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ABSTRACT 53 

People form higher-level, metacognitive representations of their own abilities across a range of 54 

tasks. Here we ask how metacognitive confidence judgments of performance during motor 55 

learning are shaped by the learner’s recent history of errors. Across two motor adaptation 56 

experiments, our computational modeling approach demonstrated that people’s confidence 57 

judgments are best explained by a recency-weighted averaging of observed motor errors. 58 

Moreover, in the formation of these confidence estimates, people appear to re-weight observed 59 

motor errors according to a subjective cost function. Finally, confidence judgments appeared to 60 

incorporate recent motor errors in a manner that was sensitive to the volatility of the learning 61 

environment, integrating a shallower history when the environment was more volatile. Our study 62 

provides a novel descriptive model that successfully approximates the dynamics of 63 

metacognitive judgments during motor learning. 64 

 65 

NEW & NOTEWORTHY 66 

This study examined how, during visuomotor learning, people’s confidence in their movement 67 

decisions is shaped by their recent history of errors. Using computational modeling, we found 68 

that confidence judgments incorporated recent error history, tracked subjective error costs, and 69 

were sensitive to environmental volatility. Together, these results provide a novel model of 70 

metacognitive judgments during motor learning that could be applied to future computational 71 

and neural studies at the interface of higher-order cognition and motor behavior. 72 
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INTRODUCTION   73 

Humans have the ability to monitor qualities of their own performance in a task, a capacity often 74 

referred to as “metacognition.” Metacognitive processes have been observed across a range of 75 

tasks, including simple perceptual decision-making (1), reinforcement learning (2), social 76 

cognition (3), and memory (4). Over a century of research has shown that people’s 77 

metacognitive judgements (such as their explicitly reported confidence in their choices/abilities) 78 

often closely track behavioral metrics like accuracy and response time (5).  79 

 80 

In one of the most studied laboratory models of metacognition and confidence – perceptual 81 

decision-making – researchers have used computational models to uncover strong links 82 

between one’s confidence in a choice (e.g., ‘those dots are mostly moving left’) and the 83 

perceptual evidence they have accumulated for that choice over its competitors (6–8). 84 

Moreover, researchers have even discovered certain neural populations that simultaneously 85 

encode both accumulated evidence and decision confidence (9). Here, we turn to a domain that 86 

has been less well studied with respect to metacognition – sensorimotor learning. 87 

 88 

Unlike making discrete, independent decisions about incoming sense data, learning requires 89 

integrating information over protracted periods. Thus, metacognitive awareness of your state of 90 

learning requires tracking your progress across time. Consider practicing your tennis serve over 91 

a series of attempts: Your metacognitive judgment of your current ability (e.g., your confidence 92 

in any given serve attempt) should, in principle, take into account your recent history of 93 

feedback (i.e., your errors). But how does one’s state of confidence integrate these errors, 94 

especially when they are in a continuous domain (i.e., like most motor learning tasks)? And how 95 

does confidence relate to second order statistics of learning, like the volatility of the environment 96 

(e.g., a particularly windy day on the courts) (10)?  97 

 98 

There has been some recent research on confidence and learning in nonmotor domains. One 99 

recent study (11) used a perceptual decision task in which participants reported their estimate of 100 

the transition probabilities between two visual or auditory stimuli as well as their confidence in 101 

this report. The results indicated that participants not only learn a statistical model of transition 102 

probabilities over time, but also that their confidence ratings closely track this statistical 103 

inference. This work demonstrates that in a perceptual decision-making context, people’s 104 
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confidence judgments closely correlate with their performance in tracking stochastic variables 105 

over time (12). 106 

  107 

Other work from the reinforcement learning domain has suggested that confidence in one’s 108 

choices during learning evolves along with learned latent value representations, and is subject 109 

to value-driven biases (2). Moreover, volatility in an environment, a second order statistic 110 

tracked over many trials, induces uncertainty in an agent, and agents tend to operate with a 111 

faster learning rate in these uncertain environments (13). This work suggests that higher-order 112 

variables like confidence may also correspond to the statistical uncertainty that underpins the 113 

learning process itself (14, 15). 114 

 115 

Subjective confidence in the domain of motor learning has been less well studied, but some 116 

work has attempted to capture the role of continuous motor errors on subjective evaluations of 117 

confidence. For instance, one recent study (16) showed that individuals are able to predict their 118 

future performance, and also leverage their confidence in their future performance to maximize 119 

future rewards. Another recent study (17) demonstrated that subjective confidence tracks 120 

precision in a continuous temporal estimation task. Some work on motor sequence learning has 121 

looked at a more ‘zoomed-out’ form of confidence – block- and day-level judgments of one’s 122 

own ability (18). Lastly, recent computational work has shown that individuals might utilize 123 

information about their prior motor variability to make confidence judgments of their motor 124 

precision (19).  125 

 126 

While these works suggest that confidence in a motor context integrates prior history of 127 

performance (perhaps in a Bayesian manner), they do not directly address metacognitive 128 

dynamics during the protracted adaptation of motor commands (20), the context of interest here. 129 

During motor adaptation, does confidence simply reveal a metacognitive readout of 130 

performance error at a given point in time, or does it represent the integration of a history of 131 

errors? And how do aspects of the learning context, such as the volatility of the environment, 132 

mediate the relationship between confidence and motor error? Addressing these questions can 133 

shed light on the psychological processes involved in motor learning, computationally isolate 134 

higher-level metacognitive variables for investigating in future neural studies, and perhaps be 135 

useful for increasing people’s motivation to learn in clinical and non-clinical settings.  136 

