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Abstract

Elucidating underlying biological processes in single-cell data is an ongoing challenge and the

number of methods that recapitulate dominant signals in such data has increased significantly.

However, cellular populations encode multiple biological attributes, related to their spatial

configuration, temporal trajectories, cell-cell interactions, and responses to environmental cues,

which may be overshadowed by the dominant signal and thus much harder to recover. To

approach this task, we developed SiFT (SIgnal FilTering), a method for filtering biological signals in

single-cell data, thus uncovering underlying processes of interest. Utilizing existing prior

knowledge and reconstruction tools for a specific biological signal, such as spatial structure, SiFT

filters the signal and uncovers additional biological attributes. SiFT is applicable to a wide range of

tasks, from the removal of unwanted variation in the data as a pre-processing step to revealing

hidden biological structures. Applied for pre-processing, SiFT outperforms state-of-the-art

methods for the removal of nuisance signals and cell cycle effects. To recover underlying biological

structure, we use existing prior knowledge regarding liver zonation to filter the spatial signal from

single-cell liver data thereby enhancing the temporal circadian signal the cells are encoding. Lastly,

we showcase the applicability of SiFT in the case-control setting for studying COVID-19 disease.

Filtering the healthy signal, based on reference samples from healthy donors, exposes

disease-related dynamics in COVID-19 data and highlights disease informative cells and their

underlying disease response pathways.

Introduction

Cells encode information in their gene expression profiles about different facets of their identity, such as

their spatial location within tissues, cell cycle phase, and disease stage. Recent years have seen a surge in

computational methods for the reconstruction of such cellular facets from single-cell RNA-sequencing

(scRNA-seq) data1. While these reconstruction methods were proven successful for the recovery of diverse

signals, including spatial2–4 and temporal5,6 signals, the vast majority of these methods focus on

reconstructing a single signal in the data, relying either on its dominance or based on sufficient prior

knowledge (such as known marker genes). However, since cells encode multiple signals about their intrinsic

state and extrinsic environment, focusing on a single signal (measured or recovered) is insufficient and may

miss key cellular attributes. For example, while the cells’ spatial organization may be the dominant signal in

a single-cell dataset, it may overshadow the temporal regulation of interest. In such a scenario, information
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about the reconstructed (e.g. spatial) signal can be utilized to filter it from the data and reveal further

complex hidden attributes. Another example involves case-control comparisons, where information about

healthy controls can be filtered from cells sampled from patients along disease progression or along

response to treatment to uncover the subpopulation of cells affected by the disease and/or treatment and

characterize their response.

The signal filtering approach was mainly explored for removing unwanted sources of variation as a

pre-processing step. For example, multiple computational methods have been proposed for data integration

and the removal of batch effects (e.g. bbknn7, Harmony8, and scVI9), or specifically for removing the cell

cycle signal, a major source of bias in single-cell data10–13. This bias introduces large within-cell-type gene

expression heterogeneity that can obscure the differences between cell types, which can in turn resurface

once the cell cycle signal is filtered out. Yet, these methods are task-specific; cell cycle filtering approaches

tend to account for known informative genes12,13 or take advantage of the signal’s cyclic structure10, while

data integration methods (apart from scVI) typically focus on (a single) categorical factor to encode the

different groups (batches) in the data. In addition, most integration methods, including scVI, provide a

correction at the level of a joint latent representation of the cells, and not for the original count matrix or

for individual genes, thus limiting the applicability of existing downstream analysis tools and requiring the

development of case-specific methods14. Hence, altogether, the above methods cannot be used to filter out

a generic biological signal from single-cell data.

To this end, Satija et al.15 suggested removing technical and cell cycle effects using a linear regression model.

In this setting, independent linear models are fitted to predict gene expression with respect to a set of

predefined variables. Then, for each variable independently, the fitted linear model is regressed from each

gene. However, this strategy is restricted to the fit of the linear model and does not allow for additional user

inputs to adjust the removal process to ensure that desired biological components are not removed from

the data.

Here we introduce SiFT (Signal Filtering), a diverse and robust framework for filtering signals induced by

different biological processes in single-cell data, thus uncovering underlying processes of interest. To do so,

we compute a probabilistic cell-cell similarity kernel, which captures the similarity between cells according

to the biological signal we wish to filter. Using this kernel, we obtain a projection of the cells onto the signal

in gene expression space. By deducting this projection from the original data, we filter the signal-related

information and uncover additional, hidden cellular attributes.

We begin by demonstrating that SiFT can successfully and efficiently remove sources of unwanted variation

in the data while preserving biological attributes. This is showcased by applying SiFT to filter nuisance

signals in Drosophila wing disc development single-cell data, and removing cell cycle effects from a

semi-synthetic single-cell dataset mimicking the existence of two sub-clones. SiFT outperforms

state-of-the-art methods in all cases. Next, we exemplify SiFT’s ability to expose and enhance underlying

biological signals. To do so we use prior knowledge regarding liver zonation to filter the spatial signal from

single-cell liver data, thereby enhancing the temporal circadian signal encoded by the cells. Finally, we

demonstrate the applicability of SiFT in the case-control setting. We apply SiFT to COVID-19 dataset, using

healthy samples as a reference we filter the joint healthy signal and expose disease-related dynamics.

SiFT is available as a scalable, user-friendly open-source software package

https://github.com/nitzanlab/sift-sc, along with documentation and tutorials at

https://sift-sc.readthedocs.io.
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Results

Revealing hidden biological signals using SiFT

The SiFT framework leverages known relationships between cells to expose additional, underlying

structures in single-cell data (Figure 1). Consider the scenario where each cell has two attributes, which we

will term here shape and color. Now, assume that we have experimentally measured, or we can

computationally recover the color identity (e.g. by coupling known marker genes to a clustering of the data,

Figure 1(b)). Yet, the biological signal which remains meaningful to uncover is the shape of the cell, for

which no prior knowledge exists. By using SiFT to remove the color signal from the data, we will be able to

uncover the shape signal.

