2			
	I		
	I		
1	L		

1	The evolution of the gliotoxin biosynthetic gene cluster in <i>Penicillium</i> fungi
2	
3	Charu Balamurugan ^{1,2} , Jacob L. Steenwyk ^{1,2,3,*} , Gustavo H. Goldman ⁴ , & Antonis Rokas ^{1,2,*}
4	
5	¹ Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville,
6	TN 37235, United States of America
7	² Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
8	³ Howards Hughes Medical Institute and the Department of Molecular and Cell Biology,
9	University of California, Berkeley, Berkeley, CA, USA
10	⁴ Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão
11	Preto, São Paulo, Brazil
12	
13	*Correspondence should be addressed to: jlsteenwyk@berkeley.edu and
14	antonis.rokas@vanderbilt.edu
15	
16	Running title: Gliotoxin Evolution in Penicillium Fungi
17	
18	Keywords: comparative genomics; evolutionary biology; secondary metabolic gene clusters;
19	duplication and loss; plant pathogen; secondary metabolism; specialized metabolism
20	

2

21 Abstract

22 Fungi biosynthesize a diversity of secondary metabolites, small organic bioactive molecules that play diverse roles in fungal ecology. Fungal secondary metabolites are often encoded by 23 24 physically clustered sets of genes known as biosynthetic gene clusters (BGCs). Fungi in the 25 genus *Penicillium* produce diverse secondary metabolites that have been both useful (e.g., the 26 antibiotic penicillin and the cholesterol-lowering drug mevastatin) and harmful (e.g., the 27 mycotoxin patulin and the immunosuppressant gliotoxin) to human affairs. BGCs often also 28 encode resistance genes that confer self-protection to the secondary metabolite-producing 29 fungus. Some Penicillium species, such as Penicillium lilacinoechinulatum and Penicillium 30 *decumbens*, are known to produce gliotoxin, a secondary metabolite with known 31 immunosuppressant activity; however, an evolutionary characterization of the BGC responsible 32 for gliotoxin biosynthesis among *Penicillium* species is lacking. Here, we examine the 33 conservation of genes involved in gliotoxin biosynthesis and resistance in 35 Penicillium 34 genomes from 23 species. We found homologous, less fragmented gliotoxin BGCs in 12 35 genomes, mostly fragmented remnants of the gliotoxin BGC in 21 genomes, whereas the 36 remaining two *Penicillium* genomes lacked the gliotoxin BGC altogether. In contrast, we 37 observed broad conservation of homologs of resistance genes that reside outside the BGC across 38 Penicillium genomes. Evolutionary rate analysis revealed that BGCs with higher numbers of genes evolve slower than BGCs with few genes. Even though the gliotoxin BGC is fragmented 39 40 to varying degrees in nearly all genomes examined, ancestral state reconstruction suggests that 41 the ancestor of Penicillium species possessed the gliotoxin BGC. Our analyses suggest that genes 42 that are part of BGCs can be retained in genomes long after the loss of secondary metabolite biosynthesis. 43

3

44

45 Introduction

46 Gliotoxin is a secondary metabolite produced by certain fungi, including the major opportunistic 47 human pathogen Aspergillus fumigatus (Raffa and Keller 2019). Secondary metabolites are 48 bioactive molecules of low molecular weight that are not required for the organism's growth but 49 aid survival in harsh environments (Raffa and Keller 2019). Genes that participate in the 50 biosynthesis of secondary metabolites, including gliotoxin, typically reside next to each other in fungal genomes and form biosynthetic gene clusters (BGCs) (Rokas et al. 2020). The gliotoxin 51 52 BGC is implicated in human pathogenicity because gliotoxin suppresses the immune response of 53 the mammalian host through diverse mechanisms, including by inhibiting protein complexes 54 necessary for the generation of antimicrobial reactive oxygen species, decreasing cytotoxic activities of T lymphocytes, and preventing integrin activation (Dolan et al. 2015; Raffa and 55 56 Keller 2019). Gliotoxin's role in modulating host biology suggests that it is a virulence factor 57 (Raffa and Keller 2019). For example, virulence is attenuated in certain animal models of disease 58 when *gliP*, the non-ribosomal peptide synthetase gene involved in gliotoxin biosynthesis, is 59 deleted (Sugui et al. 2007).

60

Fungi that produce gliotoxin need to be resistant to the toxin. Several genes contribute to
resistance, such as the thioredoxin reductase gene *gliT*, located within the gliotoxin BGC
(Schrettl *et al.* 2010). *gliT* deletion strains of *A. fumigatus* exhibit resistance to gliotoxin
oxidation and unchecked methylation (Owens *et al.* 2015). As a result, *gliT*-deficient *A. fumigatus* are hypersensitive to gliotoxin (Owens *et al.* 2015). Other resistance genes encoding
transcription factors, transporters, and oxidoreductases, reside outside the BGC and – like *gliT* –

,	1	
	t	

67	are found in both gliotoxin-producing and non-producing species (Castro et al. 2022). For
68	example, the transcription factor RgIT is the primary regulator of gliT (Ries et al. 2020). Seven
69	other genes are known to be regulated by <i>rglT</i> and contribute to gliotoxin resistance: <i>gtmA</i>
70	(encodes a <i>bis</i> -thiomethyltransferase, AFUA_2G11120), <i>kojR</i> (transcription factor,
71	AFUA_5G06800), abcC1 (ABC-transporter, AN7879/AFUA_1G10390), mtrA
72	(methyltransferase, AN3717/AFUA_6G12780), AN9051 (oxidoreductase, AFUA_7G00700),
73	AN1472 (MFS transporter, AFUA_8G04630), and AN9531 (NmrA-transcription factor,
74	AFUA_7G06920) (Castro et al. 2022).
75	
76	Though progress has been made in understanding the mechanisms and functions of the gliotoxin
77	biosynthetic pathway, several questions remain, especially concerning the evolutionary and
78	ecological significance of this BGC in lineages that contain a mix of biotechnologically and
79	medically relevant fungi, such as Penicillium (Steenwyk et al. 2019). For example, Penicillium
80	camemberti and Penicillium roqueforti contribute to cheese production (Nelson 1970; Lessard et
81	al. 2012), whereas Penicillium expansum, Penicillium digitatum, and Penicillium italicum are
82	postharvest pathogens of citrus fruits, stored grains, and other cereal crops (Marcet-Houben et al.
83	2012; Ballester et al. 2015; Li et al. 2015). Examination of the gliotoxin BGC in the genomes of
84	Penicillium species will shed light on the evolution of the gliotoxin BGC within Aspergillaceae,
85	the family encompassing both Aspergillus and Penicillium species.
86	
87	Considering the close relatedness of Penicillium and Aspergillus, it is interesting that evidence of
88	gliotoxin production is scant within the former. To fill this gap, we employed a genome-scale
89	approach to infer the evolutionary history of the gliotoxin BGC among 35 strains of 23