 137 
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Here, we used a motor adaptation task that involves modulating movement kinematics (i.e., 138 

reaching directions), and asked how motor errors affect subjective confidence. We address this 139 

via two experiments and descriptive computational modeling. We specify a model of confidence 140 

during motor learning where trial-by-trial subjective confidence judgments are approximated by 141 

a simple linear dynamic system that tracks subjectively-weighted errors made during motor 142 

learning. This straightforward model outperforms other model variants that do not incorporate 143 

error history, and also reveals that the dynamics of confidence ratings during motor adaptation 144 

are sensitive to environmental volatility. Together, these results set the stage for future 145 

computational and neural investigations of people’s higher-level metacognitive representations 146 

of the state of their own sensorimotor learning processes. 147 

METHODS  148 

Participants 149 

A total of 38 neurologically healthy participants (Experiment 1: N = 18 ; Age = 21±5 years; 150 

Gender: 10 identified as Female, 1 preferred not to answer; Handedness: 16 right-handed [>40 151 

on the Edinburgh handedness inventory (21). Experiment 2: N = 20; Age = 20±5 years; Gender: 152 

13 identified as Female; Handedness: 19 right-handed) from the Yale University subject pool 153 

participated in this study. They received monetary compensation or course credit for their 154 

participation. Written informed consent was obtained from all participants before testing and the 155 

experimental protocol was approved in accordance with Yale University’s Institutional Review 156 

Board. No subjects were excluded from any of our analyses.  157 

 158 

Apparatus 159 

Participants sat on a height-adjustable chair facing a 24.5-in. LCD monitor (Asus VG259QM; 160 

display size: 543.74 mm x 302.62 mm; resolution: 1920 x 1080 pixels; frame rate 280 Hz; 1 ms 161 

response time), positioned horizontally ~30 cm in front of the participant above the table 162 

platform, thus preventing direct vision of the hand (Fig. 1A). In their dominant hand they held a 163 

stylus embedded within a custom modified paddle, which they could slide across a digitizing 164 

tablet (Wacom PTH860; active area: 311 mm x 216 mm). Hand position was recorded from the 165 

tip of the stylus sampled by the tablet at 200 Hz. Stimulus presentation and movement recording 166 

were controlled by a custom-built Octave script (GNU Octave v5.2.0; Psychtoolbox-3 v3.0.18; 167 

Ubuntu 20.04.4 LTS). Aiming and confidence ratings were controlled by the non-dominant hand 168 

and entered on a USB keyboard (Fig. 1B). 169 
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 170 

Task 171 

Typical task trials consisted of an aiming phase, a confidence rating phase, and then a reaching 172 

phase (Fig. 1B). To briefly summarize the phases: During the aiming phase, participants were 173 

instructed to “position the aiming reticle where you intend to move your hand”; during the 174 

confidence reporting phase, participants were instructed to “rate how confident you are that 175 

where you aimed is correct”; and during the reach phase, subjects made rapid reaches to the 176 

displayed target.  177 

 178 

During the reaching phase, participants performed center-out-reaching movements from a 179 

central start location in the center of the monitor to one of 8 visual targets (0°, 45°, 90°, 135°, 180 

180°, 225°, 270°, and 315°) arranged around an invisible circle with a radius of 10 cm. The 181 

target location for each trial was pseudo-randomly selected. Participants were instructed to 182 

move the stylus as quickly as possible from the start location in the direction of the displayed 183 

target and “slice through it.” The start location was marked by a filled white circle of 7 mm in 184 

diameter. The target locations were marked by filled green circles of 10 mm in diameter. Online 185 

visual feedback was given by a cursor (filled white circle, radius 2.5 mm). If the reach duration 186 

exceeded 400 ms, a text prompt appeared on the monitor reminding participants to “please 187 

speed up your reach,” and the trial was repeated but with a new target location.  188 

 189 

During the aiming phase, a white crosshair 7 mm in diameter was overlaid on the target (Figure 190 

1B). Its movement was constrained to follow the arc of the invisible circle with a radius of 10 cm 191 

from the start location. The aiming crosshair’s location was adjusted with the left hand using the 192 

left and right arrow keys, which drove crosshair movements to the counterclockwise and 193 

clockwise directions, respectively. When participants were satisfied with the match between 194 

their intended reach direction and the aiming crosshair’s position, they then registered their aim 195 

with the ‘enter’ key.  196 

 197 

During the confidence rating phase, which directly followed the aiming phase, a rating bar 198 

(20mm x 40mm) was displayed 15˚ counterclockwise of the target. A white line, representing the 199 

participant’s confidence rating was initialized in the middle of the bar (50% confidence). As 200 

confidence increased towards 100%, the bar’s color changed from yellow to green. As 201 

confidence decreased towards 0%, the bar’s color changed from yellow to red. Participants 202 
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reported their confidence level with their left hand using the up and down arrows, and registered 203 

their confidence rating with the ‘enter’ key.   204 

 205 

Experiment 1 included reach baseline, report practice, adaptation, and washout blocks (Figure 206 