SiFT takes as input both an expression count matrix, as well as knowledge about a specific signal encoded

by attributes of the cells. The latter can be provided as a mapping of the cells using deterministic labels (e.g.

cell cycle stage or spatial coordinates), a set of marker genes, pseudotime ordering, or a latent space

representation of the cells (see Methods, Figure 1(a)). These attributes are used to compute a cell-cell

similarity kernel with respect to the encoded signal. Alternatively, the mapping to the signal can be based

on a population of reference cells (e.g. control cells in a case-control setting). Then, the cell-cell similarity

kernel is computed only with respect to the reference cells to capture the reference (e.g. control) signal.

In general, the kernel captures distances between cells in the signal space, thus encoding the cells’ similarity

with respect to the signal to be filtered. We define three main variants of cell-cell similarity kernels: a

mapping, k-nearest-neighbor (knn), and a distance kernel. The choice of the kernel type relies on the

structure and knowledge regarding the existing signal attribute, where the kernels mainly differ in the type

of prior knowledge they require over the attributes (for further discussion see Methods). The mapping

kernel relies on a stochastic or deterministic mapping of the cells to a given domain. Such mapping results in

cell labels, including cell-type labels or temporal labels generated by binning of a pseudotime trajectory. The

knn and distance kernels rely on a joint space representation of the cells over which a corresponding

distance metric can be defined. Such spaces can be generated, for example, by restricting the original

single-cell data to a set of marker genes, or a latent space representation of the cells based on single-cell

variational inference (scVI)9,16. Alternatively, the user can supply a pre-computed cell-cell similarity kernel

that captures information they aim to filter.

Given a cell-cell similarity kernel, we obtain a projection of the expression count matrix onto the signal we

seek to filter using matrix multiplication (see Methods). With this construction, the projection can be

interpreted as the portion of the expression associated with the known signal. Hence, we can deduce it

from the original count matrix, and obtain a filtered representation of the data (Figure 1(d)). We can now

utilize various analysis tools to study the filtered data and recover the underlying biological signals it

encodes (Figure 1(e)).

The filtering of the kernel's projection over the gene expression removes effects induced by the original

signal. Consequently, the remaining, filtered gene expression stands for the deviation of each cell’s gene

expression from the expected, or typical expression in its neighboring cells. This deviation captures the

attributes associated with the additional biological signals in the data. Thereby SiFT provides a corrected

count matrix (which can contain negative values or be corrected by a pseudo count, see Methods) encoding

the contribution from underlying processes, making it easier to study them.
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Figure 1: Overview of the SiFT algorithm. (a) SiFT takes as input a count matrix and a pre-computed

mapping of the cells. The mapping can be either continuous or discrete and either univariate or

multidimensional. (b) Standard analysis recovers dominant signals in the data. A comparative abundance

test is performed between case and control; without correcting for case-responsive cells, cells of type A are

found to be more prevalent in disease state and hence will typically be classified as disease informative

(c)-(d) The SiFT pipeline. (c) A cell-cell similarity kernel is computed based on the given signal mapping. (d)

Filtering is performed by projecting the kernel onto the count matrix and deducing the projection from the

original count matrix. (e) After filtering, the hidden structure is exposed and easily recovered in

downstream analysis. SiFT allows labeling according to hidden signals (left), enhances underlying gene
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trends (middle), and uses a reference control population to identify cells that are responsive for the case,

correcting the naive abundance test and identifying that cells of type B contain a larger population of cells

informative of disease state (right).

SIFT efficiently removes unwanted sources of variation

Experimental data often contains unwanted sources of variation which obscure the biological signal of

interest. These can be discrete (e.g. sex label) or continuous (e.g cell cycle phase) signals. A desired

pre-processing step is to remove these contributions. An optimal removal procedure is one that efficiently

removes the unwanted signal while preserving the biological attributes, is generic in the sense that it can be

adapted to diverse settings, and can easily be included in the analysis pipeline, in terms of implementation

and scalability with respect to dataset size. We turn to show that SiFT meets all of these criteria.

We start with a single-cell transcriptomics dataset of the Drosophila wing disc which was shown to suffer

from unwanted sources of variation due to cell cycle and sex signals17. The original embedding of the cells

reflects the bias induced by both the cell cycle and sex signals within each batch (Figure 2(a)). Using SiFT we

can filter these signals and uncover the underlying biologically meaningful variability. As input to SiFT, we

use the measured gene expression and a set of marker genes that captures the cell cycle and sex-related

variation (see Supplementary table 1). We define a knn kernel using the marker genes, meaning that we

identified the neighborhood of the cells using a similarity measure based on cell cycle and sex genes

(Supplementary Figure 1). Then, this kernel is used to filter out the unwanted signals.

The SiFT-corrected embedding of the cells shows a homogeneous representation with respect to the sex

and cell cycle phase signals, which we aimed to filter (Figure 2(a)). That is, in contrast to the original data,

labels are not visibly separable in the latent space representation (Figure 2(a)), and the marker genes'

spatial gradients are removed (Supplementary Figure 2). This qualitative result is supported quantitatively

by the graph iLISI score with respect to both cell cycle labels as well as cell cycle and sex labels (see

Methods), which shows that SiFT can successfully remove unwanted variation in single-cell data (Figure

2(b)).

Furthermore, SiFT outperforms available baselines in this task, including Scanpy’s regress out function18 (a

python implementation of the linear regression suggested by Satija et al.15) (regress_out) and scVI

conditioned on the expression of the set of nuisance genes9 (scVI). This can be seen by qualitatively

comparing the labels’ separation in the latent space representation (Figure 2(a)), and quantitatively with

respect to the graph iLISI score (Figure 2(b)).

