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Abstract 20 

Drought stress is a key factor limiting plant growth and the colonization of arid habitats by 21 

plants. Here, we study the evolution of gene expression response to drought stress in a wild 22 

tomato, Solanum chilense naturally occurring around the Atacama Desert in South America. 23 

We conduct a transcriptome analysis of plants under standard and drought experimental 24 

conditions to understand the evolution of drought-response gene networks. We identify two 25 

main regulatory networks corresponding to two typical drought-responsive strategies: cell cycle 26 

and fundamental metabolic processes. We estimate the age of the genes in these networks 27 

and the age of the gene expression network, revealing that the metabolic network has a 28 

younger origin and more variable transcriptome than the cell-cycle network. Combining with 29 

analyses of population genetics, we found that a higher proportion of the metabolic network 30 

genes show signatures of recent positive selection underlying recent adaptation within S. 31 

chilense, while the cell-cycle network appears of ancient origin and is more conserved. For 32 

both networks, however, we find that genes showing older age of selective sweeps are the 33 

more connected in the network. Adaptation to southern arid habitats over the last 50,000 years 34 

occurred in S. chilense by adaptive changes core genes with substantial network rewiring and 35 

subsequently by smaller changes at peripheral genes. 36 

 37 
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Introduction 39 

Drought stress is one of the major environmental constraints negatively influencing plant 40 

development and preventing plant growth, resulting in decreased yield in agriculture and as a 41 

constraining factor for colonization of arid or hyper-arid habitats (Ciais et al. 2005; Juenger 42 

2013). Plants respond to water-insufficiency through multiple strategies underpinned by 43 

various physiological and developmental processes, such as storage of internal water to avoid 44 

tissue damage and tolerance (endurance) to drought stress to maintain the growth process 45 

(Basu et al. 2016). These strategies involve many biological functions such as increasing the 46 

metabolic activity of some tissues, i.e. root water uptake and closing stomata, or activation of 47 

metabolic pathways including phytohormone signaling, antioxidant and metabolite production 48 

in order to regulate osmotic processes (Rodrigues et al. 2019). Drought response involves 49 

numerous quantitative and polygenic traits governed by many genes acting in (complex) gene 50 

co-expression networks (GCN). To improve crops and predict the evolutionary potential of plant 51 

species under the current and predicted global water deficits, it is thus of interest to pinpoint 52 

and decipher the evolutionary history of the relevant GCNs underpinning the adaptation of wild 53 

plants to arid or hyper-arid habitats (Gehan et al. 2015). 54 

Comparative transcriptomics involving the inference of gene co-expression patterns 55 

show that many GCNs are conserved along the tree of life (Stuart et al. 2003; Gerstein et al. 56 

2014; Zarrineh et al. 2014; Crow et al. 2022). Moreover, phylogenetic and developmental 57 

studies have demonstrated that many physiological, structural, and regulatory innovations to 58 

cope drought stress have arisen throughout the history of plants, many of them even predating 59 

the emergence of land plants (Jill Harrison 2017; de Vries et al. 2018; de Vries and Archibald 60 

2018; Mustafin et al. 2019; Wang et al. 2020; Bowles et al. 2021). Several conserved GCNs 61 

can be observed in fundamental biological processes such as protein metabolism, cell cycle, 62 

and photosynthesis and well as key traits such wood formation (Stuart et al. 2003; Ficklin and 63 

Feltus 2011; Zinkgraf et al. 2020).  64 
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A key question in functional and evolutionary genomics is thus to link GCN evolution and 65 

(relatively) short-scale evolutionary processes such as adaptation and population/species 66 

divergence in order to assess the relative importance of contingency, exaptation and evolution 67 

of novel genes (duplication, neofunctionalization) allowing colonization of novel habitats. Two 68 

main hypotheses are formulated. First, highly conserved sub-networks (so-called hubs or 69 

kernels) are under strong selective constraint to ensure the functionality of the GCNs 70 

(Papakostas et al. 2014; Josephs et al. 2017; Mähler et al. 2017; Masalia et al. 2017), so that 71 

variation can only be maintained at (less connected) genes at the periphery of the GCNs that 72 

may be the target of positive natural selection (Flowers et al. 2007; Kim et al. 2007; Luisi et al. 73 

2015; Erwin 2020). However, this argument is likely based on the fact that the novel habitats 74 

may not differ much from the original one, so that only minor adjustments in the GCNs are 75 

enough to provide adaptation. This argument is in line with so-called developmental systems 76 

drift (DSD; True and Haag 2001), that predicts GCN rewiring only occurs in ‘flexible’ 77 

