










Figure 6: Classification of cells from clinical samples to disease informative (non-informative). (a) UMAP

visualizations of all cells in the SiFTed data colored by association to disease informative (non-informative)

clusters. Leiden clusters in the SiFTed data were classified according to cluster_purity score (see Methods).

(b) GSEA of differentially expressed genes in the disease informative cluster (compared to non-informative,

using top 50 genes). The size of the circles indicates the number of genes. Color indicates the magnitude of

. (c) Disease informative bar plot of the proportion of cell populations, separated into disease

informative, disease non-informative, and healthy (according to the assignment shown in (a)). Cell types are

sorted according to the fraction of disease cells.

The classification of disease informative/non-informative clusters provides a refinement to the cell type

proportion analysis in the disease vs. healthy control (Figure 6(c)). Importantly, for a given cell type the

fraction of inferred informative cells is not dictated by its prevalence in clinical samples. For example,

was ranked as the third most prevalent cell type in clinical samples (96% of the cells in

disease state), yet, only 15% of cells were associated with a disease informative cluster.
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Furthermore, identifying disease informative and non-informative clusters exposes populations of interest

and allows a focused analysis of the informative cells. For example, while increased platelet activation and

coagulation abnormalities were previously reported in COVID-19 patients27,37, we identified two distinct

subpopulations of : informative and non-informative for disease state (Figure 6(a)). A GSEA

analysis based on differential gene expression between the disease informative and non-informative

clusters identified pathways associated with coagulation, hemostasis, and antimicrobial humoral response

in the disease informative cells, as well as increased expression of surface proteins indicative of platelet

activation in the disease informative cells (Supplementary Figure 6).

Discussion

We presented SiFT, a method aiming at discovering hidden cellular processes by filtering out a known or

reconstructed signal from single-cell gene expression data. The SiFT procedure starts by defining a cell-cell

similarity kernel, capturing similarities with respect to the signal to be filtered. This kernel is then used to

obtain a projection of gene expression onto the signal, which is then removed from the original expression.

We have shown that filtering signals by SiFT can expose the underlying, biologically meaningful structure in

the data over a wide range of tasks. First, we showcased its ability to successfully filter unwanted sources of

variation caused by nuisance signals in the data while preserving biological signals of interest. When

focusing on removing cell cycle effects, a major source of bias in single-cell data, in a semi-simulated setting

we showed that SiFT outperforms state-of-the-art methods for the task. A substantial advantage of SiFT is

its ability to use existing prior knowledge to reveal hidden biological attributes. We use the vast prior

knowledge regarding spatial zonation in hepatocytes to uncover the temporal trajectory in the data. At last,

we present SiFT's applicability to the case-control setting. In the context of COVID-19, SiFT exposes

disease-related signals and single-cell dynamics by filtering a corresponding healthy trajectory obtained by

mapping to reference healthy samples.

In contrast to various latent space representation methods, SiFT performs the correction at the level of

individual genes. In turn, similarly to other data correction methods, it modifies the gene expression so that

data is no longer “properly” log-transformed, a property that is expected in certain downstream analysis

tasks. With that, this correction allows for obtaining biologically relevant insights on the gene level.

Here we exemplified the diverse range of applications of SiFT and showcased the potential that filtering has

for understanding the different biological signals encoded in single-cell data. We further envision that with

the ongoing increase in single-cell analysis tools along with the advance in multi-modal assays, SiFT will

serve as a basic analysis tool revealing hidden, more complex structures in the data. We have made SiFT

available as an open-source python package along with documentation and tutorials and ensured it can

efficiently scale to the ever-increasing sizes of single-cell datasets.
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Methods

The SiFT algorithm

The aim of SiFT is to expose hidden biological signals in an input count matrix. Given an expression matrix

along with a mapping of the genes to a specific signal, SiFT computes the cell-cell similarity kernel based on

this mapping, the projection of the data onto the signal, and the filtered expression matrix.

The input to SiFT includes a cell ( ) by features ( ) matrix and a mapping of the cells, . For

best performance, we recommend that the matrix will contain pre-processed normalized gene

expression. In addition, SiFT can also be applied to any other representation of the cells, e.g. latent space or

a subset of the genes.

The mapping, , is assumed to capture a specific biological attribute or representation of the cells and can

be of any type, e.g. stochastic or deterministic, continuous or discrete, uni- or multi- variate. The diversity of

types of mappings that are supported includes, for example, donor age (deterministic, discrete, univariate),

pseudotime reconstruction (deterministic, continuous, univariate), and a latent space representation of the

data (PCA, scVI, etc.) (deterministic, discrete, multivariate). Alternatively, a set of process-specific marker

genes (e.g. cell cycle marker genes), can be considered as a type of mapping and used to define distances

between the cells. The type of mapping provided dictates the cell-cell similarity kernel that can be used.