1C). Baseline consisted of 24 trials (3 trials per target) with veridical online cursor feedback 207 

provided for the duration of the reach. Report practice consisted of 48 trials (6 trials per target) 208 

partitioned into the ‘aim’, confidence report,’ and ‘reach’ phases. Veridical visual feedback was 209 

provided throughout all reaches, save the washout phase in Experiment 1. Adaptation consisted 210 

of 240 trials (30 trials per target) that included all three trial phases (Figure 1C). Crucially, during 211 

the reach phase the cursor was rotated by 30˚ (with CW/CCW rotations evenly counterbalanced 212 

across participants). Washout (Experiment 1 only) consisted of 48 reach trials (6 trials per 213 

target) with no cursor feedback provided for the duration of the reach, analogous to the baseline 214 

phase.  215 

Experiment 2 included 16 baseline trials (2 per target), 16 report practice trials (2 per target), 216 

208 adaptation trials (26 per target) but no washout trials (Figure 1D). The adaptation trials 217 

differed from Experiment 1 only in terms of the rotation perturbation applied to the cursor. In 218 

Experiment 2, rotation angles of -60˚, -45˚, -30˚, -15˚, 15˚, 30˚, 45˚, and 60˚ were pseudo-219 

randomly applied across 24 blocks of 8 trial mini-blocks (3 x 8 trial mini-blocks per rotation 220 

angle, thus 192 rotation trials total). Four additional mini blocks consisting of 4 trials of 0˚ 221 

rotation were interleaved throughout adaptation. No specific rotation angle or sign was repeated 222 

consecutively (Figure 1D).    223 

Statistical Analysis 224 

Primary dependent variables were confidence judgements and recorded hand angles on every 225 

trial. Since participants were instructed to always adjust the confidence bar by at least one unit, 226 

all trials where the confidence rating remained at the initial 50% were removed (Exp. 1:  353 out 227 

of 5,184 trials [7.39%]; Exp. 2: 390 out of 4,480 trials [8.71%]). Data was analyzed using Matlab 228 

(Mathworks, Inc. Version 2022a). Model fits were computed using Matlab’s fmincon function, 229 

minimizing the SSE between our confidence models and the confidence report data. Violin plots 230 

were generated using the Violinplot function in Matlab (22). Data and analysis code can be 231 

accessed at https://github.com/ilestz/confidence_analysis. 232 

 233 

We validated model parameter optimization through parameter recovery and found we could 234 

achieve stable parameter fits throughout. To do this, we fit model-predicted confidence reports 235 
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using the model that initially generated these predictions and found that model parameters were 236 

recovered to 100% accuracy within 2 iterations of fitting. R2 values were computed through 237 

linear regression of model predictions and data. Reported 𝛥AIC (23) values reflect differences in 238 

summed AIC values between each model and the winning model. 239 

RESULTS 240 

Computational Modeling 241 

The goal of our study was to examine how motor learning relates to one’s metacognitive 242 

judgments of their movement decisions. Participants performed a standard sensorimotor 243 

adaptation task while also reporting their confidence in each of their movements (i.e., chosen 244 

reach directions; Figure 1). We constructed computational models with the goal of predicting 245 

these subjective confidence reports on each trial. All four models characterized confidence 246 

reports (Equation 1) as deviations from a maximum confidence ‘offset’ that is proportional to an 247 

estimate of previous sensorimotor error(s): 248 

 249 

(1) 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  −  𝜂 ∗  𝐸𝑟𝑟𝑜𝑟 250 

 251 

Where 𝜂 represented an error scaling parameter. Here, “error” denotes the experienced “target 252 

error” (henceforth TE), the absolute angular error of the cursor relative to the target (though see 253 

later Results sections for alternatives). The first class of models we tested predict confidence 254 

based on the current state of learning. Specifically, these models relate confidence reports 255 

directly to the most recent error signal, representing a local “one-trial-back” (OTB) update rule. 256 

Within this model class, we tested two model variants. In the objective-error one-trial-back 257 

model (OTBobj), the true (i.e., actually observed) absolute error of the cursor relative to the target 258 

was used to compute confidence. However, previous work has shown that the cost of target 259 

errors are scaled subjectively via an approximate power-law (24). Thus, we also fit a subjective-260 

error one-trial-back model (OTBsubj), which scaled all target errors by an exponential free 261 

parameter, 𝛾: 262 

 263 

(2) 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  =  𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  −  𝜂 ∗  𝑇𝐸  264 

 265 

An exponent 𝛾 > 1 suggests that large target errors are perceived as relatively more salient 266 

(costly), and thus drive sharper decreases in confidence versus small errors in a manner that is 267 
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non-linearly proportional to the veridical error. In contrast, 0 < 𝛾 < 1 suggests that large errors 268 

are discounted relative to their veridical magnitude and thus drive weaker decreases in 269 

confidence than would be predicted by the objective error model. Finally, 𝛾 = 1 reduces to the 270 

objective error case, where errors are not subjectively scaled, and confidence is linearly 271 

proportional to the veridical target error magnitude.  272 

 273 

The second class of models involved retaining a sort of memory via estimating a running 274 

average of target errors across trials. This estimate is subsequently used to generate predicted 275 

confidence reports. We designed these “error-state-space” models to act as simple linear 276 

dynamical systems that update an estimate of the current error “state” on every trial through a 277 

