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 35 

Abstract  36 

Species utilizing the same resources ultimately do not coexist for long periods of time. Such 37 

competitive exclusion mechanisms potentially underly dynamics of microbiomes, causing 38 

breakdowns of communities constituted by species with similar genetic backgrounds of 39 

resource use. Nonetheless, it remains a major challenge to integrate genomics and ecology for 40 

understanding deterministic processes of species coexistence in species-rich communities. We 41 

here show that community-scale analyses of functional gene redundancy provide statistical 42 

platforms for interpreting and predicting collapse of bacterial communities. Through 110-day 43 

time-series of experimental microbiome dynamics, we analyzed the metagenome-assembled 44 

genomes of coexisting bacterial species. We then reconstructed ecological niche space based 45 

on the multivariate analysis of the genome compositions in order to evaluate potential shifts 46 

in the level of niche overlap between species through time. Specifically, we hypothesized that 47 

community-scale pressure of competitive exclusion could be evaluated by quantifying overlap 48 

of genetically determined resource-use profiles (metabolic pathway profiles) among 49 

coexisting species. We found that the degree of community compositional changes observed 50 

in the experimental microbiome was explained by the magnitude of metabolic pathway (gene 51 

repertoire) overlaps among bacterial species. The metagenome-based analysis of genetic 52 

potential for competitive exclusion will help us forecast major events in microbiome 53 

dynamics such as sudden community collapse (i.e., dysbiosis).   54 

 55 

Classic niche theory predicts that coexistence of species requires interspecific difference in 56 

resource ranges1–6. Although some specific mechanisms can guarantee coexistence even in the 57 

presence of niche overlap (e.g., spatial structure of habitats and temporal variability in 58 

resource availability), similarity/dissimilarity in basic resource dependency among species is 59 

the key factor determining the occurrence of competitive exclusion7–9. Therefore, evaluating 60 

the overlap of “fundamental niches”, which are defined by species’ fundamental resource 61 

requirements and resource-use capabilities10,11, is an essential step for understanding and 62 

predicting community-level dynamics.  63 

 Insights into fundamental niches are encrypted in species’ genomes12–14. In other words, 64 

as species’ traits are encoded in their DNA, reconstructed genomes provide the ultimate basis 65 

for evaluating target species’ fundamental niches15,16. Thus, potential strength of competitive 66 
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interactions within ecological guilds or communities could be evaluated based on the 67 

distribution of species’ gene repertoires within ecological niche space reconstructed with 68 

metagenomic data12,15,16 (“metagenomic niche space”). Although overlap of niches does not 69 

always cause competitive exclusion7–9, higher levels of gene repertoire overlap within a 70 

community may impose greater impacts on population dynamics of constituent species.  71 

  It is essential to examine whether such competition-driven population-level 72 

phenomena underly drastic ecological events observed at the community level. Microbial 73 

communities sometimes show sudden and substantial changes in species and/or taxonomic 74 

compositions17–19. Human gut microbiomes, for example, have been reported to show drastic 75 

shifts from species-rich states to “imbalanced” states with low a-diversity and 76 

overrepresentation of pathogenic species20–23 (e.g., Clostridium difficile). Elucidating the 77 

ecological mechanisms by which such drastic community-level events are caused provide 78 

fundamental insights into microbiome dynamics23–25. In this respect, an important challenge is 79 

to test the hypothesis that higher levels of gene-repertoire overlap are observable prior to 80 

drastic community compositional changes than after such changes. However, this hypothesis, 81 

to our knowledge, has not yet been tested presumably due to the paucity of time-series 82 

observations of microbiomes with substantial compositional changes. Even if such 83 

microbiome time-series data are available, analyses of potential niche (gene repertoire) 84 

overlap require another line of information, specifically, data of respective species’ genomes 85 

at multiple time points. Therefore, developing research systems that overcome these current 86 

constrains is expected to deepen our understanding of microbiome ecological processes. 87 

