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Abstract 21 

Fungi biosynthesize a diversity of secondary metabolites, small organic bioactive molecules that 22 

play diverse roles in fungal ecology. Fungal secondary metabolites are often encoded by 23 

physically clustered sets of genes known as biosynthetic gene clusters (BGCs). Fungi in the 24 

genus Penicillium produce diverse secondary metabolites that have been both useful (e.g., the 25 

antibiotic penicillin and the cholesterol-lowering drug mevastatin) and harmful (e.g., the 26 

mycotoxin patulin and the immunosuppressant gliotoxin) to human affairs. BGCs often also 27 

encode resistance genes that confer self-protection to the secondary metabolite-producing 28 

fungus. Some Penicillium species, such as Penicillium lilacinoechinulatum and Penicillium 29 

decumbens, are known to produce gliotoxin, a secondary metabolite with known 30 

immunosuppressant activity; however, an evolutionary characterization of the BGC responsible 31 

for gliotoxin biosynthesis among Penicillium species is lacking. Here, we examine the 32 

conservation of genes involved in gliotoxin biosynthesis and resistance in 35 Penicillium 33 

genomes from 23 species. We found homologous, less fragmented gliotoxin BGCs in 12 34 

genomes, mostly fragmented remnants of the gliotoxin BGC in 21 genomes, whereas the 35 

remaining two Penicillium genomes lacked the gliotoxin BGC altogether. In contrast, we 36 

observed broad conservation of homologs of resistance genes that reside outside the BGC across 37 

Penicillium genomes. Evolutionary rate analysis revealed that BGCs with higher numbers of 38 

genes evolve slower than BGCs with few genes. Even though the gliotoxin BGC is fragmented 39 

to varying degrees in nearly all genomes examined, ancestral state reconstruction suggests that 40 

the ancestor of Penicillium species possessed the gliotoxin BGC. Our analyses suggest that genes 41 

that are part of BGCs can be retained in genomes long after the loss of secondary metabolite 42 

biosynthesis.  43 
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 44 

Introduction 45 

Gliotoxin is a secondary metabolite produced by certain fungi, including the major opportunistic 46 

human pathogen Aspergillus fumigatus (Raffa and Keller 2019). Secondary metabolites are 47 

bioactive molecules of low molecular weight that are not required for the organism's growth but 48 

aid survival in harsh environments (Raffa and Keller 2019). Genes that participate in the 49 

biosynthesis of secondary metabolites, including gliotoxin, typically reside next to each other in 50 

fungal genomes and form biosynthetic gene clusters (BGCs) (Rokas et al. 2020). The gliotoxin 51 

BGC is implicated in human pathogenicity because gliotoxin suppresses the immune response of 52 

the mammalian host through diverse mechanisms, including by inhibiting protein complexes 53 

necessary for the generation of antimicrobial reactive oxygen species, decreasing cytotoxic 54 

activities of T lymphocytes, and preventing integrin activation (Dolan et al. 2015; Raffa and 55 

Keller 2019). Gliotoxin’s role in modulating host biology suggests that it is a virulence factor 56 

(Raffa and Keller 2019). For example, virulence is attenuated in certain animal models of disease 57 

when gliP, the non-ribosomal peptide synthetase gene involved in gliotoxin biosynthesis, is 58 

deleted (Sugui et al. 2007).  59 

 60 

Fungi that produce gliotoxin need to be resistant to the toxin. Several genes contribute to 61 

resistance, such as the thioredoxin reductase gene gliT, located within the gliotoxin BGC 62 

(Schrettl et al. 2010). gliT deletion strains of A. fumigatus exhibit resistance to gliotoxin 63 

oxidation and unchecked methylation (Owens et al. 2015). As a result, gliT-deficient A. 64 

fumigatus are hypersensitive to gliotoxin (Owens et al. 2015). Other resistance genes encoding 65 

transcription factors, transporters, and oxidoreductases, reside outside the BGC and – like gliT – 66 
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are found in both gliotoxin-producing and non-producing species (Castro et al. 2022). For 67 

example, the transcription factor RglT is the primary regulator of gliT (Ries et al. 2020). Seven 68 

other genes are known to be regulated by rglT and contribute to gliotoxin resistance: gtmA 69 

