explaining the anthropogenic 669 
stress gradient (low: more developed, high: more forested). Total log ant activity (before 670 
rarefaction) correlates negatively with PC1 while indices of temporal variability (functional: 671 
coefficient of variation, compositional: beta diversity) correlate positively.  672 

 R2 = 0.714

9

10

11

−0.5 0.0 0.5 1.0

to
ta

l l
og

ac
tiv

ity

 R2 = 0.6670.0

0.3

0.6

0.9

1.2

−0.5 0.0 0.5 1.0

fu
nc

tio
na

l
va

ria
bi

lit
y 

(C
V)

 R2 = 0.6010.0

0.1

0.2

0.3

0.4

−0.5 0.0 0.5 1.0
PC1 (developed to forested)

co
m

po
si

tio
na

l v
ar

ia
bi

lit
y

(b
et

a 
di

ve
rs

ity
)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 22, 2023. ; https://doi.org/10.1101/2023.01.17.523860doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.17.523860


 673 

 674 

Figure 4. a) Time-series decomposition of rarefied ant activity for the sites with the most forest 675 
(Yona Forest) and most human development (Oyama Park) within a 1 km buffer. b) 676 
Relationships between absolute and relative variance of seasonality and stochastic temporal 677 
components and PC1 across all 24 sites, explaining the anthropogenic stress gradient (low: more 678 
developed, high: more forested). Relative variance here is calculated as individual component 679 
variance divided by summed variance of all components.  680 
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 681 

Figure 5. a) Relative seasonality variance calculated per ant species in two representative land-682 
cover groups each containing eight sites: more forested and more developed. Only species shared 683 
between groups (abbreviations of those found in Table S2) and with total counts ≥100 were 684 
retained, whereupon species counts were rarefied to the minimum between groups. On average, 685 
species have a higher relative seasonality variance in the forested group (paired Wilcoxon Test; p 686 
= 0.003), and no apparent patterns exist regarding alien status. b) Seasonal component time-687 
series for each species (lines) found in the more forested and more developed groups, 688 
standardized by total species activity and separated by invasive species status. The dashed black 689 
line shows the mean standardized seasonality across all species per land-cover group, showing 690 
much greater temporal mismatch in ant communities at sites with greater human development. 691 
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Supporting Information 692 

A. Ant activity data details 693 
As sites across the island were sampled in sequential groups rather than simultaneously for each 694 
biweekly period (differences are on the order of 7 days), to allow for appropriate site 695 
comparisons, we assigned each sample a time step (52 in total) based on the relative sampling 696 
order for that site. To this activity dataset, we filled in absence data when species that were 697 
observed at least once at a site were not observed for other time steps for that site in order to 698 
calculate temporal variability metrics. Values of NA (n = 8) were assigned to samples that 699 
experienced trap malfunctions or data loss via extreme weather events and were removed from 700 
analyses.  701 
 702 

B. Rarefaction permutations 703 
Community samples collected over time are typically biased by sampling error, which results in 704 
fluctuations in activity due to site placement or other external factors, but this bias can be 705 
reduced via data rarefaction (Gaston & McArdle, 1994). As natural differences in total 706 
community count across sites were high (from n = 3,616 [Yona Forest] to n = 82,781 [Sueyoshi 707 
Forest]), we rarefied site- and group-level count while retaining original activity patterns to 708 
reduce the effects of sampling error, allowing us to make more even comparisons of temporal 709 
variability. For site-level activity, we randomly resampled the individual counts of species i at 710 
time t for each site to equal the minimum total site count (n = 3,616). For group-level activity, 711 
we first limited the species considered to those with total count greater than 100 for the two-year 712 
study period, then randomly resampled (with replacement) the individual counts of species i at 713 
time t for each group to equal that species’ minimum total count between groups. We performed 714 
1000 iterations of each rarefaction and conducted all proceeding analyses on these iterations. 715 
 716 

C. Community and compositional variability calculations 717 
We measured community temporal variability by calculating the coefficient of variation (CV) of 718 
summed ant count by site over the 2-year sampling period. We measured compositional temporal 719 
variability by calculating temporal beta diversity for each site community as the total variability 720 
of the species composition matrix (here, species × time step) after a Hellinger transformation (to 721 
ensure purely relative count data; Legendre & De Cáceres, 2013) using the function beta.div 722 
from the R package adespatial (Dray et al., 2022). As an additional product of this function, we 723 
derived species contributions to beta diversity per site, which is calculated as species variance 724 
divided by the total community variance (summing to 1). We then summed these contributions 725 
for each invasive status category (native, uncertain, alien) to determine the contribution of each 726 
category. We calculated both indices of temporal variability on each rarefied site activity dataset, 727 
then found the mean values across datasets. These mean rarefied site values were used in 728 
subsequent models. 729 
 730 

D. Formulas for temporal decomposition and associated variance 731 
We used the TSLM() function in the R package fable (O’Hara-Wild et al., 2021) to fit time-732 
series linear models with the following formula: 733 
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 734 
𝑦! =	𝛽" +	𝛽#𝑡 +	𝛽$𝑥# 735 
 736 
where yt is the total count of ants at a site, with t equal to the range 1 to T, the number of time 737 
intervals; and where x1 is the 1st order Fourier term sin(	$%!