Importantly, while filtering unwanted variance in the data SIFT preserves biological variation that was not

targeted for filtering, as 50% of the genes of interest (including genes reported in the original analysis of this

data17 and in19, see Supplementary table 1) present in the corrected highly variable gene set (see Methods,

Figure 2(b)), while regress_out captures only 20% (see Methods). Such preservation of biological variation is

visualized for Neurotactin (Nrt) and midline (mid), downstream Hedgehog pathway targets in the adult

muscle precursors, and patched (ptc), a receptor of the Hedgehog ligand (Figure 2(a), Supplementary Figure

2). When coupled to standard batch integration methods (e.g. Harmony8 or bbknn7), SiFT attains better

performance in the complete integration task when compared to regress_out followed by Harmony or

bbknn, or scVI applied with batch correction with continuous covariates (Supplementary Figure 3).

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.18.524512doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524512
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: SiFT is optimal for removing unwanted variation from single-cell data. (a)-(b) transcriptomics of

the Drosophila wing disc development (data: Everetts et al.17). (a) UMAP embeddings20 following different

data correction procedures (rows) and colored by different covariates of unwanted sources of variation

(columns). Rows (top to bottom) show uncorrected data (Original data), SiFT filtering using knn kernel (SiFT),

Scanpy’s “scanpy.pp.regress_out()” (regress_out), and scVI latent space with continuous covariates (scVI).
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Columns (left to right) show the cells colored by batch label, sex label, cell cycle phase, and Nrt, a novel

Hedgehog target gene identified by17. (b) Integration and biological preservation scores per method. Scores

(left to right): graph iLISI score evaluated for cell cycle phase label, graph iLISI score evaluated for cell cycle

phase and sex label, and overlap of the highly variable genes with a set of genes of biological interest (see

Methods). (c) The runtime of the methods on subsampled versions of the Heart Cell Atlas dataset21. (d) A

table summarizing several criteria regarding the different methods: (top to bottom) adaptive; relates to the

flexibility of the method, support of different filtering procedures allowing for optimization of the task. Both

of the compared methods, regress_out and scVI, do not support any additional parameters apart from the

variable of interest. runtime; color indicates the overall scalability of the method. A combined measurement

of overall runtime and scalability across magnitudes, as depicted in (c). GPU support; implemented support

of GPU acceleration. corrected expression; indicates whether the method outputs the corrected gene

expression (for a disclaimer regarding scVI’s applicability to this evaluation as it requires imputation of the

corrected gene expression see Methods).

Next, we turn to show that SiFT is scalable and can be applied to large single-cell datasets. Hence, we

benchmark runtime performance on the Heart Cell Atlas dataset, composed of nearly 500,000 cells21. To

define a filtering task we add random features in the form of continuous random noise. The features are

used as the mapping for the signal we wish to remove (see Methods). Given this task we test the runtime of

the removal algorithms (SiFT, scVI, and regress_out) over increasing subsamples of the data (Figure 2(c)).

This showcases SiFT’s efficiency and scalability to large single-cell datasets, with a runtime of 12 min, 36

min, and 1 h 26 for SiFT, scVI, and regress_out, respectively over the complete dataset.

Together, SiFT meets all criteria desired for the successful filtering of unwanted signals in single-cell data

(Figure 2(d)); Its versatility in kernel computation allows adapting the filtering to uncover and preserve the

biological signal of interest, its runtime efficiency along with GPU support allows scaling to large datasets,

and since filtering is performed directly on the input count matrix, it can naturally be incorporated into the

data pre-processing step and followed by any downstream analysis procedure.

SiFT exposes underlying biological heterogeneity

An important aspect of the filtering procedure is the ability to expose underlying biological attributes. The

cell cycle introduces heterogeneity that can obscure other biological differences between cells, and so

removing its effect improves the inference of inherent biological diversity11,13. Hence, many dedicated

methods were introduced for this task, amongst them are Cyclum10, an autoencoder-based approach for

identifying circular trajectories in gene expression space, Seurat12, which uses a linear model to find the

relationship between gene expression levels and marker genes scores it assigns to each cell, and

ccRemover13, a PCA-based method that identifies and then removes components related to the cell cycle.

We consider a synthetic manipulation of single-cell data curated by10 which consists of two sub-clones and

show that SiFT can successfully remove the cell cycle effect and enhance the sub-clone separability in the

data. The two sub-clones provide a supervised setting resembling a biological signal we intend to preserve

and expose. We used mouse embryonic stem cell (mESC) data as one clone22 and a second clone was

created by doubling the expression levels of a randomly selected set of genes containing variable numbers

of cell cycle and non cell cycle related genes. The cell cycle stage can be easily recovered in the original data,

but not in the sub-clone where it is hidden (Figure 3(a)).

To quantify the performance and assess the separability of the sub-clones along with the mixing of the cell

cycle stages, we utilize a set of metrics for integration accuracy23. The metrics are divided into two
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categories, removal of batch effects and conservation of biological variance (all scores are scaled between 0

to 1), where the cell cycle stage labels are considered as the batches in the data. Hence in our context, the

batch effects removal scores correspond to the cell cycle stages mixing. Similarly, the cell subclone identity

label is used as the anchor for the preservation of biological signals, thus used in the metrics for biological

variance (see Methods).

We start with an independent evaluation of SiFT using only a set of known cell cycle marker genes as input

to compute a knn kernel (see Methods, Figure 3(b)). The marker genes define the manifold for the

computation of the neighbors. Here, the low dimensional representation of the cells does not expose clear

visual separation between the sub-clones (Figure 3(c)), yet the quantitative assessment ensures it performs

well for the desired task and more specifically outperforms Seurat which relies on the same prior

knowledge (Figure 3(d)). Next, we show how additional prior knowledge can enhance the accuracy of SiFT

by two alternative mappings for the cell cycle signal. The ground truth cell cycle stage (provided with the

data), and the binned representation of the pseudotime inferred by Cyclum10. Both are then used to

construct mapping kernels. The mapping kernels showcase a block structure depicting the three cell cycle

stages while the knn kernel captures more subtle relations between the cells (Figure 3(b)).