(encodes a bis-thiomethyltransferase, AFUA_2G11120), kojR (transcription factor, 70 

AFUA_5G06800), abcC1 (ABC-transporter, AN7879/AFUA_1G10390), mtrA 71 

(methyltransferase, AN3717/AFUA_6G12780), AN9051 (oxidoreductase, AFUA_7G00700), 72 

AN1472 (MFS transporter, AFUA_8G04630), and AN9531 (NmrA-transcription factor, 73 

AFUA_7G06920) (Castro et al. 2022).  74 

 75 

Though progress has been made in understanding the mechanisms and functions of the gliotoxin 76 

biosynthetic pathway, several questions remain, especially concerning the evolutionary and 77 

ecological significance of this BGC in lineages that contain a mix of biotechnologically and 78 

medically relevant fungi, such as Penicillium (Steenwyk et al. 2019). For example, Penicillium 79 

camemberti and Penicillium roqueforti contribute to cheese production (Nelson 1970; Lessard et 80 

al. 2012), whereas Penicillium expansum, Penicillium digitatum, and Penicillium italicum are 81 

postharvest pathogens of citrus fruits, stored grains, and other cereal crops (Marcet-Houben et al. 82 

2012; Ballester et al. 2015; Li et al. 2015). Examination of the gliotoxin BGC in the genomes of 83 

Penicillium species will shed light on the evolution of the gliotoxin BGC within Aspergillaceae, 84 

the family encompassing both Aspergillus and Penicillium species.  85 

 86 

Considering the close relatedness of Penicillium and Aspergillus, it is interesting that evidence of 87 

gliotoxin production is scant within the former. To fill this gap, we employed a genome-scale 88 

approach to infer the evolutionary history of the gliotoxin BGC among 35 strains of 23 89 
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Penicillium species. We found that most Penicillium genomes examined contained fragmented 90 

gliotoxin BGCs and two lacked a BGC. However, some P. expansum strains had two 91 

homologous gliotoxin BGCs. Codon optimization analysis reveals that genes in Penicillium 92 

BGCs are lowly optimized, whereas genes in Aspergillus gliotoxin BGCs are highly optimized.  93 

 94 

In contrast, gliotoxin resistance genes in Penicillium and Aspergillus fungi have similar degrees 95 

of codon optimization, suggesting that Penicillium species encounter exogenous gliotoxin in 96 

their environments. Examination of evolutionary rates revealed that genes from highly 97 

fragmented gliotoxin BGCs evolved at significantly higher rates than genes from less fragmented 98 

BGCs, suggesting that less fragmented BGCs have been experiencing relaxation of selective 99 

constraints for longer. Ancestral state reconstructions indicate that the Penicillium ancestor 100 

possessed a less fragmented gliotoxin BGC, followed by distinct trajectories of duplication and 101 

loss, highlighting the diverse evolutionary pathways of the gliotoxin BGC in Penicillium species.  102 

 103 

Materials and Methods 104 

I. Data collection and quality assessment 105 

We retrieved the genomes and gene annotations of 35 Penicillium strains from 23 species as well 106 

as of two outgroups (Aspergillus fumigatus and Aspergillus fischeri) from NCBI 107 

(https://www.ncbi.nlm.nih.gov/) (Table S1).  108 

 109 

Genome assembly and annotation quality were examined to evaluate whether the dataset is 110 

sufficient for comparative genomics. The quality and characteristics of the genomes (N50, L50, 111 

assembly size, number of scaffolds, and gene count) were evaluated using BioKIT (v0.1.0) 112 
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(Steenwyk et al. 2022) (Figure S1). The average N50 value was 1,850,972.1 bases, where 46% 113 

of proteomes consisted of N50 values greater than 1 Mb, and the lowest N50 value was 31,119 114 

bases for P. expansum CMP 1. Gene annotation completeness was assessed using BUSCO 115 

(v5.0.0) (Waterhouse et al. 2018) (Figure S2). BUSCO uses a predetermined set of near-116 

universally conserved single-copy genes (or BUSCO genes) to identify their presence in a query 117 

proteome (characterized as single-copy, duplicated, or fragmented) or absence. We used the 118 