(sub-)modules with the accumulation of neutral variation that keep the network function intact 78 

until a new viable function (phenotype or developmental pathway) appears. Second, despite 79 

the general belief that genes with higher connectivity evolve at a slower rate, there is also 80 

evidence that changes at central genes (with higher connectivity) can be responsible for the 81 

short-term response to selection (Jovelin and Phillips 2009; Luisi et al. 2015) and promote 82 

rewiring of the GCN (Koubkova-Yu et al. 2018). Thus, highly connected genes may be targets 83 

of positive selection during environmental change, e.g. adaptation to novel arid habitats, even 84 

though these genes experience purifying selection in stable environments (Hämälä et al. 2020). 85 

Indeed, if the second hypothesis is correct, we expect a correlation between the age of positive 86 

selection and the connectivity of a gene in a network, but no correlation under the first 87 

hypothesis.  88 

To test this hypothesis, we reveal the selective forces (positive versus purifying selection) 89 

acting on different components of the networks (hub vs peripheral genes) across 90 

species/lineages adapted to contrasting conditions, and correlate the presence of recent 91 
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positive selection with gene connectivity in the wild tomato species Solanum chilense. Wild 92 

tomatoes are a model of interest as their diversification is accompanied by the exploration of 93 

wide environmental gradients along the Pacific coast of South America (from tropical to 94 

subtropical, coastal to high mountain, and wet to extremely dry regions; Nakazato et al. 2010; 95 

Haak et al. 2014). In addition, the infra-specific diversification within S. chilense resulted in 96 

several lineages with strong environmental differentiation (Raduski and Igić 2021; Wei et al. 97 

2022). Populations of S. chilense are challenged by prolonged drought, with the most severe 98 

drought conditions occurring in the southern part of the range (Figure 1A). Wild relative tomato 99 

species such S. chilense, S. sitiens and S. pennellii become well-established systems to study 100 

tolerance strategies to survive in extreme environments (Bolger et al. 2014; Martínez et al. 101 

2014; Tapia et al. 2016; Kashyap et al. 2020; Molitor et al. 2021). In a previous study, we 102 

assayed for evidence of positive selection in 30 fully sequenced genomes of S. chilense to 103 

identify candidate genes underpinning adaptation along the species range. We found genes 104 

with putative functions related to root hair development and cell homeostasis as being likely 105 

involved in drought stress tolerance (Wei et al. 2022). However, to date, most research in S. 106 

chilense has focused on the evolution of a few genes potentially involved in abiotic stress 107 

response (Fischer et al. 2011; Mboup et al. 2012; Fischer et al. 2013; Böndel et al. 2015; 108 

Nosenko et al. 2016; Böndel et al. 2018), and we still lack information regarding the 109 

evolutionary mechanisms driving drought tolerance in this species. 110 

Our aim is to study the GCN evolution underpinning S. chilense adaptation to arid and 111 

hyper-arid habitats. We identify drought stress responsive gene regulatory networks combining 112 

multiple analyses of transcriptome data of S. chilense and focus on two networks involved in 113 

cell-cycle and metabolic processes. Furthermore, we infer the evolutionary processes at these 114 

two networks across three different time scales by computation of transcriptome indices to 115 

explore the evolutionary age and sequence divergence of the drought responsive 116 

transcriptome. We then analyze the emergence of adaptive variation in the identified drought-117 

responsive genes of these networks and the association to gene connectivity.  118 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.18.524537doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524537
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 119 

Transcriptome analyses 120 

We analyze short-read transcriptome data from 16 libraries aligned to the reference genome 121 

of S. chilense (Dataset1 S1) and assess the consistency of the results by mapping to the 122 

reference genome of S. lycopersicum (ITAG 3.0) (Dataset2, S1). A total of 27,832 genes are 123 

identified to be expressed in the 16 libraries (Dataset1 S2), of which 1,536 genes are uniquely 124 

expressed in drought condition and 1,767 genes in control condition (Dataset1 S2). Using the 125 

ITAG 3.0 reference, we identify a total of 36,827 transcript isoforms corresponding to 15,697 126 

genes (Dataset2 S2).  127 

A principal component analysis (PCA) based on the gene expression profiles reveals 128 

consistent clustering primarily associated with the experimental conditions (control and drought) 129 

and secondarily to the developmental stages (leaf and shoot apex) (Figure 1A). PC1 accounts 130 

for 79% of the expression variability and separates the libraries from the two experimental 131 

conditions, indicating transcriptome remodeling between drought and control conditions. 132 