Following filtering of cell cycle effects, the visual separability of the sub-clones is substantially enhanced by

SiFT, as well as by Cyclum, using either the ground truth labels or Cyclum’s pseudotime (Figure 3(c)). SiFT

consistently attains quantitatively higher scores in cell cycle removal metrics in comparison to baseline

methods, and higher scores in biological conservation when relying either on ground truth or Cyclum based

mapping to be filtered (Figure 3(d)).
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Figure 3: Filtering the cell cycle effects from the virtual tumor data consisting of two sub-clones. (a) A UMAP

of the original data colored by sub-clone identity (left) and cell cycle stage labels (right). (b) The different

cell-cell similarity kernels as defined by SiFT, cells are ordered according to the ground truth cell cycle stage.

(left) a knn kernel, neighbors defined using the gene expression of a set of cell cycle marker genes. (center)

a mapping kernel based on the ground truth cell cycle stage, the row(col) colors depict the cells’ label.

(right) a mapping kernel based on binning of the Cyclum pseudotime, the row(col) colors depicts the cells’

bin. (c) UMAP of the filtered data colored by the sub-clone identity. The top row presents SiFT filtered data,

(left) cell cycle marker genes (center) ground truth labels (right) Cyclum pseudotime binning Bottom row

presents compared methods, (left) ccRemover (center) Seurat (right) Cyclum. (d) Scatter plot of the mean

overall bio conservation score against mean overall cell cycle removal scores using the metrics defined in 23

(see Methods). The error bars indicate the mean standard error.

Filtering spatial signals recovers temporal information

Cellular gene expression is regulated by spatial and temporal signals, posing a challenge of decoupling and

studying the interplay between the two. The liver stands as an example of a tissue undergoing strong spatial

and temporal regulation; it consists of repeating anatomical units termed liver lobules, and sub-lobule zones

performing distinct functions. Liver zonation refers to functions that are non-uniformly distributed along the

lobule radial axis. Beyond the spatial structure, the liver is also subject to temporal regulation, consisting of

the circadian clock, systemic signals, and feeding rhythms24,25. While the liver zonation signal has been

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.18.524512doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524512
http://creativecommons.org/licenses/by-nc-nd/4.0/


intensively studied25,26, less is known regarding the temporal signal24. We turn to demonstrate how

knowledge regarding the spatial zonation signal can be used by SiFT to enhance the circadian clock

trajectory. We consider a dataset from24, labeled for temporal processes, as data were collected at four

different equally-spaced time points along the day, and with known marker genes for the spatial zonation

signal26 (see Supplementary Table 2). Hence, this data allows us to computationally recover the spatial

structure for filtering (Figure 4(a)).

While SiFT can take as input the set of spatial marker genes directly, it can be beneficial to use existing

methods dedicated to the spatial reconstruction and provide the spatial mapping directly as input to SiFT.

Using SiFT solely with marker genes exposes the temporal signal and by providing the spatial reconstruction

input, we can further improve its performance. To obtain a spatial reconstruction we use novoSpaRc2,3,

providing a mapping of the spatial organization of the cells. NovoSpaRc is an optimal transport based

method for manifold mapping of scRNA-seq data which can take as input prior knowledge in the form of

marker genes (see Methods). The mapping, as inferred by novoSpaRc, to an eight-layer tissue representing

the lobular liver layers, is used by SiFT to construct a mapping kernel (Supplementary Figure 5). The set of

spatial marker genes is used by SiFT to define a knn kernel, where distances between the cells are computed

based on the similarities in the spatially zonated genes (Supplementary Figure 5).

In both settings, using zonated genes or relying on novoSpaRc mapping, applying SiFT successfully removes

the zonation signature yet preserved the visual separability based on the circadian trajectory over a UMAP

representation of the data (Figure 4(c)). This is further supported by comparing the expression of two

zonated and rhythmic genes (hlf and elovl3) before and after the application of SiFT (Figure 4(b)); The genes’

temporal trend is preserved (Figure 4(b), top row), yet the spatial variation is eliminated (Figure 4(b),

bottom row).

We look to quantitatively test the performance by assessing the correlation of the reconstruction with the

reported temporal trajectory as a function of the number of temporally informative genes (marker genes

used for the reconstruction, see Supplementary Table 2). To do so, we utilize novoSpaRc again, this time to

recover the temporal trajectory by mapping to four cyclic locations. We find that the quality of temporal

trajectory reconstruction with SiFT (using novoSpaRc, zonated), even without any temporal reference, is

better than the reconstruction based on the original data with 10 marker genes (SiFT (0 markers) =

, Original (10 markers) ), implying that by utilizing SiFT, prior knowledge of the

zonation signature exposes the underlying circadian clock trajectory and provides sufficient information for

its successful recovery (correlation of ). Further, even in the simpler setting, applying SiFT using

zonated genes, improves the quality of temporal reconstruction without any marker genes ( ). At

last, In both of the SiFT settings, the reconstruction quality substantially improves upon the addition of

informative genes and reaches near-perfect performance using 10 markers (SiFT (zonated genes)

, SiFT (novoSpaRc, zonated) , Original ) (Figure 4(d)).
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Figure 4: Enhancing circadian clock signal in the mammalian liver by filtering the spatial zonation signals

using a mapping to lobular layers. (a) Single-cell RNA-seq of hepatocytes isolated at four different times

within a day 24 (b) Reconstructed temporal (top) and spatial (bottom) expression patterns of zonated and

rhythmic genes (hlf and elovl3) (c) A UMAP representation of the original data (top), SiFT filtered data based

on zonated genes (middle), and novoSpaRc zonated mapping (bottom). Plots are colored by the lobular

layer (left) and time point (right). (d) Correlation between reconstructed and original rhythmic signals as a

function of the number of temporal reference genes used for the reconstruction.