 We here show how degree of gene-repertoire overlap changes through dynamics of 88 

species-rich microbial communities. By targeting an experimental microbial system showing 89 

rapid and substantial changes in taxonomic compositions19, we reconstruct niche space 90 

depicting species’ gene repertoires. Based on a whole-genome shotgun metagenomic analysis 91 

at 13 time points within the 110-day time-series of the microbiome experiment, we reveal 92 

temporal shifts in the magnitude of gene repertoire overlap among microbial species. We then 93 

examine whether a high level of fundamental-niche overlap is observed prior to drastic 94 

changes in community structure. Overall, we explore how signs of drastic shifts in community 95 

structure are detected by reconstructing community-scale degree of fundamental niche 96 

overlap with the aid of genomic information.  97 

 98 
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Results 99 

Target microbiome. We focused on the experimental microbiome showing drastic shifts in 100 

taxonomic compositions19. In a previous study19, a 110-day monitoring of microbiomes was 101 

performed with six experimental settings. To set up experimental microbiomes with high 102 

diversity of bacterial species/taxa, natural microbial communities derived from soil or pond-103 

water ecosystems, rather than “synthetic” communities with pre-defined diversity, were used 104 

as source inocula. Specifically, microbiomes were set up with combinations of two source 105 

inoculum types (soil- or pond-water-derived inoculum microbiomes) and three medium types 106 

(oatmeal, oatmeal-peptone, or peptone broth medium) with eight replications (2 ´ 3 ´ 8 = 48 107 

microbiomes; see Methods for details). From each of the 48 microbiomes, a fraction of each 108 

replicate community was sampled every 24 hours. The collected samples were subjected to 109 

the amplicon sequencing of the 16S rRNA region and the temporal changes in community 110 

compositions were monitored throughout the time-series19. By calculating the magnitude of 111 

time-series changes in community compositions19 (“abruptness” index; Fig. 1a; 112 

Supplementary Fig. 1), we focused on a water-inoculum/oatmeal-medium replicate 113 

community showing the most abrupt (rapid and substantial) changes in community 114 

compositions among the 48 microbiomes examined (Fig. 1a; Supplementary Fig. 1).  115 

 116 

Functional dynamics of microbiomes. By targeting the replicate community mentioned 117 

above, we performed whole-genome shotgun sequencing at 13 time points across the time-118 

series. In total, 32 high-quality (> 80 % completeness and < 5 % contamination) metagenome-119 

assembled genomes (MAGs) belonging to 20 genera (16 families; 12 orders) were detected 120 

(Figs. 1b-c and 2; Supplementary Fig. 2; Supplementary Table 1). As indicated in the 121 

amplicon sequencing analysis19 (Fig. 1a), drastic shifts from taxon-rich community states to 122 

oligopolistic states was observed around Day 20 in the shotgun sequencing analysis (Fig. 1b).  123 

 After the drastic community compositional change, the system reached a quasi-stable 124 

state represented by the dominance of a Hydrotalea (Chitinophagaceae) bacterium (Fig. 1b). 125 

The MAG of the Hydrotalea was characterized by relatively low GC content (38 %) and 126 

relatively small genome size within the community (ca. 3.1 Mb; Fig. 2a). In contrast, the two 127 

bacterial MAGs consistently coexisted with the dominant Hydrotalea through the time-series 128 

(i.e., Terracidiphilus and Mangrovibacter) had larger genome size (4.2 and 5.4 Mb, 129 

respectively; Fig. 1c), characterized by various genes absent from the Hydrotalea genome 130 

(Fig. 2; Supplementary Fig. 3). Specifically, the Terracidiphilus MAG showed metabolic 131 
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pathways/processes for degrading plant-derived biopolymers (e.g., cellulose; Fig. 2), 132 

potentially surviving as a primary user of polymer compounds within the plant-derived 133 

(oatmeal) medium. Meanwhile, the Mangrovibacter MAG had pathways/processes related to 134 

starch degradation (e.g., amylase) and vitamin-B12 transportation, which were absent from the 135 

genomes of Hydrotalea, Terracidiphilus, and the other MAG (Rhizomicrobium) detected on 136 

Day 40-60 (Fig. 2).  137 

 138 

Multivariate analysis of gene repertoires. The whole-genome shotgun metagenomic data 139 

were used to evaluate how the level of gene repertoire overlap among microbes shifted 140 

through time. We anticipated that microbial species with similar resource-use abilities or 141 

restrictions have similar genomic structure. Therefore, it is expected that species competing 142 

for the same resource tend to form clusters within the space defined based on the principal 143 

coordinate analysis (PCoA) of dissimilarity in gene repertoires. For each pair of the 32 144 

MAGs, dissimilarity (Jaccard b-diversity) of gene repertoires was calculated based on the 145 

matrix representing the presence/absence of the 6,999 genes annotated with the program 146 