Libraries from different developmental stages are separated along the PC2 axis (accounting 133 

for 15% of the variance), supporting tissue age transcriptome specificity. Consistently, the 134 

transcriptome similarity analysis between libraries reveals that the watering conditions explain 135 

the major differences between treatments (Figure 1B). Therefore, we thereafter focus on 136 

comparing the transcriptome profiles of the drought and control experimental conditions.  137 

The gene expression profiles based on reference genome of ITAG 3.0 show similar 138 

patterns on the PCA (Figure 1A and S1A). However, the analysis of expression correlation and 139 

library clustering based on the TPM values show reduced resolution in discriminating between 140 

experimental conditions and developmental stages using the S. lycopersicum reference 141 

(Figure S1B-D). 142 

 143 
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Identification of gene networks involved in drought stress 144 

We identified gene networks involved in drought response in S. chilense based on differential 145 

expression analysis and weighted gene co-expression network analysis (WGCNA). First, three 146 

sets of DEGs are identified from three drought/control comparison groups (full data set, only 147 

leaf and only shoot apex tissues) (Figure 2A; Dataset1 S3; log2FoldChange ≥ 1,  FDR P ≤ 148 

0.001). A total of 4,905 DEGs are identified in three comparison groups, of which 2,484 DEGs 149 

(1,235 up-regulated and 1,249 down-regulated in drought transcriptome) are shared in three 150 

comparison groups (Figure 2B). We deduce that these shared DEGs correspond to a core 151 

functionally drought-responsive network. The consistency of these results is confirmed using 152 

gene expression data based on ITAG 3.0 reference genome. Similar DEGs can be identified 153 

between two reference genomes (Figure S2; Figure 2; Dataset2 S3). Although there is a 154 

notorious outlier sample (CL-A) when using reference genome of ITAG 3.0, in two shared DEG 155 

sets (2,484 DEGs based on S. chilense (Figure 2B), 2,585 DEGs based on ITAG 3.0 (Figure 156 

S2B)), 62.8% (1,560) DEGs still overlap (Figure S2C). This suggest that our greenhouse 157 

experiments, sequencing and parameters for differential expression analysis are highly robust. 158 

We use, thereafter, 2,484 shared DEGs based on the reference genome of S. chilense in the 159 

following analyses. 160 

A set of 16,181 genes after filtering from all expressed genes were used in WGCNA, and 161 

clustered into seven co-expression modules named after different colors. The module sizes 162 

range from 183 up to 5,364 genes (Figure 2C, Dataset1 S4). Here, we do not directly used 163 

DEGs in WGCNA as suggested by the developer of WGCNA, because DEGs are invalid for 164 

assumption of the scale-free topology. Among the identified co-expression modules, the blue 165 

module (3,852 genes) shows significantly positive correlation with control condition and 166 

negative correlation with drought condition (Figure 2C, Kendall's test, P = 2.2e-11). In contrast, 167 

the turquoise module (5,364 genes) is significantly positively correlated with drought condition 168 

and negatively correlated with control condition (Figure 2C, Kendall's test, P = 2.34e-13). In 169 

addition, the genes within blue and turquoise modules are observed to show higher 170 
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connectivity than other modules (Figure S3, Kolmogorov-Smirnov test on connectivity 171 

measure, P = 2.41e-17), indicating higher interaction and closer correspondence in biological 172 

process among genes within each module in response to water deprivation.  173 

We check the overlap between DEGs and modules to confirm that blue and turquoise 174 

modules are associated with drought stress in S. chilense (Table S1). DEGs share more genes 175 

with the blue and turquoise modules than with other co-expression modules. Almost all shared 176 

DEGs (2,302 genes out of 2,484) are found in the blue and turquoise modules. This confirms 177 

that blue and turquoise modules are two sets of co-expressed drought stress responsive genes. 178 