4,181 BUSCO genes from the Eurotiales OrthoDB dataset (Manni et al. 2021; Zdobnov et al. 119 

2021). Nearly all the genomes have high BUSCO gene coverage (average: 95.9% ± 3.1%), with 120 

the lowest percentages being for P. coprophilum (87.9%) and P. decumbens (85.3%).  121 

 122 

II. Identification and characterization of gliotoxin BGC and resistance genes 123 

a. Identification of gliotoxin GBC and resistance genes 124 

The representative gliotoxin BGC (BGC0000361, Download date: April 2022) from the 125 

Aspergillus fumigatus Af293 reference strain was downloaded from the Minimum Information 126 

about a Biosynthetic Gene Cluster (MiBIG) database (Kautsar et al. 2019). Command-line NCBI 127 

BLASTP (Camacho et al. 2009) searches for the Af293 gliotoxin BGC against the proteome of 128 

each species were executed. Highly similar sequences were identified using an expectation value 129 

threshold of 1e-4 and a query coverage of 50%. The resulting BLAST outputs were then cross-130 

referenced with the NCBI feature table file, which contains genome location information for 131 

each gene, and parsed to identify clusters of homologs. Less fragmented BGCs are defined as 132 

having at least 7 / 13 genes from the query gliotoxin BGC present, including gliP, encoding the 133 

core nonribosomal peptide synthetase (Castro et al. 2022); mostly fragmented clusters are 134 

defined as having at least 3 /13 genes from the gliotoxin BGC without a requirement for this 135 
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cluster to include gliP. When identifying BGCs, we allowed up to four genes between each pair 136 

of adjacent homologs using the A. fumigatus Af293 BGC from the MiBIG database (Kautsar et 137 

al. 2019) as reference (Castro et al. 2022).  138 

 139 

To rule out gene annotation errors in cases where we infer genes to be absent, we conducted 140 

command-line NCBI tBLASTn searches for the Af293 gliotoxin BGC against the genome 141 

sequences. Highly similar sequences were identified using an expectation value threshold of 1e-142 

10. The resulting outputs were analyzed, and no new presence/absence information was found.  143 

 144 

Sequence similarity searches were also conducted for eight gliotoxin resistance genes 145 

(abcC1/AN7879, mtrA/AN3717, AN9051, AN1472, AN9531, rglT, gtmA/AFU2G11120, 146 

kojR/AFUA_5G06800), three of which were transcription factors (AN9531, rglT, kojR).  We 147 

used an expectation value threshold of 1e-3 and a query coverage threshold of 50%; we used a 148 

lower query coverage threshold of 40% for the three transcription factors.  149 

 150 

b. Codon bias 151 

To estimate the potential functional significance of the partial gliotoxin BGCs present in 152 

Penicillium genomes, mean gene-wise relative synonymous codon usage (gRSCU) was 153 

determined for each clustered gli gene across all proteomes using BioKIT (Steenwyk et al. 154 

2022). This provides insight into how codon usage bias influences the expression level of a 155 

particular gene. The percentile rankings of each of the present and clustered gli genes were 156 

calculated using the R package dplyr (v1.0.9) (Wickham et al. 2022), and these values, for each 157 

species, were then plotted using the R package ggplot2 (Wickham 2016). 158 
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 159 

c. Synteny Analysis 160 

Alignments of representative Penicillium genomes with less and more fragmented gliotoxin 161 

BGCs were generated using a GenomeDiagram in Biopython (Cock et al. 2009). Five genomes 162 

(A. fumigatus Af293, P. flavigenum IBT 14082, P. roqueforti FM164, P. nordicum DAOMC 163 

185683, and P. expansum CMP1) with the largest number of different, homologous gli cluster 164 

genes above seven, and including gliP, were chosen to visualize the conservation of synteny of 165 

less fragmented gliotoxin BGCs across the phylogeny. Similarly, the five genomes (P. steckii 166 

IBT 24891, P. vulpinum IBT 29486, P. rubens 43M1, P. camemberti FM 013, and P. italicum 167 

PHI 1) with the greatest number of different, homologous gli cluster genes above three and 168 

below seven, and not needing to include gliP, were chosen to visualize synteny of mostly 169 

fragmented BGCs across the phylogeny.  170 

 171 

III. Phylogenetic Analysis 172 

a. Species Tree Inference 173 

The evolutionary relationships of Penicillium species were obtained from a previous study 174 