90	Penicillium species. We found that most Penicillium genomes examined contained fragmented
91	gliotoxin BGCs and two lacked a BGC. However, some P. expansum strains had two
92	homologous gliotoxin BGCs. Codon optimization analysis reveals that genes in Penicillium
93	BGCs are lowly optimized, whereas genes in Aspergillus gliotoxin BGCs are highly optimized.
94	
95	In contrast, gliotoxin resistance genes in Penicillium and Aspergillus fungi have similar degrees
96	of codon optimization, suggesting that Penicillium species encounter exogenous gliotoxin in
97	their environments. Examination of evolutionary rates revealed that genes from highly
98	fragmented gliotoxin BGCs evolved at significantly higher rates than genes from less fragmented
99	BGCs, suggesting that less fragmented BGCs have been experiencing relaxation of selective
100	constraints for longer. Ancestral state reconstructions indicate that the Penicillium ancestor
101	possessed a less fragmented gliotoxin BGC, followed by distinct trajectories of duplication and
102	loss, highlighting the diverse evolutionary pathways of the gliotoxin BGC in <i>Penicillium</i> species.
103	
104	Materials and Methods
105	I. Data collection and quality assessment
106	We retrieved the genomes and gene annotations of 35 Penicillium strains from 23 species as well
107	as of two outgroups (Aspergillus fumigatus and Aspergillus fischeri) from NCBI
108	(<u>https://www.ncbi.nlm.nih.gov/</u>) (Table S1).
109	
110	Genome assembly and annotation quality were examined to evaluate whether the dataset is
111	sufficient for comparative genomics. The quality and characteristics of the genomes (N50, L50,
112	assembly size, number of scaffolds, and gene count) were evaluated using BioKIT (v0.1.0)

113	(Steenwyk et al. 2022) (Figure S1). The average N50 value was 1,850,972.1 bases, where 46%
114	of proteomes consisted of N50 values greater than 1 Mb, and the lowest N50 value was 31,119
115	bases for P. expansum CMP 1. Gene annotation completeness was assessed using BUSCO
116	(v5.0.0) (Waterhouse et al. 2018) (Figure S2). BUSCO uses a predetermined set of near-
117	universally conserved single-copy genes (or BUSCO genes) to identify their presence in a query
118	proteome (characterized as single-copy, duplicated, or fragmented) or absence. We used the
119	4,181 BUSCO genes from the Eurotiales OrthoDB dataset (Manni et al. 2021; Zdobnov et al.
120	2021). Nearly all the genomes have high BUSCO gene coverage (average: $95.9\% \pm 3.1\%$), with
121	the lowest percentages being for P. coprophilum (87.9%) and P. decumbens (85.3%).
122	
123	II. Identification and characterization of gliotoxin BGC and resistance genes
104	a Identification of glictoryin CBC and registerion genes
124	a. Identification of gliotoxin GBC and resistance genes
124 125	The representative gliotoxin BGC (BGC0000361, Download date: April 2022) from the
125	The representative gliotoxin BGC (BGC0000361, Download date: April 2022) from the
125 126	The representative gliotoxin BGC (BGC0000361, Download date: April 2022) from the <i>Aspergillus fumigatus</i> Af293 reference strain was downloaded from the Minimum Information
125 126 127	The representative gliotoxin BGC (BGC0000361, Download date: April 2022) from the <i>Aspergillus fumigatus</i> Af293 reference strain was downloaded from the Minimum Information about a Biosynthetic Gene Cluster (MiBIG) database (Kautsar <i>et al.</i> 2019). Command-line NCBI
125 126 127 128	The representative gliotoxin BGC (BGC0000361, Download date: April 2022) from the <i>Aspergillus fumigatus</i> Af293 reference strain was downloaded from the Minimum Information about a Biosynthetic Gene Cluster (MiBIG) database (Kautsar <i>et al.</i> 2019). Command-line NCBI BLASTP (Camacho <i>et al.</i> 2009) searches for the Af293 gliotoxin BGC against the proteome of
125 126 127 128 129	The representative gliotoxin BGC (BGC0000361, Download date: April 2022) from the <i>Aspergillus fumigatus</i> Af293 reference strain was downloaded from the Minimum Information about a Biosynthetic Gene Cluster (MiBIG) database (Kautsar <i>et al.</i> 2019). Command-line NCBI BLASTP (Camacho <i>et al.</i> 2009) searches for the Af293 gliotoxin BGC against the proteome of each species were executed. Highly similar sequences were identified using an expectation value
125 126 127 128 129 130	The representative gliotoxin BGC (BGC0000361, Download date: April 2022) from the <i>Aspergillus fumigatus</i> Af293 reference strain was downloaded from the Minimum Information about a Biosynthetic Gene Cluster (MiBIG) database (Kautsar <i>et al.</i> 2019). Command-line NCBI BLASTP (Camacho <i>et al.</i> 2009) searches for the Af293 gliotoxin BGC against the proteome of each species were executed. Highly similar sequences were identified using an expectation value threshold of 1e-4 and a query coverage of 50%. The resulting BLAST outputs were then cross-
 125 126 127 128 129 130 131 	The representative gliotoxin BGC (BGC0000361, Download date: April 2022) from the <i>Aspergillus fumigatus</i> Af293 reference strain was downloaded from the Minimum Information about a Biosynthetic Gene Cluster (MiBIG) database (Kautsar <i>et al.</i> 2019). Command-line NCBI BLASTP (Camacho <i>et al.</i> 2009) searches for the Af293 gliotoxin BGC against the proteome of each species were executed. Highly similar sequences were identified using an expectation value threshold of 1e-4 and a query coverage of 50%. The resulting BLAST outputs were then cross-referenced with the NCBI feature table file, which contains genome location information for
 125 126 127 128 129 130 131 132 	The representative gliotoxin BGC (BGC0000361, Download date: April 2022) from the <i>Aspergillus fumigatus</i> Af293 reference strain was downloaded from the Minimum Information about a Biosynthetic Gene Cluster (MiBIG) database (Kautsar <i>et al.</i> 2019). Command-line NCBI BLASTP (Camacho <i>et al.</i> 2009) searches for the Af293 gliotoxin BGC against the proteome of each species were executed. Highly similar sequences were identified using an expectation value threshold of 1e-4 and a query coverage of 50%. The resulting BLAST outputs were then cross-referenced with the NCBI feature table file, which contains genome location information for each gene, and parsed to identify clusters of homologs. Less fragmented BGCs are defined as