canonical delta rule: 278 

 279 

(3) 𝑇𝐸 = 𝑇𝐸 +  𝛼 ⋅ 𝛿   280 

(4) 𝛿  = 𝑇𝐸 − 𝑇𝐸  281 

 282 

In effect, this learning rule constructs a recency-weighted average of the error state across trials 283 

and is similar to the learning rule employed in instrumental learning contexts for learning the 284 

predictive value of a given stimulus (25) and echoes state-space models used to model 285 

adaptation itself (26). The learning rate 𝛼 reflects the degree to which errors on previous trials 286 

are incorporated into the estimate, with high 𝛼 values (i.e., close to 1) reflecting a high degree of 287 

forgetting and low 𝛼 values (i.e., close to 0) reflecting a more historical memory of error across 288 

trials. Whenever the observed target error on the previous trial was greater than (less than) the 289 

estimated target error, the estimated target error would increase (decrease) by an amount 290 

proportional to this “metacognitive” prediction error. 291 

 292 

Within this error-state-space (ESS) model class, there were again two distinct variants: The 293 

objective-error state-space model (ESSobj) computed the estimated error using the true veridical 294 

target errors, while the subjective-error state-space model (ESSsubj) computed the estimated 295 

error using the subjectively scaled error with exponent 𝛾: 296 

 297 

(5) 𝛿  =  𝑇𝐸 − 𝑇𝐸  298 

 299 
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Where the estimated error tracks a history of subjective errors, instead of objective errors. 300 

Nonetheless, both history (ESS) models used the same equation to generate predicted 301 

confidence reports (Equation 1), now using an evolving estimate of error state: 302 

 303 

(6) 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  −   𝜂 ∗  𝑇𝐸  304 

 305 

Altogether, our 4 models share 2 free parameters – the maximum confidence offset and the 306 

error sensitivity scaling parameter  𝜂. Moreover, both models with nonlinear subjective error cost 307 

functions share the 𝛾 parameter. Finally, both models with error state-space tracking share an 308 

additional learning rate free parameter (𝛼) relative to the one-trial-back models. 309 

 310 
[Figure 1 here] 311 

 312 
Experiment 1 313 

We sought to explore how participants generate subjective judgements of their 314 

confidence in a motor learning task (Figure 1). Prior to performing a center out reaching motion, 315 

participants reported their intended reach direction and rated their confidence in that decision on 316 

a continuous scale (Figure 1B). After a brief baseline phase with veridical cursor feedback, a 317 

sensorimotor perturbation of 30° was applied (Figure 1C), which subjects rapidly learned to 318 

compensate for. Reach directions compensated well for the applied rotation, with a mean cursor 319 

error over the last 50 rotation trials of 0.51° (SD: 3.4°) (Fig. 2A). On average, reach directions 320 

compensated for 90% of the perturbation after ~8 trials. 321 

 322 

[Figure 2 here] 323 

 324 

During the unperturbed baseline phase of the experiment, confidence reports remained 325 

relatively stable but sharply decreased when the perturbation was applied, as expected. 326 

Unsurprisingly, all of our models of confidence were able to account for this decrease. Following 327 

the initial decrease in confidence, all participants gradually restored confidence to near baseline 328 

levels as their reaching errors decreased (Fig. 2B), which was also captured by all models. 329 

These expected observations provide initial support for the general form of Equation 1, where 330 

confidence is proportional to error. 331 

 332 

To get a better picture of the dynamics of subjects’ metacognitive judgments, we now turn to 333 

model comparisons. To reiterate the models tested: one class of models, the “one-trial-back” 334 
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models (Equation 2), predicted confidence reports on a given trial based on the current state of 335 

learning. The objective-error one-trial-back (OTBobj) model predicted confidence based on 336 

veridical absolute cursor errors relative to the target, and the subjective-error one-trial-back 337 

(OTBsubj) model predicted confidence based on errors which were scaled by a power-law. The 338 

second class of models, the “error-state-space” models, kept track of an estimate of the average 339 

error on recent trials and used this average error to compute predicted confidence reports. 340 

Again, this class of models either kept track of objective errors (ESSobj model) or subjectively 341 

scaled errors (ESSsubj model). 342 

 343 

Of the four confidence models we developed, the ESSsubj best explained the variance in 344 

confidence reports (R2=0.41±0.23 [mean±SD]). At the individual level, 14 out of the 18 total 345 

subjects were better fit by the winning model versus the second-best model (Fig. 2C). Moreover, 346 

the ESS class of models robustly outperformed the OTB class (Fig. 2C; Table 1). This suggests 347 

that metacognitive judgments during sensorimotor learning incorporate a continually updated 348 

history of recent errors, rather than simply acting as a “read-out” of the current state of learning. 349 

Furthermore, confidence was better explained by a subjective error term rather than an 350 

objective one: The ESSsubj model better fit the confidence versus the ESSobj model (Table 1). All 351 

model comparisons were robust, with AIC differences relative to the best-fitting model all 352 

exceeding 500.  353 

 354 

While the results of Experiment 1 clearly favored the ESSsubj model, some limitations remained. 355 