(Steenwyk et al. 2019) using treehouse (Steenwyk and Rokas 2019). For three species with 175 

population-level data, within-species relationships were inferred using phylogenomics. To do so, 176 

protein sequences of BUSCO genes were first aligned using MAFFT (v7.490) with the --auto 177 

parameter (Katoh and Standley 2013). Codon-based alignments were generated by threading the 178 

corresponding DNA sequences onto the protein alignment with the thread_dna function in 179 

PhyKIT (v1.11.2) (Steenwyk et al. 2021). The resulting nucleotide alignments were trimmed 180 

using ClipKIT (v1.3.0) (Steenwyk et al. 2020) with default parameters. The resulting aligned and 181 
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trimmed sequences were concatenated into a supermatrix with 8,124,861 sites using the 182 

create_concat function in PhyKIT. We then inputted the concatenated matrix into IQ-TREE 2 183 

(v2.0.6), a software that implements a maximum likelihood framework for inferring phylogenies. 184 

All other evolutionary relationships between species were constrained following the relationships 185 

inferred in a previously published study (Steenwyk and Rokas 2019). The best-fitting 186 

substitution model (GTR+F+I+G4) was determined using ModelFinder (Kalyaanamoorthy et al. 187 

2017). 188 

 189 

b. Single-gene tree inference 190 

To infer the evolutionary history of genes in the gliotoxin BGCs, individual gli genes were 191 

compiled and aligned with MAFFT (v7.490) using the --auto parameter (Katoh and Standley 192 

2013). The corresponding nucleotide sequences for each file were obtained from the CDS files 193 

for each species, using the faidx function of BioKIT (v0.1.0) (Steenwyk et al. 2022). These 194 

nucleotide sequences were then threaded onto the protein alignments using the thread_dna 195 

function of PhyKIT (Steenwyk et al. 2021), resulting in a codon-based alignment. All individual 196 

codon-based gene alignments were trimmed with ClipKIT (Steenwyk et al. 2020) with default 197 

parameters. The trimmed alignments were used to construct a phylogeny using IQ-TREE 2 198 

(Minh et al. 2020). The best-fitting substitution model was chosen for each gli gene using 199 

Bayesian information criteria (BIC) implemented in ModelFinder (Kalyaanamoorthy et al. 2017) 200 

from IQ-TREE 2. Branch support in each phylogenetic tree was assessed by 1000 bootstraps 201 

using ultrafast bootstrapping approximation (Hoang et al. 2018). Tree visualization was carried 202 

out using the R packages ape (v5.6.2) (Paradis and Schliep 2019) and phytools (v1.0.3) (Revell 203 

2012). 204 
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 205 

To characterize variation in the evolution of individual genes of the gliotoxin BGC, the trimmed 206 

alignments and maximum-likelihood trees from IQ-TREE 2 were used as input into the 207 

evolutionary_rate, total_tree_length, and pairwise_identity functions of PhyKIT to estimate two 208 

tree-based measures of evolutionary rate and one sequence-based measure. Evolutionary rate is 209 

defined as the total tree length divided by the number of terminals (Telford et al. 2014; Steenwyk 210 

et al. 2021). The total tree length is the sum of all branches (Steenwyk et al. 2021). 211 

 212 

c. Ancestral state reconstructions 213 

Ancestral state reconstruction for each gene of the gliotoxin BGC across three discrete characters 214 

(“Presence clustered,” “Presence unclustered,” and “Absence”) was estimated using phytools 215 

(v1.0.3) (Revell 2012). Presence generally indicates that a homolog of the particular gene was 216 

identified. “Presence clustered” identifies an existing homolog of the specific gene within a 217 

maximum distance of four genes from other homologs of the gliotoxin BGC. “Presence 218 

unclustered” identifies an existing homolog of the particular gene without clustering. “Absence” 219 

indicates that no homolog of the specific gene was identified. Estimation of ancestral character 220 

states was done using the Dollo parsimony method. This method assumes that a complex 221 

character lost during the evolution of a particular lineage cannot be regained (Rogozin et al. 222 