136	cluster to include gliP. When identifying BGCs, we allowed up to four genes between each pair
137	of adjacent homologs using the A. fumigatus Af293 BGC from the MiBIG database (Kautsar et
138	al. 2019) as reference (Castro et al. 2022).
139	
140	To rule out gene annotation errors in cases where we infer genes to be absent, we conducted
141	command-line NCBI tBLASTn searches for the Af293 gliotoxin BGC against the genome
142	sequences. Highly similar sequences were identified using an expectation value threshold of 1e-
143	10. The resulting outputs were analyzed, and no new presence/absence information was found.
144	
145	Sequence similarity searches were also conducted for eight gliotoxin resistance genes
146	(abcC1/AN7879, mtrA/AN3717, AN9051, AN1472, AN9531, rglT, gtmA/AFU2G11120,
147	<i>kojR</i> /AFUA_5G06800), three of which were transcription factors (AN9531, <i>rglT</i> , <i>kojR</i>). We
148	used an expectation value threshold of 1e-3 and a query coverage threshold of 50%; we used a
149	lower query coverage threshold of 40% for the three transcription factors.
150	
151	b. Codon bias
152	To estimate the potential functional significance of the partial gliotoxin BGCs present in
153	Penicillium genomes, mean gene-wise relative synonymous codon usage (gRSCU) was
154	determined for each clustered gli gene across all proteomes using BioKIT (Steenwyk et al.
155	2022). This provides insight into how codon usage bias influences the expression level of a
156	particular gene. The percentile rankings of each of the present and clustered gli genes were
157	calculated using the R package <i>dplyr</i> (v1.0.9) (Wickham <i>et al.</i> 2022), and these values, for each
158	species, were then plotted using the R package ggplot2 (Wickham 2016).

8

1	5	0
т	J	7

160 c. Synteny Analysis

161	Alignments of representative Penicillium genomes with less and more fragmented gliotoxin
162	BGCs were generated using a GenomeDiagram in Biopython (Cock et al. 2009). Five genomes
163	(A. fumigatus Af293, P. flavigenum IBT 14082, P. roqueforti FM164, P. nordicum DAOMC
164	185683, and P. expansum CMP1) with the largest number of different, homologous gli cluster
165	genes above seven, and including gliP, were chosen to visualize the conservation of synteny of
166	less fragmented gliotoxin BGCs across the phylogeny. Similarly, the five genomes (P. steckii
167	IBT 24891, P. vulpinum IBT 29486, P. rubens 43M1, P. camemberti FM 013, and P. italicum
168	PHI 1) with the greatest number of different, homologous gli cluster genes above three and
169	below seven, and not needing to include gliP, were chosen to visualize synteny of mostly
170	fragmented BGCs across the phylogeny.
171	
171 172	III. Phylogenetic Analysis
	III. Phylogenetic Analysis a. Species Tree Inference
172	
172 173	a. Species Tree Inference
172 173 174	a. Species Tree Inference The evolutionary relationships of <i>Penicillium</i> species were obtained from a previous study
172 173 174 175	 a. Species Tree Inference The evolutionary relationships of <i>Penicillium</i> species were obtained from a previous study (Steenwyk <i>et al.</i> 2019) using treehouse (Steenwyk and Rokas 2019). For three species with
 172 173 174 175 176 	 a. Species Tree Inference The evolutionary relationships of <i>Penicillium</i> species were obtained from a previous study (Steenwyk <i>et al.</i> 2019) using treehouse (Steenwyk and Rokas 2019). For three species with population-level data, within-species relationships were inferred using phylogenomics. To do so,
 172 173 174 175 176 177 	 a. Species Tree Inference The evolutionary relationships of <i>Penicillium</i> species were obtained from a previous study (Steenwyk <i>et al.</i> 2019) using treehouse (Steenwyk and Rokas 2019). For three species with population-level data, within-species relationships were inferred using phylogenomics. To do so, protein sequences of BUSCO genes were first aligned using MAFFT (v7.490) with the <i>auto</i>

181 using ClipKIT (v1.3.0) (Steenwyk et al. 2020) with default parameters. The resulting aligned and

