Abstract
Spatially-resolved transcriptomics is revolutionizing our understanding of complex tissues, but their current use for the exploration of a few sections is not representative of their 3-dimensional architecture. In this work we present a low-cost strategy for manufacturing molecularly double-barcoded DNA arrays, enabling large-scale spatially-resolved transcriptomics studies. We applied this technique to spatially resolve gene expression in several human brain organoids, including the reconstruction of a 3-dimensional view from multiple consecutive sections, revealing gene expression divergencies throughout the tissue.
Competing Interest Statement
The authors have declared no competing interest.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.