2006). Count, a software package for the evolutionary analysis of homolog family sizes, was 223 

used to generate these ancestral state reconstructions (Csűös 2010).  224 

 225 

d. Tree Topology Testing 226 
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Tree topology testing was used to determine whether the duplication event resulting in the two 227 

less fragmented, homologous gliotoxin BGCs in P. expansum strains MD 8 and d1 occurred 228 

solely in the lineage of P. expansum or deeper in the tree. IQTREE 2 (Minh et al. 2020) was used 229 

to compute log-likelihoods of a constrained tree (monophyly of P. expansum gliP homologs) and 230 

the observed tree in which a polyphyly of gliP in both clusters is seen (inconsistent with the 231 

known species tree). 1000 RELL replicates (Kishino et al. 1990) were performed. The AU test 232 

results (Shimodaira 2002) was used for comparison.  233 

 234 

Results and Discussion 235 

I. The gliotoxin BGC is fragmented in Penicillium species 236 

Presence / absence data of the 13 genes in the gliotoxin BGC among the 23 Penicillium species 237 

analyzed reveals that the cluster is largely fragmented in the genus Penicillium (Figure 1). The 238 

proteomes of 12 strains from 5 Penicillium species (P. arizonense, P. flavigenum, P. roqueforti, 239 

P. nordicum, P. expansum), possessed less fragmented BGCs, and the proteomes of 23 strains 240 

from 18 Penicillium species had mostly fragmented BGCs (Figure S3-S15). Two less fragmented 241 

BGCs, which contained 10 / 13 genes and 7 / 13 genes, were identified in P. expansum strains d1 242 

and MD 8, respectively. Regardless of the number of less fragmented BGCs found, to our 243 

knowledge, none of the Penicillium species in question are known to produce gliotoxin, except 244 

P. decumbens (Feng et al. 2018), suggesting that the absence of clustering in this species may be 245 

due to strain heterogeneity and requires further exploration. 246 

 247 

II. A complete gliotoxin BGC was present in the ancestor of Penicillium species 248 
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Ancestral state reconstruction revealed the presence of all 13 genes in the gliotoxin BGC in the 249 

ancestor of the Penicillium species used in our study (Figure 1). We infer that the first gene lost 250 

was gliH, which is absent from 25 of the 35 Penicillium strains examined. The gliH gene 251 

encodes an acetyltransferase that, when deleted, results in a loss of gliotoxin production in A. 252 

fumigatus (Schrettl et al. 2010; Castro et al. 2022). Thus, the early loss of gliH in the genus 253 

Penicillium may have been the key determinant of a lack of gliotoxin production. Further, the 254 

synteny of genes in the BGC is mostly conserved and similar to the arrangement of the A. 255 

fumigatus Af293 gliotoxin BGC across representative, less fragmented BGCs, such as P. 256 

flavigenum IBT 14082 and P. expansum CMP 1 (Figure 2). In contrast, there is extensive 257 

divergence in synteny conservation among mostly fragmented BGCs (Figure 2). To our 258 

knowledge, none of the Penicillium species examined are known to produce gliotoxin, except P. 259 

decumbens (Feng et al. 2018), suggesting that the absence of clustering in this species may be 260 

due to strain heterogeneity and requires further exploration. 261 

 262 

III. Resistance genes are broadly conserved 263 

The presence/absence results of the eight resistance genes, portrayed in Figure 1, suggest that 264 

their origins predate the Aspergillus and Penicillium genera (Figure S16-S23). All species 265 

possessed abcC1, AN1472, AN9051, AN9531, and kojR homologs. In addition, only Penicillium 266 

species with mostly fragmented gliotoxin BGCs lacked at least one resistance gene, such as 267 

gtmA, mtrA, and rglT. Penicillium chrysogenum lacked both rglT  and gliT, an observation 268 

consistent with the transcriptional dependency of gliT to rglT (Ries et al. 2020).  269 

 270 

IV. Penicillium species have experienced changes in gliotoxin BGC synteny over time 271 
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All genes of the gliotoxin BGC were broadly found within the genus Penicillium, except for 272 

gliH, yet most were sparsely clustered (Figure 1). More specifically, 12 out of 35 Penicillium 273 

species/strains were found to have a less fragmented, homologous BGC. Two strains of 274 