182	trimmed sequences were concatenated into a supermatrix with 8,124,861 sites using the
183	create_concat function in PhyKIT. We then inputted the concatenated matrix into IQ-TREE 2
184	(v2.0.6), a software that implements a maximum likelihood framework for inferring phylogenies.
185	All other evolutionary relationships between species were constrained following the relationships
186	inferred in a previously published study (Steenwyk and Rokas 2019). The best-fitting
187	substitution model (GTR+F+I+G4) was determined using ModelFinder (Kalyaanamoorthy et al.
188	2017).
189	
190	b. Single-gene tree inference
191	To infer the evolutionary history of genes in the gliotoxin BGCs, individual gli genes were
192	compiled and aligned with MAFFT (v7.490) using theauto parameter (Katoh and Standley
193	2013). The corresponding nucleotide sequences for each file were obtained from the CDS files

194 for each species, using the *faidx* function of BioKIT (v0.1.0) (Steenwyk *et al.* 2022). These

nucleotide sequences were then threaded onto the protein alignments using the *thread_dna*

196 function of PhyKIT (Steenwyk et al. 2021), resulting in a codon-based alignment. All individual

197 codon-based gene alignments were trimmed with ClipKIT (Steenwyk *et al.* 2020) with default

- 198 parameters. The trimmed alignments were used to construct a phylogeny using IQ-TREE 2
- 199 (Minh *et al.* 2020). The best-fitting substitution model was chosen for each *gli* gene using

200 Bayesian information criteria (BIC) implemented in ModelFinder (Kalyaanamoorthy et al. 2017)

201 from IQ-TREE 2. Branch support in each phylogenetic tree was assessed by 1000 bootstraps

- 202 using ultrafast bootstrapping approximation (Hoang et al. 2018). Tree visualization was carried
- 203 out using the R packages *ape* (v5.6.2) (Paradis and Schliep 2019) and *phytools* (v1.0.3) (Revell
- 204 2012).

|--|

20	5
	J

206	To characterize variation in the evolution of individual genes of the gliotoxin BGC, the trimmed
207	alignments and maximum-likelihood trees from IQ-TREE 2 were used as input into the
208	evolutionary_rate, total_tree_length, and pairwise_identity functions of PhyKIT to estimate two
209	tree-based measures of evolutionary rate and one sequence-based measure. Evolutionary rate is
210	defined as the total tree length divided by the number of terminals (Telford et al. 2014; Steenwyk
211	et al. 2021). The total tree length is the sum of all branches (Steenwyk et al. 2021).
212	
213	c. Ancestral state reconstructions
214	Ancestral state reconstruction for each gene of the gliotoxin BGC across three discrete characters
215	("Presence clustered," "Presence unclustered," and "Absence") was estimated using phytools
216	(v1.0.3) (Revell 2012). Presence generally indicates that a homolog of the particular gene was
217	identified. "Presence clustered" identifies an existing homolog of the specific gene within a
218	maximum distance of four genes from other homologs of the gliotoxin BGC. "Presence
219	unclustered" identifies an existing homolog of the particular gene without clustering. "Absence"
220	indicates that no homolog of the specific gene was identified. Estimation of ancestral character
221	states was done using the Dollo parsimony method. This method assumes that a complex
222	character lost during the evolution of a particular lineage cannot be regained (Rogozin et al.
223	2006). Count, a software package for the evolutionary analysis of homolog family sizes, was
224	used to generate these ancestral state reconstructions (Csűös 2010).
225	
226	d. Tree Topology Testing

1	1
L	L

227	Tree topology testing was used to determine whether the duplication event resulting in the two
228	less fragmented, homologous gliotoxin BGCs in P. expansum strains MD 8 and d1 occurred
229	solely in the lineage of P. expansum or deeper in the tree. IQTREE 2 (Minh et al. 2020) was used
230	to compute log-likelihoods of a constrained tree (monophyly of P. expansum gliP homologs) and
231	the observed tree in which a polyphyly of gliP in both clusters is seen (inconsistent with the
232	known species tree). 1000 RELL replicates (Kishino et al. 1990) were performed. The AU test
233	results (Shimodaira 2002) was used for comparison.
234	
235	Results and Discussion
236	I. The gliotoxin BGC is fragmented in <i>Penicillium</i> species
237	Presence / absence data of the 13 genes in the gliotoxin BGC among the 23 Penicillium species
238	analyzed reveals that the cluster is largely fragmented in the genus Penicillium (Figure 1). The
239	proteomes of 12 strains from 5 Penicillium species (P. arizonense, P. flavigenum, P. roqueforti,
240	P. nordicum, P. expansum), possessed less fragmented BGCs, and the proteomes of 23 strains
241	from 18 Penicillium species had mostly fragmented BGCs (Figure S3-S15). Two less fragmented
242	BGCs, which contained 10 / 13 genes and 7 / 13 genes, were identified in <i>P. expansum</i> strains d1
243	and MD 8, respectively. Regardless of the number of less fragmented BGCs found, to our
244	knowledge, none of the Penicillium species in question are known to produce gliotoxin, except
245	P. decumbens (Feng et al. 2018), suggesting that the absence of clustering in this species may be
246	due to strain heterogeneity and requires further exploration.
247	

248 II. A complete gliotoxin BGC was present in the ancestor of *Penicillium* species

249	Ancestral state reconstruction revealed the presence of all 13 genes in the gliotoxin BGC in the				
250	ancestor of the Penicillium species used in our study (Figure 1). We infer that the first gene los				
251	was gliH, which is absent from 25 of the 35 Penicillium strains examined. The gliH gene				
252	encodes an acetyltransferase that, when deleted, results in a loss of gliotoxin production in A.				
253	fumigatus (Schrettl et al. 2010; Castro et al. 2022). Thus, the early loss of gliH in the genus				
254	Penicillium may have been the key determinant of a lack of gliotoxin production. Further, the				
255	synteny of genes in the BGC is mostly conserved and similar to the arrangement of the A.				
256	fumigatus Af293 gliotoxin BGC across representative, less fragmented BGCs, such as P.				
257	flavigenum IBT 14082 and P. expansum CMP 1 (Figure 2). In contrast, there is extensive				
258	divergence in synteny conservation among mostly fragmented BGCs (Figure 2). To our				
259	knowledge, none of the <i>Penicillium</i> species examined are known to produce gliotoxin, except <i>P</i> .				
260	decumbens (Feng et al. 2018), suggesting that the absence of clustering in this species may be				
261	due to strain heterogeneity and requires further exploration.				
262					
263	III. Resistance genes are broadly conserved				
264	The presence/absence results of the eight resistance genes, portrayed in Figure 1, suggest that				
265	their origins predate the Aspergillus and Penicillium genera (Figure S16-S23). All species				
266	possessed <i>abcC1</i> , AN1472, AN9051, AN9531, and <i>kojR</i> homologs. In addition, only <i>Penicillium</i>				
267	species with mostly fragmented gliotoxin BGCs lacked at least one resistance gene, such as				
268	gtmA, mtrA, and rglT. Penicillium chrysogenum lacked both rglT and gliT, an observation				
269	consistent with the transcriptional dependency of gliT to rglT (Ries et al. 2020).				
270					
271	IV. <i>Penicillium</i> species have experienced changes in gliotoxin BGC synteny over time				