Prokka26. A PCoA was then performed using the b-diversity information (Fig. 3a). At each of 147 

the 13 time point, detected MAGs were plotted on the PCoA space. Since we did not have a 148 

priori knowledge of specific metabolic pathways keys to the microbe-to-microbe competition 149 

within the experimental microbiome, the entire datasets were used in this multivariate 150 

analysis. Given general characteristics of multivariate analysis based on b-diversity metrics, 151 

the multivariate reconstruction of ecological niche space depends greatly on the genes whose 152 

presence/absence profiles vary among species, while housekeeping genes possessed by most 153 

species are expected to contribute little to the multivariate analysis. 154 

 We then found that alphaproteobacterial and gammaproteobacterial MAGs respectively 155 

constituted some clusters within the niche space reconstructed based on the multivariate 156 

analysis early in the microbiome dynamics (Day 1-20; Fig. 3b). This state with high niche 157 

overlap and potential within-guild competition for resources then collapsed into a simpler 158 

community state represented by Hydrotalea, Mangrovibacter, Terracidiphilus, and 159 

Rhizomicrobium as detailed above (Fig. 3b). The space once occupied by many 160 

alphaproteobacterial and gammaproteobacterial MAGs remained unoccupied or sparsely 161 

occupied after the community compositional collapse. Even when the number of MAGs 162 

detectable with our shotgun-metagenomic sequencing increased again late in the time-series, 163 

aggregations of microbes with similar genomic compositions remained unobserved (Fig. 3b). 164 
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 165 

Metagenomic niche overlap. We next quantitatively evaluated dynamics in the magnitude of 166 

community-scale niche overlap within the multivariate space (Fig. 3). In our analysis, the 167 

niche overlap index was defined as: 168 

1 −
∑ "!"!∈$,"∈$

#$
, 169 

where D is the set of MAGs detected on a focal day (time point), 𝛽$% is the Jaccard metric of 170 

dissimilarity in gene compositions, and 𝑁& is the number of MAGs detected on the day. By 171 

definition, this niche overlap value varies from 0 (completely different repertoires of genes in 172 

all pairs of MAGs) and 1 (completely identical gene repertoires in all pairs of MAGs), 173 

allowing us to evaluate niche overlap levels of target communities within the standardized 174 

ranges. The results indicated that the level of niche overlap was the highest on Day 1 and that 175 

it gradually decreased until Day 20 (Fig. 4a-b). A slight increase in the niche overlap index 176 

was observed on Day 24, but it dropped sharply by Day 30 (Fig. 4a-b). Although the niche 177 

overlap score remained low between Day 40 and 60, it increased again on Day 70 (Fig. 4b).  178 

 We then found that the estimated niche overlap level significantly explained the 179 

magnitude of the observed community compositional changes (t = 5.525, df = 10, P = 180 

0.00025; Fig. 5). In other words, higher levels of gene-repertoire overlap within a community 181 

were followed by larger shifts in community compositions at subsequent time points.  182 

 183 

Discussion 184 

We here showed that among-species overlap of gene repertoires are observable prior to drastic 185 

changes in community structure. Early in the experimental microbiome dynamics, 186 

alphaproteobacterial and gammaproteobacterial species were present, resulting in relatively 187 

high niche-overlap scores at the community level (Figs. 3 and 4). The quasi-equilibrium state 188 

then collapsed into another quasi-equilibrium represented by a small number of bacteria 189 

varying in genome size and metabolic capabilities. Throughout the time-series, higher niche 190 

overlap levels entailed greater changes in microbial community compositions (Fig. 5). These 191 

findings lead to the working hypothesis that collapse of microbiome structure is predicted by 192 

the level of potential niche overlap within multivariate metagenomic space. In light of the 193 

“limiting similarity” rule of ecological niches27, pairs of microbial species that exceed a 194 
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critical limit of genome compositional similarity are expected to compete for the same 195 

resources, eventually driving competitive exclusion processes. Thus, as examined in this 196 

study, similarity/dissimilarity in genetically determined resource-use properties (i.e., 197 

fundamental niches) sets baselines for consequences of interspecific interactions. 198 