Penicillium expansum (d1 and MD 8) were found to have two BGCs. Evidence of variation in 275 

gene presence / absence is also evident within species. For example, Penicillium roqueforti 276 

shows population variation in the presence of gliZ, a major transcriptional regulator of gliotoxin 277 

biosynthesis (Bok et al. 2006); five strains of P. roqueforti lack gliZ whereas one strain has the 278 

gene. As a result, we can conclude that the ancestor of P. roqueforti had a gliZ homolog, but the 279 

gene was lost over time in most of the strains, highlighting the importance of population-level 280 

sampling. Overall, we can see that the gliotoxin BGC has experienced relocations and 281 

duplications of its genes, specifically in Penicillium expansum strains d1 and MD 8, as is 282 

expected in the formation of most secondary metabolite-producing BGCs (Rokas et al. 2018). 283 

 284 

V. Few Penicillium species contain codon-optimized gliotoxin BGCs 285 

Compared to the two outgroup Aspergillus species, A. fumigatus and A. fischeri, Penicillium 286 

species have much lower gRSCU value rankings (Figure 3). Specifically, the mean gRSCU 287 

percentile rank of gliotoxin BGC genes among the Aspergillus outgroups is 0.81, while that 288 

among the Penicillium species is 0.35; these scores suggest that gli genes from Aspergillus are 289 

more codon-optimized than gli genes from Penicillium. Regardless of mean gRSCU values, gliT 290 

and gliA homologs, when present, are ranked consistently in the top three to four clustered genes. 291 

However, when considering resistance genes, the spread and range of their gRSCU values are 292 

similar across all species. The mean gRSCU percentile rank of gliotoxin resistance genes among 293 

the Aspergillus outgroups is 0.58, while that among the Penicillium species is 0.53. This allows 294 
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us to infer that these Penicillium species may ecologically encounter exogenous gliotoxin, 295 

making gliT, encoding a gliotoxin-neutralizing enzyme, gliA, encoding a transporter that exports 296 

gliotoxin, and non-TF resistance genes such as abcC1, encoding an ABC-transporter, rank in the 297 

top percentiles among each of the species’ gene sets.  298 

 299 

VI. gli genes in less fragmented clusters are evolving at a slower rate than mostly 300 

fragmented clusters 301 

In the comparison of tree-based and sequence-based measures of evolutionary rate, gli genes 302 

from less fragmented clusters are evolving at a significantly slower pace (p<0.0001) than those 303 

from mostly fragmented clusters across all three metrics, as seen by a two-way ANOVA with an 304 

additive model (Figure 4, Figure S3-S15). This difference highlights a notable feature of many 305 

BGCs, the fact that they are rapidly evolving, hinted at by their high variability and narrow 306 

taxonomic range (Rokas et al. 2020).  307 

 308 

VII. A duplication of the gliotoxin BGC may have occurred before the divergence 309 

between P. flavigenum and P. roqueforti 310 

We conducted a tree topology test to infer when the gliotoxin BGCs found in P. flavigenum 311 

occurred. The maximum likelihood phylogeny suggests that this duplication occurred before the 312 

divergence between P. flavigenum and P. roqueforti. An alternative hypothesis is that 313 

duplication occurred within P. expansum. This alternative hypothesis would be supported by 314 

monophyly of P. expansum homologs of BGC genes. After conducting a tree topology test 315 

comparing log likelihood values between the maximum likelihood phylogeny and an alternative 316 

tree wherein P. expansum gliP homologs were constrained to be monophyletic, we found that the 317 
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constrained topology was significantly rejected (Approximately Unbiased test, p = 7.34e-110) 318 

(Figure S24). In other words, it is unlikely duplication occurred within P. expansum lineage; 319 

instead, duplication likely occurred more anciently, prior to the diversification of P. expansum. 320 

 321 

Conclusions 322 

The ancestor of Penicillium species likely possessed a complete gliotoxin BGC. A 323 

duplication event of the BGC occurred in one lineage, likely prior to the divergence of P. 324 

flavigenum and P. roqueforti. Also, the presence/absence results of the eight resistance genes 325 

suggest that their origins predate the Aspergillus and Penicillium genera suggesting that 326 

resistance has long been important among these species. The genes in Penicillium gliotoxin 327 