Using a reference of healthy control cells to recover disease signature

An essential step in studying disease is decoupling disease signatures from the healthy state by

characterization of the healthy signal in clinical samples. SiFT can be used for this task, recovering

disease-specific signatures in individual cells, by filtering the healthy trajectory based on healthy control

samples. This allows for enhancing the disease signature, identifying cells that are more informative for

disease states, and studying the different types of disease response pathways (Figure 1). Of note, existing

analysis pipelines approach this task by integrating all samples, from both healthy controls and disease

patients, and then performing comparative analysis, for example, by performing differential expression
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analysis between common cell types or assessing differences in cellular composition between health and

disease27–30. The extent of this type of analysis is limited as it relies on bulk comparison and does not expose

the disease trajectory in individual cells.

We consider single-cell transcriptomes from peripheral blood mononuclear cells (PBMCs) from individuals

with asymptomatic, mild, moderate, severe, and critical COVID-19 ( individuals) and controls (

individuals, Figure 5(a))27. We use a harmonized PCA space (as reported in Stephenson et al.27), and

restrict the set of reference cells to the healthy control samples. We then define a knn kernel based on this

space to compute the similarity between each cell from individuals with COVID-19 relative to the healthy

population (see Methods). Thus, applying SiFT is expected to filter the signal of the healthy trajectory (as

present in each cell independently) from the data and expose the disease response in each cell (Figure 5(b)).

Figure 5: Exposing disease signature through the removal of similarity to healthy control cells in single-cell

PBMCs transcriptomes from individuals with asymptomatic, mild, moderate, severe, and critical COVID-19.

(a) Overview of the participants included and the data collected by Stephenson et al.27. A total of

COVID-19 patients and control individuals. (b) Abstract illustration of the healthy reference

mapping procedure. Cells from patient samples are projected onto the healthy reference manifold. (c)

Enrichment of interferon response of each cell state separated by disease severity. Shown for original data

(top) and SiFTed data (bottom). IFN response score was calculated using a published gene list (GO:0034340).
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Statistical tests were performed with a Mann-Whitney U test between the cell types. Cell types are

considered statistically significant if (denoted by *). (d) UMAP visualizations of all cells in the

SiFTed data colored by reported cell type.

Patients with COVID-19 present with an abnormal immune landscape, characterized by overactivated

inflammatory, innate immune response, and impaired protective, adaptive immune response31. Recent

studies revealed the dynamic changes in peripheral immune cells, both in transcriptional states and

population size over the course of COVID-1928,32. The SiFTed representation recovered cell types involved in

innate immune response, based on the interferon response (IFN) score ( , , and )

whereas the same analysis over the original data failed to expose the relevant cell types 27 (Figure 5(c);

statistical tests were performed with a Mann-Whitney U test between the cell types). While this acts as

validation that SiFT can successfully recover results obtained from direct comparative analysis27, we next

show how using SiFT can go beyond current analysis methods.

Considerable effort has been put into identifying the expansion of different cell types in response to

COVID-19 infection27,33. This is assessed by comparing the cell type-specific population size between the

disease and control samples. This analysis, however, is insufficient as it does not expose the extent to which

these cells respond to the infection and furthermore, which fraction of the expanded population contains

information regarding the disease state. SiFT allows for both as it refines and extends the initial cell type

classification with respect to the disease response, hence exposing the distinct underlying disease signature

and identifying the cells that are informative for the disease state. Intuitively, by SiFTing the healthy signal

we expect that cells of a given cell type with a dominant disease response will preserve their identity (and

will later be clustered together) and that remaining cells, with a less distinct response (more similar to

healthy cells), will tend to cluster with non-informative cells, as most of their signal was removed. Indeed,

the latent space representation of the SiFTed data exposes sub-populations of specific cell types (

, , , and ) while other cell types got mixed

(Figure 5(d)). Importantly, the exposed cell types are known to undergo changes in response to COVID-19

infection34.

Next, to obtain a classification of cells as disease informative, we used a cluster_purity test over

Leiden-based clusters in the SiFTed data with respect to cell type labels (see Methods, Supplementary

Figure 6, Figure 6(a)). Under the cluster_purity test, a cluster is classified as disease informative if the

fraction of the most prominent cell type in it exceeds a threshold value . Gene-set enrichment

analysis (GSEA) over the differentially expressed genes between the two groups (disease

informative/disease non-informative) supported this classification and identified pathways associated with

inflammation including response to virus, response to type I interferon, IFN response, inflammatory

response, and regulation of viral process in the disease informative cells (Figure 6(b)). Additionally, under

the classification of disease informative cells, the IFN response signature was refined by enhancing the

expected pattern of disease informative cells and exemplifying the lack of disease-related signal of

remaining disease non-informative cells (Supplementary Figure 6). In accordance with this, the disease

informative cells exhibited overexpression of type I/III interferon response-related genes (Supplementary

Figure 6), which were recently reported in genome-wide association studies (GWAS) for COVID-19

susceptibility35,36.
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Figure 6: Classification of cells from clinical samples to disease informative (non-informative). (a) UMAP

visualizations of all cells in the SiFTed data colored by association to disease informative (non-informative)

clusters. Leiden clusters in the SiFTed data were classified according to cluster_purity score (see Methods).

(b) GSEA of differentially expressed genes in the disease informative cluster (compared to non-informative,

using top 50 genes). The size of the circles indicates the number of genes. Color indicates the magnitude of

. (c) Disease informative bar plot of the proportion of cell populations, separated into disease

informative, disease non-informative, and healthy (according to the assignment shown in (a)). Cell types are

sorted according to the fraction of disease cells.

The classification of disease informative/non-informative clusters provides a refinement to the cell type

proportion analysis in the disease vs. healthy control (Figure 6(c)). Importantly, for a given cell type the

fraction of inferred informative cells is not dictated by its prevalence in clinical samples. For example,

was ranked as the third most prevalent cell type in clinical samples (96% of the cells in

disease state), yet, only 15% of cells were associated with a disease informative cluster.
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Furthermore, identifying disease informative and non-informative clusters exposes populations of interest

and allows a focused analysis of the informative cells. For example, while increased platelet activation and

coagulation abnormalities were previously reported in COVID-19 patients27,37, we identified two distinct

subpopulations of : informative and non-informative for disease state (Figure 6(a)). A GSEA

analysis based on differential gene expression between the disease informative and non-informative

clusters identified pathways associated with coagulation, hemostasis, and antimicrobial humoral response

in the disease informative cells, as well as increased expression of surface proteins indicative of platelet

activation in the disease informative cells (Supplementary Figure 6).