 The results also indicated that niche overlap level does not necessarily show monotonic 199 

decrease through microbial community processes. Although gene-repertoire overlap level and 200 

detectable species richness sharply declined early in the microbiome dynamics, both variables 201 

gradually increased again around Day 80 (Figs. 1a and 4b). In the resurgence process, 202 

however, the dense clusters of alphaproteobacterial or gammaproteobacterial species detected 203 

until Day 20 did not appear again within the niche space (Fig. 3b). These observations suggest 204 

that once collapsed, microbial communities may not return to previous states with highest 205 

levels of niche overlap, but refilling of poorly-used niches can occur under the constraint of 206 

limiting similarity within niche space. 207 

 The simple framework for evaluating overlap of fundamental niches is applicable to 208 

diverse types of microbiomes. Given that our b-diversity-based index is standardized within 209 

the range from 0 to 1, next crucial step is to examine how threshold niche overlap values for 210 

anticipating microbial community collapse vary among different types of ecosystems. Such 211 

threshold values can vary among ecosystems depending on their basic levels of sustainable 212 

functional redundancy. In our laboratory microbiome, for example, the lack of environmental 213 

fluctuations (e.g., temperature fluctuations) and spatial structure (e.g., refuges for inferior 214 

species) might severely limited coexistence of functionally similar species (species with 215 

similar metabolic capabilities). In contrast, in human gut microbiomes, spatially 216 

complexity28,29 and fluctuating environmental conditions21 may reduce the risk of competitive 217 

exclusion, allowing higher levels of niche overlap within communities. Thus, extension of 218 

time-series metagenomic analyses to diverse types of ecosystems30–33 will enhance our 219 

knowledge of relationship among ecosystem properties, functional redundancy, and 220 

community stability.  221 

 In this study, we included whole metagenomic datasets of the examined microbes due to 222 

the lack of a priori insights into the metabolic pathways/processes playing essential roles in 223 

interspecific competition for resources. In this respect, our analysis is a preliminary 224 

conceptual step for evaluating potential overlap of fundamental niches at the community 225 

level. In future studies, analyses excluding housekeeping genes34,35 or those focusing on 226 

specific functional groups of genes (e.g., carbohydrate degrading genes36) may provide more 227 
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reliable inference of niche overlap. Because such selection of genes can critically influence 228 

threshold niche-overlap values for anticipating abrupt community compositional changes, 229 

setting a commonly applicable criterion of choosing target gene sets will help us perform 230 

comparative analyses across a wide range of microbial communities.  231 

 While genomic information provides an ultimate platform for inferring fundamental 232 

niches12–14, overlap of gene repertoires may not always result in competitive exclusion of 233 

species within communities. Even in a pair of species with similar gene repertoires, 234 

differentiation in gene expression patterns may occur to avoid overlap of resource-use 235 

patterns between species, allowing coexistence of the two species in an environment. Such 236 

differentiation of “realized niches10“ through phenotypic plasticity is potentially evaluated by 237 

transcriptomic or metabolomic analyses37,38. Consequently, integration of (meta)transcriptome 238 

and (meta)metabolome analyses39–41 with metagenome-based analyses will reorganize our 239 

understanding of deterministic processes in microbiome dynamics.  240 

 241 

  242 
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Methods 243 

Time-series data of experimental microbiomes. We used the experimental system of the 244 

microbiome time-series monitoring described in a previous study19. In the experiment, 245 

microbiomes differing in the magnitude of community compositional shifts were constructed 246 

across the six treatments defined by the combinations of two inoculum sources and three 247 

types of media. One of the source microbiomes derived from the soil collected from the A 248 

layer (0-10 cm in depth) in the research forest of Center for Ecological Research, Kyoto 249 

University, Kyoto, Japan (34.972 ºN; 135.958 ºE). The other source inoculum was prepared 250 

by collecting water from a pond (“Shoubuike”) near Center for Ecological Research (34.974 251 

ºN, 135.966 ºE). Each of the source inocula was introduced into oatmeal (Medium-A), 252 

oatmeal-peptone (Medium-B), or peptone (Medium-C) broth media with eight replicates. 253 

Thus, in total, 48 experimental microcosms (two source microbiomes ´ three media ´ eight 254 

replicates) were constructed in a deep-well plate (1000-μL-scale culture in each well). The 255 

plate was kept shaken at 1,000 rpm at 23 ºC. After five-day pre-incubation, 200 μL out of the 256 