First, because the rotation was of a single value (30˚) and was fixed throughout the adaptation 356 

phase, the task was relatively easy. Thus, it was important to test if our modeling results 357 

generalized to a more complex environment, one where both errors and confidence reports 358 

would be more variable. Moreover, because of the nature of the task in Experiment 1, both 359 

learning curves and confidence reports monotonically increased together; a more variable 360 

environment would thus also help us rule out potential coincidental similarities in autocorrelation 361 

structure between our winning model and subjects’ learning curves as the key factor. To that 362 

end, in Experiment 2 we implemented a pseudo-randomly varying perturbation schedule. This 363 

allowed us to control for the aforementioned limitations, while also testing a novel question – are 364 

the dynamics of metacognitive confidence judgments during sensorimotor learning affected by 365 

environmental uncertainty?  366 

 367 

[Table 1 here] 368 
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 369 

Experiment 2 370 

Experiment 2 involved perturbations that fluctuated every few trials (i.e., the perturbation 371 

changed size and direction every 4 or 8 trials, see Figure 3A and Methods). This allowed us to 372 

perform a more strict test of our modeling approach, and to examine if and how environmental 373 

uncertainty affected subjective confidence reports. Specifically, we predicted that the ESSsubj 374 

model would best account for subjective confidence ratings in this context, replicating 375 

Experiment 1. Moreover, we also hypothesized that while the fundamental process of 376 

confidence ratings would remain the same (i.e., the ESSsubj would again best explain behavior), 377 

the learning rate parameter of that model would increase in response to the increase in 378 

environmental uncertainty such that it would incorporate a more recency-biased history of errors 379 

(13).  380 

 381 

Despite the more volatile nature of the perturbation schedule, participants were able to adapt 382 

their reach directions to account for the rotations (Fig. 3A). Excluding the transition trials where 383 

the rotation abruptly changes, subjects’ average cursor error in the last two perturbation blocks 384 

was only 6.3° (SD: 6.5°). 385 

 386 

[Figure 3 here] 387 

 388 

As in Experiment 1, confidence remained relatively stable during the unperturbed baseline but 389 

sharply decreased after the onset of the first perturbation (Fig. 3B). Confidence also tended to 390 

sharply decrease at the start of each new perturbation. Throughout the experiment, some 4-trial 391 

zero-rotation blocks were introduced, and these blocks tended to coincide with high confidence 392 

reports (Fig. 3B). 393 

  394 

Once again, the ESSsubj model best predicted confidence reports in this experiment 395 

(R2=0.42±0.20 [mean±SD]), and the one-trial-back models were unable to account for the large 396 

fluctuations in confidence reports and performed significantly worse (Table 2). At the individual 397 

level, 18 out of the 20 total subjects were better fit by the winning model versus the second-best 398 

model (Fig. 3C). Both history (ESS) models again tracked confidence reports more accurately 399 

than the other class of models (OTB). Thus, our model comparison results closely replicated 400 

those of Experiment 1 (and again were robust; lowest AIC difference: 498). This further 401 

suggests that metacognitive judgements of sensorimotor learning incorporate a gradually 402 
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changing history of (subjectively scaled) errors. We do note that none of the four models were 403 

able to fully capture the unusually high confidence ratings seen during the zero-rotation blocks 404 

(see Discussion). 405 

 406 

[Table 2 here] 407 

 408 

Comparing model parameters across experiments 409 

While the variance in confidence reports was best explained in both experiments by the 410 

subjective-error history model, parameter values in each experiment were not necessarily the 411 

same. We explored how best fitting parameters in the ESSsubj model changed across tasks (Fig. 412 

4), with one key prediction that the metacognitive learning rate (𝛼) would increase in Experiment 413 

2 versus Experiment 1 due to the increase in environmental volatility (13). 414 

 415 

[Figure 3 here] 416 

 417 

We first looked at the maximum confidence offset parameter (Fig. 4A). This parameter should 418 

not necessarily differ across experiments, as it reflects an individual’s maximum level of 419 

confidence in the task on a somewhat arbitrary scale that should largely be independent of the 420 

dynamics of the perturbation schedule. In fact, regardless of experiment, this parameter should 421 

be close to maximal (i.e., 100) if participants are using the full range to make their confidence 422 

reports. Consistent with this hypothesis, this parameter was not significantly different across 423 

experiments (Wilcoxon rank sum test, Z=-0.63, p=0.53). The mean value of this parameter was 424 

89±11 in Experiment 1 and 91±14 in Experiment 2 (mean±SD). 425 

 426 

The subjective scaling of errors varied across both experiments (Fig. 4B). In Experiment 1, the 427 

mean exponent 𝛾 was 1.9 (SD: 0.95), indicating increased sensitivity to large errors. However, 𝛾 428 

values in Experiment 2 were significantly lower at 0.46±0.23 (Wilcoxon Rank Sum, Z=-4.98, p= 429 

6.2x10-7). The large difference in exponent values across experiments is expected, and likely 430 

reflects the fact that participants in Experiment 2 become habituated to large errors due to the 431 

volatility of the perturbation schedule, and thus likely learned to blunt the effect of these errors 432 

on their confidence reports. In contrast, in Experiment 1 errors were consistently very small, 433 

leading to the opposite effect. Thus, subjects appeared to alter how a subjective cost function of 434 

error shaped their confidence reports according to the distribution of errors they experienced. 435 

Consistent with an inherent trade-off between the exponent parameter and the sensitivity 436 
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parameter 𝜂 (Equation 2), we also observed a significant change in 𝜂 between experiments 437 