The overlapping DEGs and module genes are extracted to constitute the now refined two high-179 

confidence subsets of the blue and turquoise modules and comprising 1,223 and 1,079 genes, 180 

respectively. The co-expression analysis with the ITAG 3.0 reference genome show consistent 181 

results and obtain eight co-expression modules (Figure S2D; Dataset2 S4), with two 182 

significantly correlated modules with drought stress (blue module shows negative correlation, 183 

and turquoise module shows positive correlation; Figure S2D), and show high overlapped ratio 184 

with DEGs based on ITAG 3.0 (Table S2).  185 

To confirm regulatory relationships among genes in the two co-expression networks, we 186 

identify transcription factors (TFs) and transcription factor binding sites (TFBSs) for the two 187 

subsets of genes. Then, we extract the genes that can bind to one another (Table S3) from the 188 

two high-confidence subsets, which we hereafter name as sub-blue (686 genes) and sub-189 

turquoise (948 genes), respectively (Dataset1 S5). The genes in the sub-blue and sub-190 

turquoise networks not only show differential expression and specific co-expression patterns 191 

at the gene expression level, but we can also confirm that these interact as predicted by the 192 

DNA sequence and protein level. Subsequently, the co-expression network is reconstructed 193 

using the same steps for the set of genes of the sub-blue and sub-turquoise networks. Higher 194 

connectivity is observed in the sub-turquoise network (Figure S4, Kolmogorov-Smirnov test on 195 

connectivity measure, P = 0.002), suggesting a closer regulatory relationship among genes in 196 

the sub-turquoise than in the sub-blue network. This may be due to more composite TF/TFBS 197 
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relationships and functions in the sub-turquoise network (Table S3; Table S4). In a 198 

complementary analysis, we also obtain networks based on reference genome of ITAG 3.0 199 

(Dataset2 S5) and check shared genes between final networks obtained based two different 200 

reference genomes, and the results show that more than half of the genes are overlapping in 201 

two networks, respectively (Figure S5). The two networks (Dataset1 S5) based on the 202 

reference genome of S. chilense are used for subsequent analysis. 203 

Functional enrichment analysis of drought-responsive GCNs 204 

We assess whether the two identified gene networks (sub-blue and sub-turquoise) show 205 

functional differences. The gene ontology (GO) enrichment reveals that sub-blue network is 206 

significantly enriched (P < 0.05) in cell cycle and regulation biological processes, including 207 

replication and modification of genetic information, ribosome production and assembly, 208 

cytoskeleton organization, among others (Figure 3A; Table S4). Conversely, the sub-turquoise 209 

network is enriched in biological processes related to response of physiological and metabolic 210 

processes to water shortage and heat, including some metabolic processes, signal pathways, 211 

changes of stomata and cuticle, amongst other processes (Figure 3A; Table S4). These 212 

differences of function thus suggest that genes in the two sub-networks are activated and 213 

expressed in different cellular compartments. Consistent with the biological process above 214 

mentioned, the sub-blue network genes are mainly enriched in cellular components in the 215 

nucleus, including nucleolus, chromosome, nuclear envelope, and ribosome (Figure 3B; Table 216 

S5). These cellular components are at the center of cell division processes. On the other hand, 217 

the sub-turquoise network is enriched in cellular components related to metabolism processes, 218 

such as complexes and membrane structures in the cell (Figure 3B; Table S5). We also check 219 

GO terms enriched in the two gene networks based on reference genome of ITAG 3.0. 220 

Although ITAG 3.0 does not share all drought-responsive genes with gene networks based on 221 

reference genome of S. chilense, almost all of GO terms are consistent between networks 222 

based on two different reference genomes (Table S4; Dataset2 S6). This indicates that 223 

modulation in the cell cycle and fundamental metabolism are two main strategies in response 224 
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to drought stress in S. chilense. We focus, thereafter, on these two sub-networks and from now 225 

on, the sub-blue network is referred to as the cell-cycle network and the sub-turquoise as the 226 

metabolic network. 227 

Evolutionary age of drought-responsive transcriptome in S. chilense 228 

To generate a comprehensive understanding of the emergence of the identified drought-229 

responsive GCNs, we estimate the transcriptome ages of the identified cell cycle and 230 

fundamental metabolism networks. For that, we build phylostratigraphic profiles for all genes 231 

of the two GCNs, summarizing the gene emergence in 18 stages of plant evolution or 232 

phylostrata (PS): PS1 representing the emergence of oldest genes (at the time of the first 233 

cellular organisms) to PS18 for the most recent genes present only in S. chilense. The PS18 234 

shares no homologue genes with any other species in the nr (non-redundant protein) 235 

databases of NCBI (Figure 4A and 4B, Dataset1 S6). Most genes in the two analyzed GCNs 236 

(76.79% in metabolic network and 65.45% in cell-cycle network) are assigned to three main 237 

PS, Cellular organisms (PS1), Land plants (Embryophyta; PS5) and Flowering plants 238 