1,000-μL culture medium was sampled from each well every 24 hours for 110 days. In each 257 

sampling event, 200 μL of fresh medium was added to each well so that the total culture 258 

volume was kept constant. In total, 5,280 samples (48 communities/day ´ 110 days) were 259 

collected through the time-series experiment. After DNA extraction, the samples were 260 

subjected to the amplicon sequencing analysis of the 16S rRNA region19. To quantify the 261 

speed and magnitude of community shifts through time, the “abruptness” index was 262 

calculated through the time-series of each replicate microcosm in each experimental 263 

treatment19. Specifically, an estimate of the abruptness index for time point t was obtained as 264 

the Bray-Curtis b-diversity between average community compositions from time points t – 4 265 

to t and those from t + 1 to t + 5 (i.e., dissimilarity between 5-day time-windows). The Bray-266 

Curtis b-diversity42 was calculated as 
∑ '(!")(!&'
'
!()

∑ *(!"+(!&,'
!()

, where 𝑋$% and 𝑋$- denoted relative 267 

abundance of microbial amplicon sequence variant (ASV) i in the compared time windows (j, 268 

from t – 4 to t; k, from t + 1 to t + 5). An abruptness score larger than 0.5 indicates that 269 

turnover of more than 50 % of community compositions occurred between the time-270 

windows19.  271 

  272 

Whole-genome shotgun metagenomics. Focusing on a replicate microcosm in which the 273 

most rapid and substantial turnover of community compositions was observed (replicate no. 5 274 
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of Water/Medium-A treatment; Supplementary Fig. 1), whole-genome shotgun metagenomics 275 

was conducted by targeting 13 samples (Day 1, 10, 20, 24, 30, 40, 50, 60, 70, 80, 90, 100, 276 

110). Each DNA sample was processed with Nextera XT DNA Library Preparation Kit 277 

(Illumina) and sequenced with the DNBSEQ-G400 (BGI; 200-bp paired-end sequencing). 278 

From the output data, sequencing adaptors were removed using Cutadapt43 2.5 and quality 279 

filtering was performed with Fastp44 0.21.0: ca. 10 Gb/sample was subjected to the analysis 280 

[in total, 159.96 Gb (1000.301 M reads)]. 281 

 The sequences of each sample were assembled with metaSPAdes45 3.15.2. Binning was 282 

then performed with MetaWRAP46 1.3.2, followed by quality assessing with CheckM47 1.1.3. 283 

Only the MAGs with > 80 % completeness and < 5 % contamination were used in the 284 

downstream analyses. The identity between MAGs were calculated using FastANI48 1.33 and 285 

MAGs with ³ 98 % identity were dereplicated through the time-series (Supplementary Table 286 

1). Read-coverage was then calculated with CoverM49 0.6.0, followed by taxonomic 287 

annotation was performed using GTDB-Tk50,51 1.6. Gene annotation was performed with 288 

Prokka26 1.14.6, yielding 6,999 annotated genes (Supplementary Data 1). To conduct 289 

additional functional annotation of genes, the orthology numbers of Kyoto Encyclopedia of 290 

Genomes (KEGG) were retrieved using GhostKOALA52 2.2. For respective microbial MAGs 291 

(bins), completeness of metabolic pathways was estimated with KEGG decoder53 1.3. Based 292 

on the matrix representing KEGG metabolic pathway/process profiles of respective MAGs 293 

(Supplementary Data 2), a heatmap showing pathway/process completeness was drawn 294 

(Supplementary Fig. 3). 295 

 296 

Background environmental conditions. For the 13 samples subjected to the shotgun 297 

metagenomic analysis, concentrations of ammonium (NH4+) and nitrate (NO3−) were 298 

measured to obtain supplementary information of background environmental conditions. 299 

Colorimetric methods with a modified indophenol reaction54,55 and the VCl3/Griess assay 300 

were applied for the measurements of NH4+ and NO3−, respectively. Samples were run in 301 

triplicates via a standard addition method to account for individual matrix effects56. 302 