The SiFT procedure comprises three main steps:

1. Compute cell-cell similarity kernel ( ): In the first step, SiFT computes a cell-cell similarity kernel,

. The kernel is a row stochastic matrix, e.g. rows sum to one hence defining a

proper distribution. The details of the kernel construction depend on the specific kernel choice (see

below). In all cases the user can choose the subset of source and target cells, that is the cells for

which the kernel is computed (source) and the cells the similarity is evaluated with respect to

(target). The user can also provide a pre-computed kernel.

2. Project the data ( ): obtain a projection of the data on the supervised signal, ,

,

the stochasticity of guarantees that is of the same order of magnitude as .

3. Filter the data (SiFTer, ): deduce the projection, from the original count matrix to obtain a

filtered expression, ,

.

The kernels

The kernel, , is supposed to capture the cell-cell similarity with respect to the signal we wish to SiFT. is

a stochastic matrix such that the th row is a probability distribution denoting the similarity of cell to all of𝑖 𝑖
the observed cells. Broadly speaking, the kernels can be divided into three sub-classes, mapping,

k-nearest-neighbor (knn), and distance kernel, differing in the type of prior knowledge or assumptions they

require. Beyond the implemented kernels the user can provide a pre-computed kernel.
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All kernels can be refined by restricting the source and/or target space. The source space relates to the cells

whose expression we are interested in filtering. The target space is the cells over which similarity is

assessed. This is done by specifying the sub-group of cells (e.g. only healthy cells in a disease-control

experiment) of interest.

Mapping kernel

The basis of the mapping kernels is a stochastic or deterministic association of the cells ( ) to a

low-dimensional domain. The mapping, can be of any type, e.g. stochastic or deterministic, continuous

or discrete, uni- or multi- variate. In the case of a continuous variable a binning value is required,

denoting the number of bins used to construct a binned representation. The mapping is represented by

. Given we construct two sets of probability distributions:

1. : the probability of a label given a cell , normalizing across possible labels.

2. : the probability of observing a cell given a label , normalizing across cells.

The cell-cell similarity kernel, , is defined as the multiplication between the two

probabilities, and , summing out the dimension of the embedded signal, . Thus, each row in

induces a normalized distribution, , defined for cell with respect to all cells in the dataset

.

K-nearest-neighbor kernel

The mapping is used to construct a neighborhood graph over the cells by finding the

nearest neighbors for each cell. Following Scanpy’s18 defaults, the neighbor sets are merged and processed

via the UMAP algorithm20. We normalize (across the rows) the resulting weighted adjacency matrix of the

neighborhood graph of the cells (termed the connectivities) to obtain the final kernel object, .

Distance kernel

A distance kernel requires that the provided mapping, , which defines a joint space

representation of the cells, will be equipped with a distance metric, (e.g. the Euclidean

distance). With this, we define the cell-cell similarity kernel as

.

Here is a smoothing parameter that controls the effective radii of cells (distances) that have a

non-negligible influence and is a normalization constant, defined for each row. If is chosen to be

the Euclidean distance, the above denotes the radial basis function (RBF) kernel, a popular kernel function

used in various kernelized learning algorithms which can be interpreted as a similarity measure 38. Similarly,

if is chosen to be the Manhattan distance, then is the Laplacian kernel.

The stochastic interpretation of the SiFT algorithm and output

Looking into the mathematical derivation of the SiFT procedure we can expose natural stochastic properties

which provide a better understanding of the SiFTed output. Recall that the input mapping, , is used to
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define a row stochastic kernel, . That is the th row of is a probability

distribution for cell with respect to remaining cells, we denote this distribution as .

Now, an entry in the projected data (for cell and gene in , step 2 in the SiFT

procedure), can be read as

.

With this, for each cell, the projection can be understood as the mean expression of genes

according to the cell-cell similarity distribution. At the final step is deduced from the expression, so we

obtain

.

Thus, the filtered expression stands for the deviation of the cells’ expression with respect to the expected

value in their neighboring cells. This implies that the resulting matrix can contain negative values, which

translate to genes (or features) that are below the average expression. Generally speaking, we are only

interested in the relations and distances between the cells in the new, filtered space, and not the absolute

counts, hence the existence of negative values do not pose a problem. With that, Realizing that certain

analysis methods expect as input a positive count matrix, we suggest correcting the filtered expression

matrix by adding a pseudo count following the global minima of the data (so that the corrected filtered

minima would be zero), ensuring positivity and preserving the topology of the data.

Runtime considerations

SiFT uses pyKeops, a python package allowing for Kernel Operations on the GPU without memory

overflows39 as a backend for matrix computations. The implementation supports pyKeops pytorch and

numpy backends and hence does not enforce pytorch dependency. As we show in Figure 2(c), this implies

that SiFT can scale to large datasets without harming runtime performance. Furthermore, for datasets too

large to be handled by a single GPU operation, instead of falling back to CPU computation we implement an

automatic batching procedure, which retains speed performance.