13

272 All genes of the gliotoxin BGC were broadly found within the genus Penicillium, except for 273 gliH, yet most were sparsely clustered (Figure 1). More specifically, 12 out of 35 Penicillium 274 species/strains were found to have a less fragmented, homologous BGC. Two strains of 275 Penicillium expansium (d1 and MD 8) were found to have two BGCs. Evidence of variation in 276 gene presence / absence is also evident within species. For example, Penicillium roqueforti 277 shows population variation in the presence of gliZ, a major transcriptional regulator of gliotoxin 278 biosynthesis (Bok et al. 2006); five strains of P. roqueforti lack gliZ whereas one strain has the 279 gene. As a result, we can conclude that the ancestor of P. roqueforti had a gliZ homolog, but the 280 gene was lost over time in most of the strains, highlighting the importance of population-level 281 sampling. Overall, we can see that the gliotoxin BGC has experienced relocations and 282 duplications of its genes, specifically in *Penicillium expansum* strains d1 and MD 8, as is 283 expected in the formation of most secondary metabolite-producing BGCs (Rokas et al. 2018). 284

285 V. Few Penicillium species contain codon-optimized gliotoxin BGCs

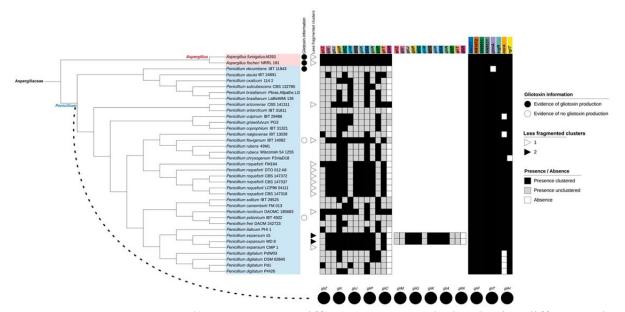
286 Compared to the two outgroup Aspergillus species, A. fumigatus and A. fischeri, Penicillium 287 species have much lower gRSCU value rankings (Figure 3). Specifically, the mean gRSCU 288 percentile rank of gliotoxin BGC genes among the Aspergillus outgroups is 0.81, while that 289 among the *Penicillium* species is 0.35; these scores suggest that gli genes from Aspergillus are 290 more codon-optimized than gli genes from *Penicillium*. Regardless of mean gRSCU values, gliT 291 and *gliA* homologs, when present, are ranked consistently in the top three to four clustered genes. 292 However, when considering resistance genes, the spread and range of their gRSCU values are 293 similar across all species. The mean gRSCU percentile rank of gliotoxin resistance genes among 294 the Aspergillus outgroups is 0.58, while that among the *Penicillium* species is 0.53. This allows

295	us to infer that these Penicillium species may ecologically encounter exogenous gliotoxin,
296	making gliT, encoding a gliotoxin-neutralizing enzyme, gliA, encoding a transporter that exports
297	gliotoxin, and non-TF resistance genes such as <i>abcC1</i> , encoding an ABC-transporter, rank in the
298	top percentiles among each of the species' gene sets.
299	
300	VI. <i>gli</i> genes in less fragmented clusters are evolving at a slower rate than mostly
301	fragmented clusters
302	In the comparison of tree-based and sequence-based measures of evolutionary rate, gli genes
303	from less fragmented clusters are evolving at a significantly slower pace (p<0.0001) than those
304	from mostly fragmented clusters across all three metrics, as seen by a two-way ANOVA with an
305	additive model (Figure 4, Figure S3-S15). This difference highlights a notable feature of many
306	BGCs, the fact that they are rapidly evolving, hinted at by their high variability and narrow
307	taxonomic range (Rokas et al. 2020).
308	
309	<i>VII.</i> A duplication of the gliotoxin BGC may have occurred before the divergence
310	between P. flavigenum and P. roqueforti
311	We conducted a tree topology test to infer when the gliotoxin BGCs found in <i>P. flavigenum</i>
312	occurred. The maximum likelihood phylogeny suggests that this duplication occurred before the
313	divergence between P. flavigenum and P. roqueforti. An alternative hypothesis is that
314	duplication occurred within <i>P. expansum</i> . This alternative hypothesis would be supported by
315	monophyly of P. expansum homologs of BGC genes. After conducting a tree topology test
316	comparing log likelihood values between the maximum likelihood phylogeny and an alternative
317	tree wherein <i>P. expansum</i> gliP homologs were constrained to be monophyletic, we found that the

15

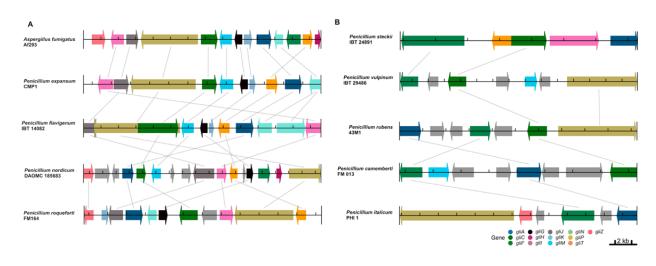
318	constrained topology was significantly rejected (Approximately Unbiased test, $p = 7.34e-110$)
319	(Figure S24). In other words, it is unlikely duplication occurred within <i>P. expansum</i> lineage;
320	instead, duplication likely occurred more anciently, prior to the diversification of <i>P. expansum</i> .
321	