(Wilcoxon Rank Sum, Z=-4.49, p=7.2x10-6) (Figure 4B). Specifically, 𝜂 was on average more 438 

than 10 times larger in Experiment 2 than in Experiment 1 (Exp. 1: 1.4±2.9; Exp. 2: 15±14). (We 439 

note here that this parameter should not be over-interpreted, as it is primarily a scaling factor 440 

used to map error units onto confidence report units.) 441 

 442 

Finally, consistent with our hypothesis and with previous findings in reinforcement learning that 443 

learning rates in volatile environments are larger than those in stable environments (13), we 444 

observed that the error state-space learning rate 𝛼 more than doubled in Experiment 2 relative 445 

to Experiment 1 (Exp. 1: 0.18±0.15; Exp. 2: 0.41±0.24; Wilcoxon Rank Sum, Z = -3.08, p = 446 

0.002) (Figure 4D). Thus, the amount of “error history” that was incorporated into people’s 447 

metacognitive judgments was modulated based on second-order statistics of the learning 448 

environment. These parameter changes across experiments reflect the ESSsubj model’s 449 

flexibility in explaining fluctuations in confidence in both stable and volatile environments, and 450 

over different dynamic ranges of error. Taken together, our between-experiment parameter 451 

results (Fig. 4) suggest that subjects adapted the dynamic range and memory span of their 452 

confidence reports in a manner that reflected the statistics of the environment. 453 

 454 

Fluctuations in confidence primarily track target errors 455 

In motor learning, compensation for errors often reflects two distinct processes, one explicit and 456 

one implicit (27–29). The explicit process is thought to primarily reflect cognitive aiming 457 

strategies meant to deliberately reduce motor errors (29, 30). In contrast, the implicit process is 458 

thought to instead reflect gradual adjustments to an internal model, which proceed largely 459 

outside of conscious awareness (29). So far, the models discussed have used target error to 460 

predict confidence reports. Importantly, target error itself reflects the consequences of both 461 

implicit and explicit learning processes (29, 31). Because our task design had us ask subjects 462 

about their confidence in an explicitly-reported movement plan, we could use a simple 463 

subtractive method to dissociate explicit and implicit learning components (29). In order to 464 

determine whether confidence reports may have been specifically sensitive to explicit or implicit 465 

motor adaptation processes rather than target error alone, we performed an additional model 466 

fitting analysis that used distinct error terms related to each component (see supplemental table 467 

T1). 468 

 469 
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In order to isolate the effect of the explicit component, we used the pre-reach aim reports (29). 470 

The explicit error component was quantified as the discrepancy between reported aim and the 471 

aim required to fully compensate for the rotation. The implicit error component can be isolated 472 

as the discrepancy between the true reach angle and the reported aim. 473 

 474 

In both experiments, confidence model fits to only the implicit error component were significantly 475 

worse than those fit to target error (Exp. 1: R2=0.15±0.19, t(17)=-5.23, p=6.2x10-5; Exp. 2: 476 

R2=0.27±0.23, t(19)=-5.74), p=1.6x10-5;  Supplemental Table T1). Additionally, in Experiment 1, 477 

the model fit using the explicit component was significantly worse than the model using target 478 

error (R2=0.27±0.26, t(17)=-3.59, p=0.002). However, in experiment 2, the model fit on the 479 

explicit component was not significantly different to the model using target error (R2=0.37±0.21, 480 

t(19)=-1.61, p=0.12). This makes sense – due to the volatile nature of the perturbation’s sign 481 

and magnitude in Experiment 2, very little consistent implicit learning can accrue, meaning that 482 

the explicit error component is similar to the target error. As expected, confidence models using 483 

the explicit error component captured significantly more variance in confidence reports than 484 

confidence models dependent on the implicit error component in both experiments (Exp. 1: 485 

t(17)=2.82, p=0.01; Exp. 2: t(19)=2.34, p=0.03). Taken together, these additional analyses 486 

support the reasonable conclusion that the actually observed performance state – the target 487 

error – determines the dynamics of metacognitive judgments during sensorimotor learning. 488 

DISCUSSION 489 

This current study is the first, to our knowledge, to examine the relationship between subjective 490 

confidence judgments and motor errors in the context of sensorimotor adaptation. We 491 

investigated this relationship via two sensorimotor learning experiments that differed with 492 

respect to the environmental volatility (i.e., the perturbation schedule applied). We constructed 493 

computational models with the goal of predicting subjective confidence reports on each trial. We 494 

specified a set of models where trial-by-trial subjective confidence tracked only the current 495 

learning state (i.e., the most recent performance error), and another set of models where 496 

confidence judgments are approximated by a simple linear dynamic system that tracks a 497 

recency-weighted history of errors made during learning.  498 

 499 

In Experiment 1, an error history model that used a subjective error term – the ESSsubj model – 500 

was best able to account for the confidence data in the context of a fixed perturbation schedule. 501 
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The ESSsubj model had greater numerical agreement with confidence judgments over a veridical 502 

error model (ESSobj) model throughout the experiment. In control analyses (see supplemental 503 

table T1), parsing the relative contributions of implicit and explicit error components indicated 504 

that, in a static learning context, metacognitive judgements primarily track the observed 505 

performance state (target error). 506 

 507 

In Experiment 2 subjects learned in a volatile context, and the ESSsubj model was best able to 508 

account for the large fluctuations in confidence reports we observed. The ESSsubj model again 509 