Datasets

Drosophila wing disc myoblast cells

We obtained the dataset of a temporal cell atlas of the Drosophila wing disc from two developmental time

points collected by17 and using the processed data published by9, available at myoblasts.h5ad. The data

contains two biological replicates were obtained at each time point that, after filtering for low-quality cells,

generated data from 6922 and 7091 cells in the 96 hr samples and 7453 and 5550 cells in the 120 hr

samples.

In order to quantitatively assess our performance in removing unwanted variation with respect to these

attributes, we turned to classify the cells into sex and cell cycle phase categories. The processed dataset was

lacking sex and cell cycle labels however there are known marker genes for both. For sex labels, we follow

the procedure suggested in the original study in which the data was presented17. The classification relies on

the expression levels of the dosage compensation complex genes lncRNA:roX1 and lncRNA:roX2. For both

genes, we computed the density over the log-normalized counts and identified the first local minima as a
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threshold (Figure 2, Supplementary Figure 1). Cells that were above the threshold for either lncRNA:roX1 or

lncRNA:roX2 were classified as male; otherwise, they were classified as female.

Next, to obtain cell cycle phase categories we applied Scanpy’s “scanpy.tl.score_genes_cell_cycle” based on

the expression of known Drosophila cell-cycle genes from Tinyatlas at Github40,41 (Figure 2).

Methods application

To apply SiFT we defined a knn kernel using the set of cell cycle and sex marker genes (see Supplementary

Table 1). For the regress_out setting, Scanpy’s “scanpy.pp.regress_out” function was used by setting all

marker genes as regression keys. For scVI we followed the reproducibility notebook, scvi_covariates.ipynb

using only the set of cell cycle and sex marker genes as continuous covariates.

scVI corrected expression

scVI provides the user with the option to impute normalized corrected counts through

“get_normalized_expression()”. We use this function followed by “sc.pp.log1p()” to obtain the corrected

counts used for HVG evaluation. It is important to note that scVI is not designed for this task precisely,

hence, we evaluated its performance on the latent embedding when possible9.

Quantitative evaluation

To evaluate the removal of cell cycle and sex signals we use the graph iLISI score as defined in42, using the

corrected expression for SiFT and regress_out and over the latent embedding for scVI. We evaluated the

graph iLISI score independently with respect to the “cell cycle phase label” and the combined ”cell cycle

phase and sex label”.

To assess the perseverance of the biological signal of interest we use the set of genes of interest suggested

by9 which is based on marker genes presented in17,19 (see Supplementary Table 1). Here we look at the

intersection of this set with the set of highly variable genes (HVGs). HVGs identifies using Scanpy’s

“scanpy.pp.highly_variable_genes” with n_top_genes=500 and flavor=”cell_ranger”. Since this can not be

done over the latent space we resort to using the imputed gene expression provided by scVI.

Batch integration

For additional evaluation regarding full integration performance following SiFT and regress_out, we applied

batch integration methods. We used bbknn7 and Harmony8. Both were run using Scanpy’s functions with

default parameters passing the batch key for integration. For comparison, we use scVI with the batch label

as a batch key along with the continuous covariates (scVI (covariates & batch)). Here, when computing the

graph iLISI score, the latent embedding was used for all methods as neither bbknn nor Harmony provides a

correction to the gene expression.

Heart Cell Atlas dataset

the Heart Cell Atlas dataset was downloaded from https://www.heartcellatlas.org and contains a total of

486,134 cells.

Benchmarks data

For the runtime analysis we followed the procedure suggested by Gayoso et al.9. Using the Heart Cell Atlas

dataset which contains 486,134 cells, we created 8 datasets of increasing size by subsampling 5,000, 10,000,

20,000, 40,000, 80,000, 160,000, 320,000, and 486,134 cells. For each dataset the top 4,000 genes were

selected via “scanpy.pp.highly_variable_genes”, with parameter flavor=“seurat_v3”. Next, we generated 8
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random covariates by sampling from a standard normal distribution and used them along with the

percent_mito and percent_ribo fields as continuous covariates, defining a total of 10 continuous covariates.

Methods runtime analysis

Performed on NVIDIA RTX A5000 GPU. For SiFT runtime, we report the runtime of initialization of the rbf

kernel and running the filtering procedure. For scVI runtime, we report the runtime of the train function

with the parameters used in9:

early_stopping=True, early_stopping_patience=45, max_epochs=10000, batch_size=1024,

limit_train_batches=20, train_size=0.9 if n_cells < 200000 and train_size=1-(20000/n_cells) otherwise

For the regress_out baseline, we tracked the runtime of the regress_out function for the above continuous

covariates.