Discussion

We presented SiFT, a method aiming at discovering hidden cellular processes by filtering out a known or

reconstructed signal from single-cell gene expression data. The SiFT procedure starts by defining a cell-cell

similarity kernel, capturing similarities with respect to the signal to be filtered. This kernel is then used to

obtain a projection of gene expression onto the signal, which is then removed from the original expression.

We have shown that filtering signals by SiFT can expose the underlying, biologically meaningful structure in

the data over a wide range of tasks. First, we showcased its ability to successfully filter unwanted sources of

variation caused by nuisance signals in the data while preserving biological signals of interest. When

focusing on removing cell cycle effects, a major source of bias in single-cell data, in a semi-simulated setting

we showed that SiFT outperforms state-of-the-art methods for the task. A substantial advantage of SiFT is

its ability to use existing prior knowledge to reveal hidden biological attributes. We use the vast prior

knowledge regarding spatial zonation in hepatocytes to uncover the temporal trajectory in the data. At last,

we present SiFT's applicability to the case-control setting. In the context of COVID-19, SiFT exposes

disease-related signals and single-cell dynamics by filtering a corresponding healthy trajectory obtained by

mapping to reference healthy samples.

In contrast to various latent space representation methods, SiFT performs the correction at the level of

individual genes. In turn, similarly to other data correction methods, it modifies the gene expression so that

data is no longer “properly” log-transformed, a property that is expected in certain downstream analysis

tasks. With that, this correction allows for obtaining biologically relevant insights on the gene level.

Here we exemplified the diverse range of applications of SiFT and showcased the potential that filtering has

for understanding the different biological signals encoded in single-cell data. We further envision that with

the ongoing increase in single-cell analysis tools along with the advance in multi-modal assays, SiFT will

serve as a basic analysis tool revealing hidden, more complex structures in the data. We have made SiFT

available as an open-source python package along with documentation and tutorials and ensured it can

efficiently scale to the ever-increasing sizes of single-cell datasets.
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Methods

The SiFT algorithm

The aim of SiFT is to expose hidden biological signals in an input count matrix. Given an expression matrix

along with a mapping of the genes to a specific signal, SiFT computes the cell-cell similarity kernel based on

this mapping, the projection of the data onto the signal, and the filtered expression matrix.

The input to SiFT includes a cell ( ) by features ( ) matrix and a mapping of the cells, . For

best performance, we recommend that the matrix will contain pre-processed normalized gene

expression. In addition, SiFT can also be applied to any other representation of the cells, e.g. latent space or

a subset of the genes.

The mapping, , is assumed to capture a specific biological attribute or representation of the cells and can

be of any type, e.g. stochastic or deterministic, continuous or discrete, uni- or multi- variate. The diversity of

types of mappings that are supported includes, for example, donor age (deterministic, discrete, univariate),

pseudotime reconstruction (deterministic, continuous, univariate), and a latent space representation of the

data (PCA, scVI, etc.) (deterministic, discrete, multivariate). Alternatively, a set of process-specific marker

genes (e.g. cell cycle marker genes), can be considered as a type of mapping and used to define distances

between the cells. The type of mapping provided dictates the cell-cell similarity kernel that can be used.

The SiFT procedure comprises three main steps:

1. Compute cell-cell similarity kernel ( ): In the first step, SiFT computes a cell-cell similarity kernel,

. The kernel is a row stochastic matrix, e.g. rows sum to one hence defining a

proper distribution. The details of the kernel construction depend on the specific kernel choice (see

below). In all cases the user can choose the subset of source and target cells, that is the cells for

which the kernel is computed (source) and the cells the similarity is evaluated with respect to

(target). The user can also provide a pre-computed kernel.

2. Project the data ( ): obtain a projection of the data on the supervised signal, ,

,

the stochasticity of guarantees that is of the same order of magnitude as .

3. Filter the data (SiFTer, ): deduce the projection, from the original count matrix to obtain a

filtered expression, ,

.

The kernels

The kernel, , is supposed to capture the cell-cell similarity with respect to the signal we wish to SiFT. is

a stochastic matrix such that the th row is a probability distribution denoting the similarity of cell to all of𝑖 𝑖
the observed cells. Broadly speaking, the kernels can be divided into three sub-classes, mapping,

k-nearest-neighbor (knn), and distance kernel, differing in the type of prior knowledge or assumptions they

require. Beyond the implemented kernels the user can provide a pre-computed kernel.
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All kernels can be refined by restricting the source and/or target space. The source space relates to the cells

whose expression we are interested in filtering. The target space is the cells over which similarity is

assessed. This is done by specifying the sub-group of cells (e.g. only healthy cells in a disease-control

experiment) of interest.

Mapping kernel

The basis of the mapping kernels is a stochastic or deterministic association of the cells ( ) to a

low-dimensional domain. The mapping, can be of any type, e.g. stochastic or deterministic, continuous

or discrete, uni- or multi- variate. In the case of a continuous variable a binning value is required,

denoting the number of bins used to construct a binned representation. The mapping is represented by

. Given we construct two sets of probability distributions:

1. : the probability of a label given a cell , normalizing across possible labels.

2. : the probability of observing a cell given a label , normalizing across cells.

The cell-cell similarity kernel, , is defined as the multiplication between the two

probabilities, and , summing out the dimension of the embedded signal, . Thus, each row in

induces a normalized distribution, , defined for cell with respect to all cells in the dataset

.