BGCs are less codon optimized (gRSCU percentile rank mean: 0.35) compared to their 328 

Aspergillus counterparts (gRSCU percentile rank mean: 0.81) suggesting that gli genes are much 329 

more often expressed in Aspergillus species than in Penicillium.  However, less fragmented 330 

BGCs within Penicillium species are evolving at a slower rate than mostly fragmented clusters, 331 

suggestive of potential functionality.  332 

Although informative, this work only utilizes publicly available protein annotations of 333 

biotechnologically and medically relevant Penicillium fungi, making it important to expand upon 334 

the species/strains studied. Moreover, this same targeted gliotoxin analysis within a larger 335 

phylogeny of Aspergillus species, for which there is greater evidence of the production of this 336 

secondary metabolite, may be helpful. An analysis of gliotoxin BGCs encoded in all fungi would 337 

also provide us with more insight into the evolutionary mechanisms that give rise to BGC 338 

diversity. In addition, expanding on the causes of conservation of less fragmented gliotoxin 339 

BGCs within a variety of Penicillium strains may be important, especially because evidence of 340 
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production is lacking. As a result, this exciting reality encourages further understanding of the 341 

motivating hypothesis that individual secondary metabolites are “cards” of virulence in a larger 342 

“hand” that fungi possess. 343 

 344 
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Fig. 1 Phylogeny of Penicillium genomes. Different genera are depicted using different-colored 367 

boxes. Aspergillus is shown in red and Penicillium in blue. Shaded circles next to species / strain 368 

names indicate gliotoxin production information from the literature, or lack thereof (Fischer et al. 369 

2000; Spikes et al. 2008; Knowles et al. 2020; Redrado et al. 2022). Shaded squares in the 370 

second column depict number of clusters identified. Remaining color strips depict gene presence 371 

clustered (black), presence unclustered (gray), and absence (white) according to the requirements 372 

outlined in the Methods section. Ancestral state reconstructions of each gene of the gliotoxin 373 

BGC (for the ancestor of Penicillium species) are presented in pie charts below the phylogeny.   374 

  375 
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 376 

Fig. 2 Conservation of gliotoxin BGC synteny for representative Penicillium species. 377 

Synteny analysis of representative genomes with less fragmented (A) and mostly fragmented (B) 378 

gliotoxin BGCs. Each interval along the track represents 2 kb.  379 

  380 
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 381 
 382 
Fig. 3 Gene-wise relative synonymous codon usage (gRSCU) for gliotoxin BGC and 383 

resistance genes. (A) Percentile rankings of gene-wise relative synonymous codon usage 384 

(gRSCU) among gliotoxin BGC genes, in comparison to all other genes. Types / functionality of 385 

each gene of the gliotoxin BGC is depicted by shape in the categories of “Core biosynthesis”, 386 

“Additional biosynthesis”, “Resistance”, “Transcription Factor”, “Transporter” (B) Percentile 387 

ranking of gene-wise relative synonymous codon usage (gRSCU) among gliotoxin resistance 388 

genes, in comparison to all other genes. Types / functionality of each resistance gene is depicted 389 

by shape in the categories of “Non-Transcription Factor and Transcription Factor”. 390 

  391 
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 392 

Fig. 4 Evolutionary rate comparison across gliotoxin BGCs. Multi-method comparison of 393 

evolutionary rates between less fragmented and mostly fragmented gliotoxin BGCs. Less 394 

fragmented clusters were required to contain a gliP ortholog and at least 7 different genes of the 395 

cluster. Mostly fragmented clusters had no requirement to contain a gliP ortholog and only 396 

needed to contain at least 3 different genes of the cluster. (A) Comparison of evolutionary rates, 397 

as a function of total tree length divided by the number of taxa, between less fragmented and 398 

mostly fragmented gliotoxin BGCs. (B) Comparison of total tree length between less fragmented 399 

and mostly fragmented gliotoxin BGCs. (C) Comparison of pairwise identity between less 400 

fragmented and mostly fragmented gliotoxin BGCs. 401 

  402 
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