322 Conclusions


323 The ancestor of *Penicillium* species likely possessed a complete gliotoxin BGC. A 324 duplication event of the BGC occurred in one lineage, likely prior to the divergence of P. 325 flavigenum and P. roqueforti. Also, the presence/absence results of the eight resistance genes 326 suggest that their origins predate the Aspergillus and Penicillium genera suggesting that 327 resistance has long been important among these species. The genes in *Penicillium* gliotoxin 328 BGCs are less codon optimized (gRSCU percentile rank mean: 0.35) compared to their 329 Aspergillus counterparts (gRSCU percentile rank mean: 0.81) suggesting that gli genes are much 330 more often expressed in Aspergillus species than in Penicillium. However, less fragmented 331 BGCs within *Penicillium* species are evolving at a slower rate than mostly fragmented clusters, 332 suggestive of potential functionality.

333 Although informative, this work only utilizes publicly available protein annotations of 334 biotechnologically and medically relevant *Penicillium* fungi, making it important to expand upon 335 the species/strains studied. Moreover, this same targeted gliotoxin analysis within a larger 336 phylogeny of Aspergillus species, for which there is greater evidence of the production of this 337 secondary metabolite, may be helpful. An analysis of gliotoxin BGCs encoded in all fungi would 338 also provide us with more insight into the evolutionary mechanisms that give rise to BGC 339 diversity. In addition, expanding on the causes of conservation of less fragmented gliotoxin 340 BGCs within a variety of Penicillium strains may be important, especially because evidence of

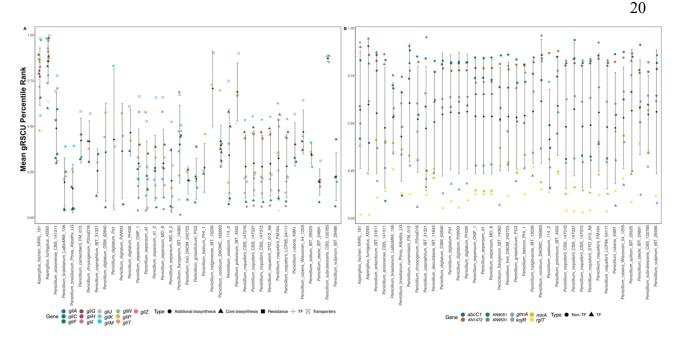
341	production is lacking. As a result, this exciting reality encourages further understanding of the
342	motivating hypothesis that individual secondary metabolites are "cards" of virulence in a larger
343	"hand" that fungi possess.
344	
345	Data availability
346	The authors affirm that all data necessary for confirming the conclusions of the article are
347	present within the article, figures, tables, and supplemental material.
348	
349	Acknowledgements
350	We thank members of the Rokas Laboratory at Vanderbilt University for support and
351	feedback on this work. We also thank the Vanderbilt Data Science Institute for their
352	undergraduate enrichment opportunities. This work was performed in part using resources
353	contained within the Advanced Computing Center for research and Education at Vanderbilt
354	University in Nashville, TN.
355	
356	Funding
357	C.B. was supported by the Vanderbilt University Data Science Institute-Summer
358	Research Program. J.L.S. and A.R. were funded by the Howard Hughes Medical Institute
359	through the James H. Gilliam Fellowships for Advanced Study program. Research in A.R.'s lab
360	is supported by grants from the National Science Foundation (DEB-2110404), the National
361	Institutes of Health/National Institute of Allergy and Infectious Diseases (R01 AI153356), and
362	the Burroughs Wellcome Fund.
363	


364 **Conflicts of interest**

- 365 J.L.S. is a scientific consultant for Latch AI Inc. J.L.S. is a scientific advisor for WittGen
- 366 Biotechnologies. A.R. is a scientific consultant for LifeMine Therapeutics, Inc.

367 Fig. 1 Phylogeny of Penicillium genomes. Different genera are depicted using different-colored boxes. Aspergillus is shown in red and Penicillium in blue. Shaded circles next to species / strain 368 369 names indicate gliotoxin production information from the literature, or lack thereof (Fischer et al. 370 2000; Spikes et al. 2008; Knowles et al. 2020; Redrado et al. 2022). Shaded squares in the 371 second column depict number of clusters identified. Remaining color strips depict gene presence 372 clustered (black), presence unclustered (gray), and absence (white) according to the requirements 373 outlined in the Methods section. Ancestral state reconstructions of each gene of the gliotoxin BGC (for the ancestor of *Penicillium* species) are presented in pie charts below the phylogeny. 374 375

19



377 Fig. 2 Conservation of gliotoxin BGC synteny for representative *Penicillium* species.

378 Synteny analysis of representative genomes with less fragmented (A) and mostly fragmented (B)

379 gliotoxin BGCs. Each interval along the track represents 2 kb.