K-nearest-neighbor kernel

The mapping is used to construct a neighborhood graph over the cells by finding the

nearest neighbors for each cell. Following Scanpy’s18 defaults, the neighbor sets are merged and processed

via the UMAP algorithm20. We normalize (across the rows) the resulting weighted adjacency matrix of the

neighborhood graph of the cells (termed the connectivities) to obtain the final kernel object, .

Distance kernel

A distance kernel requires that the provided mapping, , which defines a joint space

representation of the cells, will be equipped with a distance metric, (e.g. the Euclidean

distance). With this, we define the cell-cell similarity kernel as

.

Here is a smoothing parameter that controls the effective radii of cells (distances) that have a

non-negligible influence and is a normalization constant, defined for each row. If is chosen to be

the Euclidean distance, the above denotes the radial basis function (RBF) kernel, a popular kernel function

used in various kernelized learning algorithms which can be interpreted as a similarity measure 38. Similarly,

if is chosen to be the Manhattan distance, then is the Laplacian kernel.

The stochastic interpretation of the SiFT algorithm and output

Looking into the mathematical derivation of the SiFT procedure we can expose natural stochastic properties

which provide a better understanding of the SiFTed output. Recall that the input mapping, , is used to
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define a row stochastic kernel, . That is the th row of is a probability

distribution for cell with respect to remaining cells, we denote this distribution as .

Now, an entry in the projected data (for cell and gene in , step 2 in the SiFT

procedure), can be read as

.

With this, for each cell, the projection can be understood as the mean expression of genes

according to the cell-cell similarity distribution. At the final step is deduced from the expression, so we

obtain

.

Thus, the filtered expression stands for the deviation of the cells’ expression with respect to the expected

value in their neighboring cells. This implies that the resulting matrix can contain negative values, which

translate to genes (or features) that are below the average expression. Generally speaking, we are only

interested in the relations and distances between the cells in the new, filtered space, and not the absolute

counts, hence the existence of negative values do not pose a problem. With that, Realizing that certain

analysis methods expect as input a positive count matrix, we suggest correcting the filtered expression

matrix by adding a pseudo count following the global minima of the data (so that the corrected filtered

minima would be zero), ensuring positivity and preserving the topology of the data.

Runtime considerations

SiFT uses pyKeops, a python package allowing for Kernel Operations on the GPU without memory

overflows39 as a backend for matrix computations. The implementation supports pyKeops pytorch and

numpy backends and hence does not enforce pytorch dependency. As we show in Figure 2(c), this implies

that SiFT can scale to large datasets without harming runtime performance. Furthermore, for datasets too

large to be handled by a single GPU operation, instead of falling back to CPU computation we implement an

automatic batching procedure, which retains speed performance.

Datasets

Drosophila wing disc myoblast cells

We obtained the dataset of a temporal cell atlas of the Drosophila wing disc from two developmental time

points collected by17 and using the processed data published by9, available at myoblasts.h5ad. The data

contains two biological replicates were obtained at each time point that, after filtering for low-quality cells,

generated data from 6922 and 7091 cells in the 96 hr samples and 7453 and 5550 cells in the 120 hr

samples.

In order to quantitatively assess our performance in removing unwanted variation with respect to these

attributes, we turned to classify the cells into sex and cell cycle phase categories. The processed dataset was

lacking sex and cell cycle labels however there are known marker genes for both. For sex labels, we follow

the procedure suggested in the original study in which the data was presented17. The classification relies on

the expression levels of the dosage compensation complex genes lncRNA:roX1 and lncRNA:roX2. For both

genes, we computed the density over the log-normalized counts and identified the first local minima as a
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threshold (Figure 2, Supplementary Figure 1). Cells that were above the threshold for either lncRNA:roX1 or

lncRNA:roX2 were classified as male; otherwise, they were classified as female.

Next, to obtain cell cycle phase categories we applied Scanpy’s “scanpy.tl.score_genes_cell_cycle” based on

the expression of known Drosophila cell-cycle genes from Tinyatlas at Github40,41 (Figure 2).

Methods application

To apply SiFT we defined a knn kernel using the set of cell cycle and sex marker genes (see Supplementary

Table 1). For the regress_out setting, Scanpy’s “scanpy.pp.regress_out” function was used by setting all

marker genes as regression keys. For scVI we followed the reproducibility notebook, scvi_covariates.ipynb

using only the set of cell cycle and sex marker genes as continuous covariates.

scVI corrected expression

scVI provides the user with the option to impute normalized corrected counts through

“get_normalized_expression()”. We use this function followed by “sc.pp.log1p()” to obtain the corrected

counts used for HVG evaluation. It is important to note that scVI is not designed for this task precisely,

hence, we evaluated its performance on the latent embedding when possible9.

Quantitative evaluation

To evaluate the removal of cell cycle and sex signals we use the graph iLISI score as defined in42, using the

corrected expression for SiFT and regress_out and over the latent embedding for scVI. We evaluated the

graph iLISI score independently with respect to the “cell cycle phase label” and the combined ”cell cycle

phase and sex label”.

To assess the perseverance of the biological signal of interest we use the set of genes of interest suggested

by9 which is based on marker genes presented in17,19 (see Supplementary Table 1). Here we look at the

intersection of this set with the set of highly variable genes (HVGs). HVGs identifies using Scanpy’s

“scanpy.pp.highly_variable_genes” with n_top_genes=500 and flavor=”cell_ranger”. Since this can not be

done over the latent space we resort to using the imputed gene expression provided by scVI.

Batch integration

For additional evaluation regarding full integration performance following SiFT and regress_out, we applied

batch integration methods. We used bbknn7 and Harmony8. Both were run using Scanpy’s functions with

default parameters passing the batch key for integration. For comparison, we use scVI with the batch label

as a batch key along with the continuous covariates (scVI (covariates & batch)). Here, when computing the

graph iLISI score, the latent embedding was used for all methods as neither bbknn nor Harmony provides a

correction to the gene expression.

Heart Cell Atlas dataset

the Heart Cell Atlas dataset was downloaded from https://www.heartcellatlas.org and contains a total of

486,134 cells.