&
	), with m equal to the number of 738 

seasonal periods (in this case, m = 2 for 2 years). 739 
 740 
We calculated the temporal components in the following ways: 741 
 742 
 𝑡𝑟𝑒𝑛𝑑 = 	𝛽" +	𝛽#𝑡 743 
 744 
𝑠𝑒𝑎𝑠𝑜𝑛 = 	𝑦! − 	𝑡𝑟𝑒𝑛𝑑 − 𝑟𝑒𝑠𝑖𝑑  745 
 746 
𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 	𝑟𝑒𝑠𝑖𝑑  747 
 748 
where resid is the model residuals. 749 
 750 
In addition to calculating absolute variance of temporal components, we calculated relative 751 
variance with the following formula: 752 
 753 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑣𝑎𝑟' =	
𝑣𝑎𝑟(𝑧)

𝑣𝑎𝑟(𝑡𝑟𝑒𝑛𝑑) + 𝑣𝑎𝑟(𝑠𝑒𝑎𝑠𝑜𝑛) + 𝑣𝑎𝑟(𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟) 754 

 755 
where z is one of the temporal components: trend, season, or remainder. 756 

 757 

E. Assessing effects of spatial autocorrelation on models 758 
We first built models using ordinary least squares (OLS) regression to estimate the relationships 759 
between land cover and the variables of interest. As some OKEON sites are relatively close to 760 
others, we assessed the spatial autocorrelation present in the OLS model residuals by calculating 761 
Moran’s I and testing with random permutations using the function moran.randtest() from the R 762 
package adespatial (999 repetitions; Dray et al., 2022). But as this test was not significant for 763 
any of the models (p > 0.05), we fitted OLS models instead of more complex generalized least 764 
squares (GLS) models with spatial structure. We determined goodness-of-fit with the adjusted 765 
coefficient of determination (R-squared) and compared these between different count threshold 766 
choices. 767 
 768 

F. Effects of count threshold choice 769 
As we avoided bias in temporal variability estimates by limiting all count values to an assigned 770 
threshold, we examined how robust our results are over a range of different thresholds. We 771 
report results in the main text for the relatively conservative threshold of 500 set at the station-772 
level, but additionally ran the same analyses with no threshold, and with thresholds 100, 200, 773 
1000, and 2000, applied at both the station- and site-levels. We observed some differences across 774 
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the different thresholding schema, but no threshold fundamentally changes our results (which we 775 
report for threshold 500 set at the station-level). The adjusted R-squared values for the metrics 776 
calculated were sensitive in varying degrees to threshold (Fig. S7), with the exception of 777 
compositional temporal variability—this is because our beta diversity calculation includes a 778 
Hellinger transformation that mollifies the effects of outliers in the data. Further, thresholding at 779 
the station- and site-levels showed the same general trends. The highest threshold considered 780 
(2000) for the station-level was most often associated with the lowest R-squared values. The 781 
absence of a threshold had the most dramatic differences. This reduced the R-squared value for 782 
functional temporal variability to 0.11 from a thresholded minimum of 0.40, and seasonality 783 
variance to 0.16 from 0.39. R-squared values for other metrics were similarly reduced, but more 784 
closely followed decreasing trends as thresholds became larger. These reductions in correlations 785 
with PC1 occurred because, without thresholding, sites with extreme count values for one or 786 
several species spike in functional variability (calculated with CV) and lose seasonality, and the 787 
existence of such spikes has little to do with land cover. 788 
  789 
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Table S1. Pearson correlations between proportions of land-cover classes within 1 km buffers of 790 
sampling sites. “MISC” stands for miscellaneous and includes the classes for unclassified pixels 791 
and those classified as bare rock or soil. As pairwise correlations were high, we conducted a 792 
principal component analysis (PCA) to derive the main orthogonal land-cover gradients. 793 
 794 
 795 