had greater numerical agreement with confidence judgments over the ESSobj model throughout 510 

the experiment, replicating the results reported for Experiment 1. Taken together, these findings 511 

demonstrate that confidence reports during sensorimotor adaptation are well approximated by a 512 

running average of recent (subjectively-scaled) performance errors. To wit, these findings 513 

suggest that when people make metacognitive judgments of their own state of sensorimotor 514 

learning, they incorporate a recent history of errors rather than just taking a snapshot of their 515 

current performance state. 516 

 517 

Comparing model parameters between experiments provides key insights into the dynamics of 518 

metacognitive judgements of performance during sensorimotor adaptation. Although the range 519 

of confidence ratings are relative to individual participants, the similarity in the maximum 520 

confidence offset parameter between experiments suggests that participants operate within a 521 

comparable confidence range (Fig. 4A). The significant difference in the subjective error scaling 522 

exponents and error sensitivity parameters between experiments (Fig. 4b-c) was expected 523 

given the differences in perturbation schedules between experimental contexts. That is, 524 

participants scaled the subjective cost functions that shaped their confidence reports according 525 

to the distribution of errors they experienced. A large exponent in Experiment 1 indicated a non-526 

linear increase in sensitivity to large errors when the environment was stable and errors were 527 

generally small. In contrast, a small exponent in Experiment 2 indicated that participants down-528 

weighted large errors, likely due to an increased range of errors. These results show that the 529 

relationship between motor errors and confidence judgements was sensitive to the range of 530 

errors experienced. A number of previous studies that investigated the cost-function associated 531 

with errors in the context of sensorimotor control and learning have shown that people apply a 532 

non-linear cost-function that increases quadratically for small errors and significantly less than 533 

quadratically for large errors (24). We see a similar trend in our results (Experiment 2).      534 

 535 
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Learning rates in our confidence model were significantly larger in Experiment 2, consistent with 536 

our hypothesis that they would be higher in the more volatile environment. These results 537 

comport with previous work in reinforcement learning, showing that a higher learning rate is 538 

more useful in a volatile environment because history is less informative (13). Our findings are 539 

consistent with these results, extending them to the dynamics of metacognitive judgments 540 

during motor learning. Future studies that parametrically alter aspects of the learning 541 

environment (e.g., consistency and variability, (10)) and measuring their effects on 542 

metacognitive judgements could be useful for developing more detailed models of confidence 543 

during motor learning.  544 

 545 

What are the psychological mechanisms that track the error-state used for metacognitive 546 

judgments? Although our models are straightforward and principally descriptive, they do 547 

constrain the time-scale at which error-signals are integrated, hinting at a role for memory in the 548 

process of subjective confidence formation. We speculate that working memory is likely 549 

important in the formation of confidence judgments during motor learning (32, 33). That is, 550 

participants may track the quality of their performance by storing recent outcomes in working 551 

memory and integrating them into an estimate of the “state” of their performance. If this is 552 

correct, one prediction is that disrupting working memory may alter the relationship between 553 

confidence and recent errors. Future studies, perhaps using dual tasks, could test this 554 

prediction. 555 

 556 

The prospect that higher-level metacognitive judgements accurately track lower-level 557 

sensorimotor properties (e.g., visual error magnitudes) compels the search for overlapping 558 

neural correlates. In the context of sensorimotor learning, confidence can be defined as a 559 

higher-order variable that corresponds to the uncertainty that underpins the learning process 560 

(14, 15). Multiple neural regions capable of representing sensory uncertainty have been 561 

proposed, including the orbitofrontal cortex (OFC) (34, 35), midbrain (36), anterior cingulate 562 

cortex (ACC) (37),  insula (38, 39), and prefrontal cortex (PFC) (40, 41). In terms of 563 

representations of confidence, activity in the rostrolateral and dorsolateral PFC (rlPFC/DLPFC) 564 

is purported to be central to the processing of explicit confidence judgements in decision making 565 

(42–45). It may be that some of these regions, in addition to areas involved in working memory, 566 

could show functional correlations to the variables we have modeled here. That is, studies 567 

leveraging our model (or similar ones) could attempt to track or disrupt neural correlates of 568 
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metacognitive variables during motor learning – such as the estimated error state (Equation 3) 569 

or metacognitive prediction errors (Equation 4) – using techniques like fMRI and TMS. 570 

 571 

We note several limitations in our study. First, simple adaptation tasks should not be conflated 572 

with true motor skill learning (20); measuring confidence judgments in more complex motor skill 573 

learning tasks will be essential for asking if our models generalize. Second, many models of 574 

confidence take a Bayesian approach (12), explicitly modeling sensory uncertainty as a key 575 

component of confidence. We took a simpler approach here by focusing on the overall 576 

dynamics of confidence judgments during visuomotor learning. Future studies could also 577 

incorporate uncertainty in other forms (e.g., sensory feedback, increased motor noise, etc.) to 578 

further develop our models in a more probabilistic framework. Third, in Experiment 2 we noticed 579 

some surprisingly high-confidence moments that were not easily captured by our models, 580 

suggesting that there are likely other biases affecting confidence (46). Modeling these biases 581 

will be an important future step as well. 582 

 583 

In conclusion, here we show that a simple, straightforward Markovian learning rule was able to 584 

capture people’s confidence ratings as they adapted to a novel sensorimotor perturbation (Figs. 585 