 303 

Multivariate analysis of the metagenomic space. Based on the whole matrix representing 304 

the profiles of the 6,999 genes (Supplementary Data 1), the Jaccard metric of b-diversity was 305 
calculated for each pair of the 32 microbial MAGs (𝛽$%, where i and j represent MAGs). The 306 
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b-diversity estimates were then used to perform a principal coordinate analysis. Using the 307 

obtained principal coordinate scores, all the microbial MAGs detected through the time-series 308 

were plotted on a multivariate space consisting of the first three PCoA axes (PCoA 1, PCoA 2, 309 

and PCoA 3). At each time point, the MAGs detected with the shotgun metagenomic 310 

sequencing (defined as the MAGs whose relative abundance is greater than 0.1 %) was 311 

plotted on the three-dimensional space defined with the PCoA axes.  312 

 313 

Evaluation of niche overlap level. The community-scale magnitude of potential niche 314 

overlap among species was evaluated based on the whole-genome shogun sequencing dataset. 315 

Specifically, the niche overlap index was defined as: 316 

1 −
∑ "!"!∈$,"∈$

#$
, 317 

where D is the set of MAGs detected on a focal day (relative abundance > 0.1 %), 𝛽$% is the 318 

Jaccard metric of dissimilarity in gene compositions (defined in the previous section), and 𝑁& 319 

is the number of MAGs detected on the day.  320 

 The scores of the niche overlap index were shown on a two-dimensional space 321 

representing metabolic pathway/process compositions of the whole community at respective 322 

time points. At each time point, the gene repertoires of the detected MAGs (the MAGs whose 323 

relative abundance is greater than 0.1 %) were summed, yielding a matrix representing 13 324 

time points ´ 6,999 genes. The matrix was used to calculate dissimilarity (Jaccard b-diversity) 325 

in microbiome-scale gene repertoires among time points to perform a PCoA analysis. 326 

 To test whether a high level of fundamental-niche overlap is observed prior to drastic 327 

changes in microbial community structure, we examined relationship between the above niche 328 

overlap index and time-series shifts in community structure (Bray-Curtis b-diversity between 329 

present and next time points through the time-series of the shotgun metagenomic data). 330 

 331 

Data availability 332 

The 16S rRNA sequencing data reported in a previous study19 are available from the DNA 333 

Data Bank of Japan (DDBJ) with the accession number DRA013352, DRA013353, 334 

DRA013354, DRA013355, DRA013356, DRA013368 and DRA013379. The whole-genome 335 
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shotgun metagenomics data are available with the DDBJ accession number DRA013382. The 336 

microbial community data are deposited at our GitHub repository 337 

(https://github.com/hiroakif93/MTS_nicheSpace) [to be publicly available after acceptance of 338 

the paper]. The matrices of the shotgun metagenomic data are available as Supplementary 339 

Data 1 and 2.  340 

 341 

Code availability 342 

All the scripts used to analyze the data are available at the GitHub repository 343 

(https://github.com/hiroakif93/MTS_nicheSpace) [to be publicly available after acceptance of 344 

the paper].  345 
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 492 

Fig. 1 | Community and ecosystem dynamics. a, Time-series data of community structure. 493 

For the replicate microcosm that showed the most abrupt community compositional changes 494 

through the 110-day microbiome experiment19 (Supplementary Fig. 1), family-level 495 

taxonomic compositions inferred with 16S rRNA sequencing are shown. The blue line 496 

represents the speed and magnitude of community compositional changes around each time 497 

point (“abruptness” index19; see Methods). The red line indicates a-diversity (Shannon’s H’) 498 

of microbial ASVs19. Note that a value larger than 0.5 represents turnover of more than 50 % 499 

of microbial ASV compositions. See Supplementary Figure 1 for color profiles of bacterial 500 

families. Reproduced from the data of a previous study19. b, Taxonomic compositions inferred 501 

with whole-genome shotgun sequencing. At each of the 13 time points through the time-series 502 

of the target microcosm, the relative abundance of each MAG was estimated based on the 503 

normalized read coverage value (reads per kilobase of genome per million reads mapped). c, 504 

Genome size and GC nucleotide content of the MAGs detected in the target microcosm. See 505 

panel b for colors and symbols.  506 
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 508 

Fig. 2 | Metabolic pathway/process profiles of the MAGs. KEGG metabolic 509 

pathways/profiles of the reconstructed bacterial genomes (MAGs) are shown. The detection 510 

(relative abundance > 0.1 %) of each microbial MAG on each day within the whole-genome 511 

shotgun data is indicated in the panel below. Only the microbial MAGs with > 80 % 512 

completeness and < 5 % contamination were included (Supplementary Table 1). The five 513 