 AGRICULTURE FOREST WATER GRASS SAND URBAN MISC 

AGRICULTURE 1       

FOREST -0.89 1      

WATER -0.05 0.02 1     

GRASS 0.53 -0.44 0.02 1    

SAND 0.54 -0.48 -0.04 0.23 1   

URBAN 0.56 -0.84 -0.08 0.01 0.20 1  

MISC 0.51 -0.73 0.13 0.18 0.53 0.74 1 
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Table S2. Invasive status for all observed ant species based on existing literature and expert 797 

opinion. 798 

 799 

species status 

Aenictus ceylonicus native 

Aenictus lifuiae native 

Anoplolepis gracilipes uncertain 

Aphaenogaster concolor native 

Aphaenogaster irrigua native 

Brachyponera chinensis native 

Brachyponera luteipes native 

Camponotus bishamon native 

Camponotus devestivus native 

Camponotus monju native 

Camponotus OK01 native 

Camponotus yambaru native 

Cardiocondyla kagutsuchi uncertain 

Cardiocondyla minutior uncertain 

Cardiocondyla obscurior uncertain 

Cardiocondyla wroughtonii native 

Carebara hannya native 

Carebara oni native 

Carebara yamatonis native 

Colobopsis shohki native 

Crematogaster cf. matsumurai native 
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Crematogaster nawai native 

Crematogaster vagula native 

Cryptopone tengu native 

Diacamma OK01 native 

Discothyrea kamiteta native 

Ectomomyrmex OK01 native 

Erromyrma latinodis native 

Euponera pilosior native 

Hypoponera nippona native 

Hypoponera OK01 native 

Hypoponera punctatissima alien 

Hypoponera sauteri native 

Leptogenys confucii native 

Lioponera daikoku native 

Monomorium chinense native 

Monomorium floricola uncertain 

Monomorium hiten native 

Monomorium intrudens native 

Monomorium pharaonis alien 

Myrmecina ryukyuensis native 

Nylanderia amia uncertain 

Nylanderia OK02 uncertain 

Nylanderia OK03 uncertain 

Nylanderia ryukyuensis native 

Nylanderia yambaru native 

Ochetellus glaber native 
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Odontomachus kuroiwae native 

Ooceraea biroi uncertain 

Paratrechina longicornis alien 

Pheidole fervens uncertain 

Pheidole megacephala alien 

Pheidole noda native 

Pheidole parva uncertain 

Pheidole pieli native 

Plagiolepis alluaudi alien 

Polyrhachis dives native 

Polyrhachis moesta native 

Ponera takaminei native 

Ponera tamon native 

Pristomyrmex punctatus native 

Proceratium japonicum native 

Protanilla lini native 

Rhopalomastix OK01 native 

Solenopsis tipuna native 

Stigmatomma sakaii native 

Stigmatomma silvestrii native 

Strumigenys circothrix native 

Strumigenys emmae uncertain 

Strumigenys exilirhina native 

Strumigenys hexamera native 

Strumigenys hirashimai native 

Strumigenys lewisi native 
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Strumigenys mazu native 

Strumigenys membranifera uncertain 

Strumigenys minutula native 

Strumigenys OK01 uncertain 

Strumigenys strigatella native 

Tapinoma melanocephalum uncertain 

Tapinoma saohime native 

Technomyrmex brunneus alien 

Temnothorax indra native 

Temnothorax OK01 native 

Tetramorium bicarinatum alien 

Tetramorium kraepelini uncertain 

Tetramorium lanuginosum alien 

Tetramorium nipponense native 

Tetramorium simillimum alien 

Tetramorium smithi alien 

Trichomyrmex destructor uncertain 

Vollenhovia OK01 native 
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Table S3. Results from linear regression models built with two land-cover PCA axes: PC1, 801 
explaining the forested-developed gradient, and PC2, explaining the rural-urban gradient. All 802 
model residuals were tested for spatial autocorrelation by calculating Moran’s I and testing with 803 
random permutations (moran.randtest() from the R package adespatial; 999 repetitions), yet 804 
none had significant results. 805 
 806 

 PC1 PC2 Adj. R2 Moran p 
Response 
variable Intercept Estimate 

Std. 
Error p Estimate 

Std. 
Error p   

Total activity 
(natural log) 10.082 -1.575 0.206 0 NA NA NA 0.714 0.269 
Total richness 
(rarefied) 22.742 3.453 1.557 0.037 NA NA NA 0.145 0.727 
Native 
richness 
(rarefied) 13.662 8.351 1.367 0 NA NA NA 0.612 0.789 
Uncertain 
richness 
(rarefied) 5.863 -3.585 1.019 0.002 NA NA NA 0.331 0.179 
Alien richness 
(rarefied) 3.217 -1.314 0.509 0.017 NA NA NA 0.198 0.59 
Total richness 
(observed) 30.708 NA NA NA NA NA NA 0 0.887 
Native 
richness 
(observed) 18.708 7.483 1.686 0 -7.594 4.611 0.114 0.47 0.8 
Uncertain 
richness 
(observed) 7.875 -5.188 1.516 0.002 NA NA NA 0.318 0.312 
Alien richness 
(observed) 4.125 -2.052 0.643 0.004 NA NA NA 0.285 0.271 
Total richness 
(estimated) 38.923 NA NA NA NA NA NA 0 0.862 
Native 
richness 
(estimated) 23.781 13.457 3.646 0.001 NA NA NA 0.354 0.767 
Uncertain 
richness 
(estimated) 8.427 -5.717 1.636 0.002 NA NA NA 0.328 0.487 
Alien richness 
(estimated) 4.292 -2.092 0.802 0.016 NA NA NA 0.202 0.3 
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Functional 
temporal 
variability 0.67 0.405 0.059 0 NA NA NA 0.667 0.269 
Compositional 
temporal 
variability 0.23 0.141 0.024 0 NA NA NA 0.601 0.703 
Native SCBD 0.53 0.237 0.059 0.001 NA NA NA 0.397 0.776 
Uncertain 
SCBD 0.229 -0.16 0.05 0.004 NA NA NA 0.283 0.524 
Alien SCBD 0.257 -0.087 0.05 0.094 NA NA NA 0.082 0.465 
Seasonal 
variability 
(absolute) 1209.034 1850.927 