Virtual tumor data

The simulated dataset was downloaded from Cyclum’s repository

(https://github.com/KChen-lab/Cyclum/tree/master/old-version/data/mESC). Details regarding the

simulations of the virtual tumor data can be found in the original publication10. This data contains a total of

279 cells, 168 in belong to the tumor “intact” and 111 to the “perturbed”. Cell’s are given with ground truth

labels regarding the cell cycle phase.

The kernels

We consider different mappings representing the cell cycle signal. In total six different SiFT kernels are used

for comparison:

● ground truth labels: A mapping kernel where the discrete cell labels are given by the ground truth

cell cycle phase labels.

● cell cycle genes: A knn kernel where cell neighbors are computed based on the expression of the set

of cell cycle genes reported in43.

● Cyclum pseudotime: we use Cyclum’s pseudotime mapping of the cells in order to define three

kernels:

○ Cyclum, binned (n=12): A mapping kernel where the discrete cell labels are obtained by

binning the pseudotime to 12 bins.

○ Cyclum, binned (n=3): Same as above with three bins.

○ Cyclum, distance: A distance kernel where distances are computed over the mapping of the

cells to the unit circle using the pseudotime,

.

● Seurat: A mapping kernel where the discrete cell labels are given by Seurat’s cell cycle phase

prediction.

Cell cycle removal methods

● Cyclum: we followed the steps in the provided example by the authors,

example_mESC_simulated.ipynb. As the example is provided using an older version of Cyclum, we

modified the parameters in the new implementation to correspond to the reported setup run in10.

● Seurat: we followed the steps suggested in the vignette cell_cycle_vignette.html.

● ccRemover: we used the ccRemover method as in the tutorial ccRemover_tutorial.html.
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Evaluation metrics

Evaluation metrics and their definitions were taken from23. We used the complementary python package

scib (https://scib.readthedocs.io) which provides an implementation of all metrics. For the “cell cycle

removal” score we reported the mean of ASW_label/batch, PCR_batch, cell_cycle_conservation, and

iLISI_graph. For the “bio conservation” score we reported the mean of NMI_cluster/label, ARI_cluster/label,

ASW_label, isolated_label_F1, isolated_label_silhouette, and cLISI_graph. All methods were run with

default parameters.

Mammalian liver dataset

ScRNA-seq data was downloaded from GEO, accession code GSE145197. For the data pre-processing

procedure we followed the pipeline described in the original publication24 and given in the GitHub

repository https://github.com/naef-lab/Circadian-zonation. After pre-processing the data contained 11,491

cells from 3 biological repetitions for 4 different time points (time point 0: 3563 cells, time point 6: 2791

cells, time point 12: 2919  cells, time point 18: 2218  cells).

novoSpaRc for spatial mapping

We used novoSpaRc2,3 to recover the spatial signal in the data, and obtain a probabilistic mapping of cells to

the eight liver zonation layers. We performed mapping using 15 spatial marker genes (reported in24) and ran

the novoSpaRc algorithm with and . We used the probabilistic mapping to apply SiFT

(Supplementary Figure 5).

COVID-19

The data object, as an h5ad file, was downloaded from https://covid19cellatlas.org/,

haniffa21.processed.h5ad. Cell type labels and metadata were based on the fields reported in the given file.

We considered COVID-19 samples ( ) and healthy controls ( ).

Distance kernel construction

To filter the healthy trajectory we define a knn kernel that captures the similarity of the

disease cells to the reference healthy cells. To evaluate the similarity (distances) between the disease and

healthy cells we consider distances in the harmonized PCA space (reported by27).

cluster_purity score

We define a cluster purity score as a measure to distinguish between indicative and non-indicative clusters

with respect to a given label (here we consider the cell type). Formally, for a given cluster of size , we

find the most frequent label, , with cells. Now, we say that a cluster is indicative if

,

for a given threshold value . This measure quantifies the homogeneity of the cluster.
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Data availability

The datasets analyzed in the current study are available at

● Drosophila wing development:

https://figshare.com/articles/dataset/scvi-tools-reproducibility_processed_data/14374574/1?file=2

7458846

● Heart Cell Atlas: https://cellgeni.cog.sanger.ac.uk/heartcellatlas/data/global_raw.h5ad

● Virtual tumor: https://github.com/KChen-lab/Cyclum/tree/master/old-version/data/mESC

● Mammalian liver: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145197

● COVID-19: https://covid19.cog.sanger.ac.uk/submissions/release1/haniffa21.processed.h5ad

Code availability

Software is available at https://github.com/nitzanlab/sift-sc and documentation at

https://sift-sc.readthedocs.io. The code to reproduce the results is available at

https://github.com/nitzanlab/sift-sc-reproducibility.
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