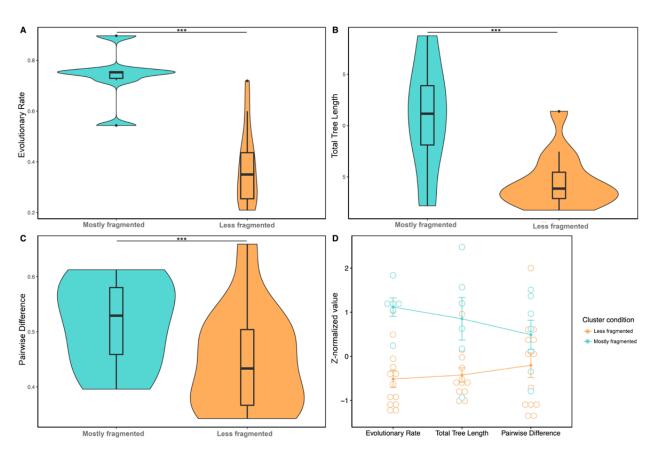
381 382

383 Fig. 3 Gene-wise relative synonymous codon usage (gRSCU) for gliotoxin BGC and

384 **resistance genes. (A)** Percentile rankings of gene-wise relative synonymous codon usage

385 (gRSCU) among gliotoxin BGC genes, in comparison to all other genes. Types / functionality of

each gene of the gliotoxin BGC is depicted by shape in the categories of "Core biosynthesis",


387 "Additional biosynthesis", "Resistance", "Transcription Factor", "Transporter" (B) Percentile

388 ranking of gene-wise relative synonymous codon usage (gRSCU) among gliotoxin resistance

389 genes, in comparison to all other genes. Types / functionality of each resistance gene is depicted

390 by shape in the categories of "Non-Transcription Factor and Transcription Factor".

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.17.524442; this version posted January 20, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

393 Fig. 4 Evolutionary rate comparison across gliotoxin BGCs. Multi-method comparison of 394 evolutionary rates between less fragmented and mostly fragmented gliotoxin BGCs. Less 395 fragmented clusters were required to contain a gliP ortholog and at least 7 different genes of the 396 cluster. Mostly fragmented clusters had no requirement to contain a *gliP* ortholog and only 397 needed to contain at least 3 different genes of the cluster. (A) Comparison of evolutionary rates, 398 as a function of total tree length divided by the number of taxa, between less fragmented and 399 mostly fragmented gliotoxin BGCs. (B) Comparison of total tree length between less fragmented 400 and mostly fragmented gliotoxin BGCs. (C) Comparison of pairwise identity between less 401 fragmented and mostly fragmented gliotoxin BGCs.

402

22

403 Works Cited

- 404 Ballester, A.-R., M. Marcet-Houben, E. Levin, N. Sela, C. Selma-Lázaro et al., 2015 Genome,
- 405 Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights
- 406 Into Secondary Metabolism and Pathogenicity. MPMI 28: 232–248.
- 407 Bok, J. W., D. Chung, S. A. Balajee, K. A. Marr, D. Andes et al., 2006 GliZ, a transcriptional
- 408 regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect
 409 Immun 74: 6761–6768.
- 410 Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos et al., 2009 BLAST+:
- 411 architecture and applications. BMC Bioinformatics 10: 421.
- 412 Castro, P. A. de, A. C. Colabardini, M. Moraes, M. A. C. Horta, S. L. Knowles et al., 2022
- 413 Regulation of gliotoxin biosynthesis and protection in Aspergillus species. PLOS
 414 Genetics 18: e1009965.
- 415 Cock, P. J. A., T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox et al., 2009 Biopython: freely
- 416 available Python tools for computational molecular biology and bioinformatics.
- 417 Bioinformatics 25: 1422–1423.
- 418 Csűös, M., 2010 Count: evolutionary analysis of phylogenetic profiles with parsimony and
 419 likelihood. Bioinformatics 26: 1910–1912.
- Dolan, S. K., G. O'Keeffe, G. W. Jones, and S. Doyle, 2015 Resistance is not futile: gliotoxin
 biosynthesis, functionality and utility. Trends in Microbiology 23: 419–428.
- Feng, H., S. Liu, M. Su, E. L. Kim, J. Hong *et al.*, 2018 Gliotoxin is Antibacterial to Drugresistant Piscine Pathogens. Nat Prod Sci 24: 225–228.
- 424 Fischer, G., T. Müller, R. Schwalbe, R. Ostrowski, and W. Dott, 2000 Species-specific profiles
- 425 of mycotoxins produced in cultures and associated with conidia of airborne fungi derived

426	from biowaste. International Journal of Hygiene and Environmental Health 203: 105-
427	116.
428	Hoang, D. T., O. Chernomor, A. von Haeseler, B. Q. Minh, and L. S. Vinh, 2018 UFBoot2:
429	Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol 35: 518-522.
430	Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. von Haeseler, and L. S. Jermiin, 2017
431	ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:
432	587–589.
433	Katoh, K., and D. M. Standley, 2013 MAFFT Multiple Sequence Alignment Software Version 7:
434	Improvements in Performance and Usability. Mol Biol Evol 30: 772–780.
435	Kautsar, S. A., K. Blin, S. Shaw, J. C. Navarro-Muñoz, B. R. Terlouw et al., 2019 MIBiG 2.0: a
436	repository for biosynthetic gene clusters of known function. Nucleic Acids Research
437	gkz882.
438	Kishino, H., T. Miyata, and M. Hasegawa, 1990 Maximum likelihood inference of protein
439	phylogeny and the origin of chloroplasts. J Mol Evol 31: 151-160.
440	Knowles, S. L., M. E. Mead, L. P. Silva, H. A. Raja, J. L. Steenwyk et al., 2020 Gliotoxin, a
441	Known Virulence Factor in the Major Human Pathogen Aspergillus fumigatus, Is Also
442	Biosynthesized by Its Nonpathogenic Relative Aspergillus fischeri. mBio 11: e03361-19.
443	Lessard, MH., G. Bélanger, D. St-Gelais, and S. Labrie, 2012 The Composition of Camembert
444	Cheese-Ripening Cultures Modulates both Mycelial Growth and Appearance. Applied
445	and Environmental Microbiology 78: 1813–1819.
446	Li, B., Y. Zong, Z. Du, Y. Chen, Z. Zhang et al., 2015 Genomic Characterization Reveals
447	Insights Into Patulin Biosynthesis and Pathogenicity in Penicillium Species. MPMI 28:
448	635–647.