328.6
26 0 NA NA NA 0.572 0.918 

Seasonal 
variability 
(relative) 0.478 0.201 0.081 0.022 -0.373 0.222 0.108 0.232 0.39 
Trend 
variability 
(absolute) 194.354 311.24 

90.18
5 0.002 NA NA NA 0.322 0.567 

Trend 
variability 
(relative) 0.079 NA NA NA NA NA NA 0 0.722 
Stochastic 
variability 
(absolute) 946.566 660.74 

297.5
68 0.037 NA NA NA 0.146 0.591 

Stochastic 
variability 
(relative) 0.443 -0.223 0.066 0.003 0.345 0.18 0.069 0.363 0.403 

 807 

 808 
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 809 

 810 

Figure S1. Conceptual workflow schematic describing the analysis steps. A) The main analysis 811 
uses ant activity data from all sites. Richness is calculated for observed data and estimated via 812 
Hill numbers, then the dataset is rarefied by randomly resampling individual workers per site to 813 
match the minimum total site activity; rarefied richness is calculated from this rarefied dataset. 814 
Next, the following analyses are conducted: functional temporal variability, compositional 815 
temporal variability (including species contribution to beta diversity [SCBD]), and temporal 816 
decompositions to derive seasonal, trend, and remainder (stochastic) components. B) The group-817 
level analysis first splits sites into two groups (green and pink points) based on land-cover PC1, 818 
explaining the forested-developed gradient. Both groups share the same species, and those with 819 
mid-level PC1 values are excluded (black points). These grouped data are then rarefied by 820 
randomly resampling individual workers per species within each group to match the minimum 821 
total species activity between groups. The same temporal decomposition is then conducted on 822 
these grouped data. 823 
  824 
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 825 

Figure S2. Biplot of the principal component analysis for the land-cover proportion dataset. PC1 826 
explains the main anthropogenic stress gradient (low: more forested, high: more developed), 827 
while PC2 explains the rural (high; agriculture and/or grass) to urban (low) gradient.  828 
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 830 
Figure S3. Plot of compositional variability by functional variability, showing the sampling sites 831 
with colors corresponding to the forested-developed gradient (PC1), where higher values (blue) 832 
are more forested and lower values (red) have more human development. Site abbreviations 833 
correspond to those used in Figure 1. The gray line shows the relationship between two 834 
variabilities modeled with linear regression.  835 
 836 
 837 
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 838 

Figure S4. Relationships between PC1 and summed species contributions to beta diversity 839 
(SCBD) for native, uncertain, and alien species for the rarefied activity data. PC1 explains the 840 
anthropogenic stress gradient (low: more developed, high: more forested). 841 
  842 
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 843 

Figure S5. Relationships between PC1 and total richness, as well as richness of native, uncertain, 844 
and alien species for the rarefied activity data. PC1 explains the anthropogenic stress gradient 845 
(low: more developed, high: more forested).  846 
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 847 
Figure S6. Absolute seasonality variance of temperature at the a) regional and b) site-level scales 848 
over the two-year study period (2016 – 2018). Regional temperature measurements were taken 849 
from Japanese Meteorological Association weather stations, and station names correspond to 850 
those on the map. Site-level temperature measurements were taken for air and soil at one station 851 
per sample site. Oyama Park (OYA) and OIST Open (OIT) were the only sites with sensors not 852 
located below forest canopy, and thus have higher variance for soil temperature seasonality. 853 
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 855 

Figure S7. The adjusted R-squared value for the metrics measured in this study at different count 856 
thresholds and spatial levels for thresholding (station, site). The threshold value “none” is used as 857 
a reference and is symbolized by the red point and orange line. For reference, the analysis 858 
described in this paper is a threshold value of 500 at the station level. 859 
 860 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 22, 2023. ; https://doi.org/10.1101/2023.01.17.523860doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.17.523860