2-3; Tables 1-2). Our model showed that people’s metacognitive judgment of their motor 586 

performance, operationalized as explicit confidence judgments in their movement intentions, 587 

appeared to incorporate a recency-weighted history of subjectively scaled sensorimotor errors. 588 

This model was robust to different learning environments and altered how observed errors 589 

influenced metacognition based on the specific statistics of the learning environment (Fig. 4). 590 

Our findings provide a foundation for future studies to investigate sensorimotor confidence 591 

during more real-world learning tasks, and to localize its correlates in the brain. 592 
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Captions 721 

Figure 1. Experimental Design. (A) Experimental apparatus. Participants made reaching movements over 722 
a digitizing tablet while holding an air hockey paddle. (B) Schematic of two example trials. Participants 723 
first moved a crosshair to specify their intended reach direction (“Aim”), then rated their confidence in that 724 
decision (“Report”), and finally executed their reach with feedback (“Reach”). (C) Perturbation schedule in 725 
Experiment 1. (D) Perturbation schedule in Experiment 2. 726 
 727 
Figure 2. Learning curves and model fitting for Experiment 1 (N=18). (A) Learning curve. Participants 728 
adapted their reach angle in response to the 30° perturbation and showed significant aftereffects in a 729 
washout phase. (B) Mean confidence reports (gray) and winning model fit (green). (C) Top: AIC 730 
differences between best and second-best model are shown for each subject (negative values represent 731 
better fits for the winning model, ESSsubj). Bottom: Summed AIC values relative to the summed AIC value 732 
for the winning model. All error shading = 1 S.E.M.  733 
 734 
Figure 3. Learning curves and model fitting for Experiment 2 (N=20). (A) Learning curve. Participants 735 
adapted their reaches (green) to account for the volatile perturbation schedule (gray). (B) Mean 736 
confidence reports (gray) and winning model fit (green; ESSSubj). (C) Top: AIC differences between best 737 
and second-best model are shown for each subject (negative values represent better fits for the winning 738 
model, ESSSubj). Bottom: Summed AIC values relative to the summed AIC value for the winning model. All 739 
error shading = 1 S.E.M.  740 
 741 
Figure 4. Parameter comparison across Experiments 1 and 2. Green shaded regions reflect the 742 
distribution of participant parameter values. White dots indicate median parameter values and gray bars 743 
the interquartile range (IQR) between the first and third quartiles. Whiskers extend to 1.5 times the IQR. 744 
(A) Maximum confidence offset parameters were not different across experiments and were generally 745 
close to the maximum. (B) Subjective scaling of errors via the exponential parameter was significantly 746 
different across experiments. (C) The sensitivity parameter was significantly larger in Experiment 2. (D) 747 
Learning rates were significantly larger in Experiment 2, consistent with the hypothesis that learning rates 748 
would be higher in the more volatile environment. 749 
 750 
Table 1. 𝛥AIC are summed AIC values relative to the winning model. Abbreviations: AIC, Akaike 751 
Information Criterion; SD, standard deviation; ESS, error-state-space models; OTB, one-trial-back 752 
models. 753 
 754 
Table 2. 𝛥AIC are summed AIC values relative to the winning model. Abbreviations: AIC, Akaike 755 
Information Criterion; SD, standard deviation; ESS, error-state-space models; OTB, one-trial-back 756 
models. 757 
 758 
Table T1.  Note. T-tests are compared to target error model R2, unless stated otherwise. Abbreviations: 759 
df, degrees of freedom, SD, standard deviation. 760 
  761 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.17.524436doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.17.524436
http://creativecommons.org/licenses/by-nc/4.0/


24 

Figures 762 

Figure 1. 763 

 764 
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Figure 2. 767 
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Figure 3. 770 
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Figure 4. 773 
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Tables 776 
 777 
Table 1. Model Fit R2 and 𝛥AIC Values in Experiment 1 778 

Model R2 (SD) 𝛥AIC 

ESSsubj 0.4066 (0.2321) --- 

ESSobj 0.3587 (0.2272) 525.5 

OTBsubj 0.1417 (0.0667) 2943 

OTBobj 0.1208 (0.0540) 3038 
 779 
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Table 2. Model Fit R2 and 𝛥AIC Values in Experiment 2 781 

Model R2 (SD) 𝛥AIC 

ESSsubj 0.4207 (0.1974) --- 

ESSobj 0.3539 (0.1848) 498.1 

OTBsubj 0.2373 (0.1009) 1984 

OTBobj 0.1741 (0.0830) 2316 
  782 
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Supplemental Table 783 

 784 

Table T1. Model Fit R2 upon Isolating Explicit and Implicit Components 

Model R2 (SD)  t df p 

Experiment 1 

Cursor Error (Explicit + Implicit) 0.41 (0.23) -- -- -- 

Explicit Component 0.27 (0.26) -3.59 17 0.002** 

Implicit Component 0.15 (0.19) -5.23 17 6.2x10-5** 

Explicit vs Implicit   2.82 17 0.01* 

Experiment 2 

Cursor Error (Explicit + Implicit) 0.42 (0.20) -- -- -- 

Explicit Component 0.37 (0.21) -1.61 19 0.12 

Implicit Component 0.27 (0.23) -5.74 19 1.6x10-5** 

Explicit vs Implicit   2.34 19 0.03* 
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