- 449 Manni, M., M. R. Berkeley, M. Seppey, and E. M. Zdobnov, 2021 BUSCO: Assessing Genomic
- 450 Data Quality and Beyond. Current Protocols 1: e323.
- 451 Marcet-Houben, M., A.-R. Ballester, B. de la Fuente, E. Harries, J. F. Marcos et al., 2012
- 452 Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest
- 453 pathogen of citrus. BMC Genomics 13: 646.
- 454 Minh, B. Q., H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams et al., 2020 IQ-
- 455 TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic
 456 Era. Mol Biol Evol 37: 1530–1534.
- 457 Nelson, J. Howard., 1970 Production of Blue cheese flavor via submerged fermentation by
- 458 Penicillium roqueforti. J. Agric. Food Chem. 18: 567–569.
- 459 Owens, R. A., G. O'Keeffe, E. B. Smith, S. K. Dolan, S. Hammel et al., 2015 Interplay between
- 460 Gliotoxin Resistance, Secretion, and the Methyl/Methionine Cycle in Aspergillus
- 461 fumigatus. Eukaryotic Cell 14: 941–957.
- 462 Paradis, E., and K. Schliep, 2019 ape 5.0: an environment for modern phylogenetics and
- 463 evolutionary analyses in R. Bioinformatics 35: 526–528.
- 464 Raffa, N., and N. P. Keller, 2019 A call to arms: Mustering secondary metabolites for success
 465 and survival of an opportunistic pathogen. PLOS Pathogens 15: e1007606.
- 466 Redrado, S., P. Esteban, M. P. Domingo, C. Lopez, A. Rezusta et al., 2022 Integration of In
- 467 Silico and In Vitro Analysis of Gliotoxin Production Reveals a Narrow Range of
 468 Producing Fungal Species. Journal of Fungi 8: 361.
- 469 Revell, L. J., 2012 phytools: an R package for phylogenetic comparative biology (and other
- 470 things). Methods in Ecology and Evolution 3: 217–223.

471	Ries, L. N. A., I	L. Pardeshi, Z.	Dong, K.	Tan. J. L.	Steenwyk et	<i>al.</i> , 2020 T	he Aspergillus
						,	

- 472 fumigatus transcription factor RglT is important for gliotoxin biosynthesis and self-
- 473 protection, and virulence. PLoS Pathog 16: e1008645.
- 474 Rogozin, I. B., Y. I. Wolf, V. N. Babenko, and E. V. Koonin, 2006 Dollo parsimony and the
- 475 reconstruction of genome evolution.
- 476 Rokas, A., M. E. Mead, J. L. Steenwyk, H. A. Raja, and N. H. Oberlies, 2020 Biosynthetic gene
 477 clusters and the evolution of fungal chemodiversity. Nat Prod Rep 37: 868–878.
- 478 Rokas, A., J. H. Wisecaver, and A. L. Lind, 2018 The birth, evolution and death of metabolic
 479 gene clusters in fungi. Nat Rev Microbiol 16: 731–744.
- 480 Schrettl, M., S. Carberry, K. Kavanagh, H. Haas, G. W. Jones et al., 2010 Self-Protection against
- 481 Gliotoxin—A Component of the Gliotoxin Biosynthetic Cluster, GliT, Completely
- 482 Protects Aspergillus fumigatus Against Exogenous Gliotoxin. PLOS Pathogens 6:
- 483 e1000952.
- 484 Shimodaira, H., 2002 An Approximately Unbiased Test of Phylogenetic Tree Selection.
- 485 Systematic Biology 51: 492–508.
- 486 Spikes, S., R. Xu, C. K. Nguyen, G. Chamilos, D. P. Kontoyiannis et al., 2008 Gliotoxin
- 487 Production in Aspergillus fumigatus Contributes to Host-Specific Differences in
- 488 Virulence. The Journal of Infectious Diseases 197: 479–486.
- 489 Steenwyk, J. L., T. J. Buida III, C. Gonçalves, D. C. Goltz, G. Morales et al., 2022 BioKIT: a
- 490 versatile toolkit for processing and analyzing diverse types of sequence data. Genetics491 221: iyac079.

492	Steenwyk, J. L., T. J. Buida III, A. L. Labella, Y. Li, XX. Shen et al., 2021 PhyKIT: a broadly
493	applicable UNIX shell toolkit for processing and analyzing phylogenomic data.
494	Bioinformatics 37: 2325–2331.
495	Steenwyk, J. L., T. J. B. Iii, Y. Li, XX. Shen, and A. Rokas, 2020 ClipKIT: A multiple
496	sequence alignment trimming software for accurate phylogenomic inference. PLOS
497	Biology 18: e3001007.
498	Steenwyk, J. L., and A. Rokas, 2019 Treehouse: a user-friendly application to obtain subtrees
499	from large phylogenies. BMC Research Notes 12: 541.
500	Steenwyk, J. L., XX. Shen, A. L. Lind, G. H. Goldman, and A. Rokas, 2019 A Robust
501	Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the
502	Genera Aspergillus and Penicillium. mBio.
503	Sugui, J. A., J. Pardo, Y. C. Chang, K. A. Zarember, G. Nardone et al., 2007 Gliotoxin is a
504	virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice
505	immunosuppressed with hydrocortisone. Eukaryot Cell 6: 1562–1569.
506	Telford, M. J., C. J. Lowe, C. B. Cameron, O. Ortega-Martinez, J. Aronowicz et al., 2014
507	Phylogenomic analysis of echinoderm class relationships supports Asterozoa.
508	Proceedings of the Royal Society B: Biological Sciences 281: 20140479.
509	Waterhouse, R. M., M. Seppey, F. A. Simão, M. Manni, P. Ioannidis et al., 2018 BUSCO
510	Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol Biol
511	Evol 35: 543–548.
512	Wickham, H., 2016 ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
513	Wickham, H., R. François, L. Henry, K. Müller, and RStudio, 2022 dplyr: A Grammar of Data

514 Manipulation.

- 515 Zdobnov, E. M., D. Kuznetsov, F. Tegenfeldt, M. Manni, M. Berkeley et al., 2021 OrthoDB in
- 516 2020: evolutionary and functional annotations of orthologs. Nucleic Acids Research 49:
- 517 D389–D393.
- 518