Benchmarks data

For the runtime analysis we followed the procedure suggested by Gayoso et al.9. Using the Heart Cell Atlas

dataset which contains 486,134 cells, we created 8 datasets of increasing size by subsampling 5,000, 10,000,

20,000, 40,000, 80,000, 160,000, 320,000, and 486,134 cells. For each dataset the top 4,000 genes were

selected via “scanpy.pp.highly_variable_genes”, with parameter flavor=“seurat_v3”. Next, we generated 8
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random covariates by sampling from a standard normal distribution and used them along with the

percent_mito and percent_ribo fields as continuous covariates, defining a total of 10 continuous covariates.

Methods runtime analysis

Performed on NVIDIA RTX A5000 GPU. For SiFT runtime, we report the runtime of initialization of the rbf

kernel and running the filtering procedure. For scVI runtime, we report the runtime of the train function

with the parameters used in9:

early_stopping=True, early_stopping_patience=45, max_epochs=10000, batch_size=1024,

limit_train_batches=20, train_size=0.9 if n_cells < 200000 and train_size=1-(20000/n_cells) otherwise

For the regress_out baseline, we tracked the runtime of the regress_out function for the above continuous

covariates.

Virtual tumor data

The simulated dataset was downloaded from Cyclum’s repository

(https://github.com/KChen-lab/Cyclum/tree/master/old-version/data/mESC). Details regarding the

simulations of the virtual tumor data can be found in the original publication10. This data contains a total of

279 cells, 168 in belong to the tumor “intact” and 111 to the “perturbed”. Cell’s are given with ground truth

labels regarding the cell cycle phase.

The kernels

We consider different mappings representing the cell cycle signal. In total six different SiFT kernels are used

for comparison:

● ground truth labels: A mapping kernel where the discrete cell labels are given by the ground truth

cell cycle phase labels.

● cell cycle genes: A knn kernel where cell neighbors are computed based on the expression of the set

of cell cycle genes reported in43.

● Cyclum pseudotime: we use Cyclum’s pseudotime mapping of the cells in order to define three

kernels:

○ Cyclum, binned (n=12): A mapping kernel where the discrete cell labels are obtained by

binning the pseudotime to 12 bins.

○ Cyclum, binned (n=3): Same as above with three bins.

○ Cyclum, distance: A distance kernel where distances are computed over the mapping of the

cells to the unit circle using the pseudotime,

.

● Seurat: A mapping kernel where the discrete cell labels are given by Seurat’s cell cycle phase

prediction.

Cell cycle removal methods

● Cyclum: we followed the steps in the provided example by the authors,

example_mESC_simulated.ipynb. As the example is provided using an older version of Cyclum, we

modified the parameters in the new implementation to correspond to the reported setup run in10.

● Seurat: we followed the steps suggested in the vignette cell_cycle_vignette.html.

● ccRemover: we used the ccRemover method as in the tutorial ccRemover_tutorial.html.
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Evaluation metrics

Evaluation metrics and their definitions were taken from23. We used the complementary python package

scib (https://scib.readthedocs.io) which provides an implementation of all metrics. For the “cell cycle

removal” score we reported the mean of ASW_label/batch, PCR_batch, cell_cycle_conservation, and

iLISI_graph. For the “bio conservation” score we reported the mean of NMI_cluster/label, ARI_cluster/label,

ASW_label, isolated_label_F1, isolated_label_silhouette, and cLISI_graph. All methods were run with

default parameters.

Mammalian liver dataset

ScRNA-seq data was downloaded from GEO, accession code GSE145197. For the data pre-processing

procedure we followed the pipeline described in the original publication24 and given in the GitHub

repository https://github.com/naef-lab/Circadian-zonation. After pre-processing the data contained 11,491

cells from 3 biological repetitions for 4 different time points (time point 0: 3563 cells, time point 6: 2791

cells, time point 12: 2919  cells, time point 18: 2218  cells).

novoSpaRc for spatial mapping

We used novoSpaRc2,3 to recover the spatial signal in the data, and obtain a probabilistic mapping of cells to

the eight liver zonation layers. We performed mapping using 15 spatial marker genes (reported in24) and ran

the novoSpaRc algorithm with and . We used the probabilistic mapping to apply SiFT

(Supplementary Figure 5).

COVID-19

The data object, as an h5ad file, was downloaded from https://covid19cellatlas.org/,

haniffa21.processed.h5ad. Cell type labels and metadata were based on the fields reported in the given file.

We considered COVID-19 samples ( ) and healthy controls ( ).

Distance kernel construction

To filter the healthy trajectory we define a knn kernel that captures the similarity of the

disease cells to the reference healthy cells. To evaluate the similarity (distances) between the disease and

healthy cells we consider distances in the harmonized PCA space (reported by27).

cluster_purity score

We define a cluster purity score as a measure to distinguish between indicative and non-indicative clusters

with respect to a given label (here we consider the cell type). Formally, for a given cluster of size , we

find the most frequent label, , with cells. Now, we say that a cluster is indicative if

,

for a given threshold value . This measure quantifies the homogeneity of the cluster.
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Data availability

The datasets analyzed in the current study are available at

● Drosophila wing development:

https://figshare.com/articles/dataset/scvi-tools-reproducibility_processed_data/14374574/1?file=2

7458846

● Heart Cell Atlas: https://cellgeni.cog.sanger.ac.uk/heartcellatlas/data/global_raw.h5ad

● Virtual tumor: https://github.com/KChen-lab/Cyclum/tree/master/old-version/data/mESC

● Mammalian liver: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145197

● COVID-19: https://covid19.cog.sanger.ac.uk/submissions/release1/haniffa21.processed.h5ad

Code availability

Software is available at https://github.com/nitzanlab/sift-sc and documentation at

https://sift-sc.readthedocs.io. The code to reproduce the results is available at

https://github.com/nitzanlab/sift-sc-reproducibility.
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