MAGs that co-occurred from Day 40 to 60 and metabolic pathways/processes mentioned in 514 

the main text are highlighted. Only the metabolic pathways/processes with highly 515 

heterogeneous patterns across microbial MAGs are shown. See Supplementary Figure 3 for 516 
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detailed profiles of the metabolic pathways/processes. 517 
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 519 

Fig. 3 | Metagenomic niche space. a, Distributions of MAGs within metagenomic niche 520 

space. Based on dissimilarity in gene repertoires, microbial MAGs that appeared in the time-521 

series of the target microcosm were plotted on the three-dimensional space defined by the 522 

principal coordinate analysis (PCoA) of 6,999 genes. b, Changes in the distributions of 523 

microbial MAGs within niche space. At each time point, detected MAGs (relative abundance 524 

> 0.1 %) were plotted on the space defined in the multivariate analysis in the in the panel a.  525 

  526 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.17.524457doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.17.524457
http://creativecommons.org/licenses/by/4.0/


 

 23 

 527 

Fig. 4 | Dynamics of niche-overlap level. a, Community-level profiles of metabolic 528 

pathways/processes and niche overlap index. The niche overlap index was defined as 1 − �̅�, 529 

where �̅� was mean Jaccard dissimilarity (b-diversity) of gene compositions between pairs of 530 

the microbial MAGs detected at a target time point. The scores of the niche overlap index 531 

were shown on a PCoA surface representing community-level compositions of genes. On the 532 

PCoA surface, time points are distributed based on the sum of the gene repertoires of the 533 

detected MAGs. b, Dynamics of niche-overlap levels. Niche overlap scores are shown across 534 

the time-series.  535 
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 537 

Fig. 5 | Niche overlap level and community compositional shifts. The magnitude of 538 

community compositional changes observed in the microbiome was regressed on niche 539 

overlap index obtained based on the whole-genome shotgun analysis. Niche overlap index at 540 

each time point and time-series shifts in community structure (Bray-Curtis b-diversity 541 

between present and next time points through the time-series of the shotgun metagenomic 542 

data) are shown along horizontal and vertical axes, respectively. The regression line is shown 543 

with 95 % confidence intervals.  544 
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Supplementary Figure Captions 546 

 547 

Supplementary Fig. 1 | Dynamics of family-level community structure. The dynamics of 548 

microbial family-level compositions were visualized based on the 16S rRNA sequencing data 549 

of the previous study19. The replicate microcosm (replicate no. 5 in Water/Medium-A 550 

treatment), which is subjected to the whole-genome shotgun sequencing analysis, is 551 

highlighted. The blue line represents the speed and magnitude of community compositional 552 

changes around each time point (“abruptness” index19; see Methods). The red line indicates 553 

a-diversity (Shannon’s H’) of microbial ASVs19. Reproduced from the data of a previous 554 

study19. 555 

 556 

Supplementary Fig. 2 | Overview of the whole-genome shotgun sequencing data. a, 557 

Comparison of relative abundance of bacterial taxa (families) between 16S rRNA amplicon 558 

sequencing19 (reproduced from the previous study19; top) and whole-genome shotgun 559 

sequencing (this study; bottom). b, Correlation between the family-level relative abundance 560 

of 16S rRNA and whole-genome shotgun sequencing data (Spearman’s correlation; r = 0.667, 561 

df = 794, P < 0.05). Each point represents each family at each time point. c, Background 562 

chemical properties. Changes in NO3− and NH4+ concentrations in the ecosystem are shown 563 

for the time points with whole-genome shotgun metagenomic data.  564 

 565 

Supplementary Fig. 3 | Detailed information of the metabolic pathway/process profiles 566 

of the MAGs. The KEGG metabolic pathways/processes of the reconstructed bacterial 567 

genomes (MAGs) are shown. The detection (relative abundance > 0.1 %) of each microbial 568 

MAG on each day within the whole-genome shotgun data is indicated in the panel below. 569 

Only the microbial MAGs with > 80 % completeness and < 5 % contamination were included 570 

(Supplementary Table 1). The five MAGs that co-occurred from Day 40 to 60 and metabolic 571 

pathways/profiles mentioned in the main text are highlighted. The detailed definition of the 572 

KEGG metabolic pathways/processes is available at 573 

https://github.com/bjtully/BioData/blob/master/KEGGDecoder/KOALA_definitions.txt. 574 
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