(Magnoliopsida; PS8) (Figure 4A). This suggests that the two drought-responsive GCNs we 239 

identify have an ancient origin and the components are fairly conserved across the tree of 240 

life/plants. Therefore, many drought-responsive pathways likely emerged during the 241 

colonization of land by plants (PS5), but many others could derive from exaptation processes 242 

from GCNs involved in the core cell process (PS1) or reproductive organ differentiation of 243 

flowering plants (PS8). Interestingly, the cell-cycle network shows older origin ages (with more 244 

genes arising within the PS1-3), while the metabolic network presents a larger proportion of 245 

genes originating in PS8 (Figure 4A and 4B). Under drought conditions, we also find that cell-246 

cycle network genes of almost all PS ages are down-regulated, while genes of the metabolic 247 

network are up-regulated (Figure S6). 248 

Furthermore, we estimate the age of cell-cycle and metabolic GCNs using the 249 

transcriptome age index (TAI). The mean evolutionary ages of the transcriptomes are 250 
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significantly different between drought and control conditions (Figure 4C; Kolmogorov-Smirnov 251 

test, P = 0.03). The TAI profile would be expected to be a flat horizontal line if the ages of 252 

genes are the same across the transcriptomes. In addition, a higher TAI value implies that 253 

evolutionary younger genes are preferentially expressed at the corresponding 254 

condition/developmental stage. We observe higher TAI in drought samples, supporting that the 255 

drought-responsive genes exhibit a younger transcriptome age than genes expressed under 256 

control conditions. Moreover, TAI of the metabolic GCN is significantly higher than the cell-257 

cycle (Figure 4C; Kolmogorov-Smirnov test, P = 12.51e-7), supporting the previous result that 258 

transcriptome ages of the genes in the cell-cycle are older than in the metabolic GCNs. 259 

The contributions of the different PS to the TAI profiles also show notable patterns 260 

between the cell-cycle and metabolic GCNs (Figure 4D and 4E). On the one hand, early 261 

divergent genes (PS1 to PS7) show more constant transcriptome age in all conditions and the 262 

genes with ages in PS1, PS5 and PS8 appeared as remarkably important in two GCNs. On 263 

the other hand, late-emerging genes (PS8 to PS18) contribute increasingly with their age to 264 

the differential expression patterns between control and drought samples, indicating that 265 

younger drought-responsive genes are differentially expressed under drought stress in both 266 

GCNs (as observed in Domazet-Lošo and Tautz 2010; Piasecka et al. 2013). Remarkably, the 267 

youngest genes in PS18, i.e. specific to S. chilense, also present a higher contribution in the 268 

metabolic GCN, suggesting that these genes are involved in either speciation or local 269 

adaptation of S. chilense to drought conditions. Note that younger genes (PS9 to PS18) in the 270 

cell-cycle GCN hardly contribute to the TAI profile (Figure 4D and 4E). 271 

Divergence of the drought tolerance transcriptome in S. chilense 272 

To drill down into the evaluation of the drought-response mechanisms over the time scale of 273 

S. chilense divergence, we calculate the TDI index, which represents the mean sequence 274 

divergence of a transcriptome. A total of 10 divergence strata (DS) are constructed based on 275 

the sequence divergence between genes of S. chilense and the close relative S. pennellii by 276 
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computing the Ka/Ks ratio (Figure 5A; Figure S7; Dataset1 S6). The distributions of the Ka/Ks 277 

ratio per gene for both GCNs indicate the action of purifying selection, which confirms the 278 

conservation of most of drought-responsive genes at the close-related species level. 279 

Consistent with the phylostratigraphic patterns, the purifying selection signals in the cell-cycle 280 

GCN (Ka/Ks = 0.279 ± 0.333) are stronger than in the metabolic GCN (Ka/Ks = 0.329 ± 0.331) 281 

(Figure 5A; Table S6). In addition, higher TDI values are observed in the drought samples 282 

(Figure 5B) suggesting that the expressed genes we identify in the two GCNs exhibit a more 283 

conserved transcriptome profile in control condition compared to drought conditions 284 

(Kolmogorov-Smirnov test, P = 0.04). This result supports that different selective pressures act 285 

on S. chilense GCNs across conditions. In accordance with the TAI results, the transcriptome 286 

of the metabolic GCN appears to exhibit a higher transcriptome divergence than the cell-cycle 287 

GCN (Figure 5B; Kolmogorov-Smirnov test, P = 2.25e-7). Moreover, the low TDI in the cell-288 

cycle GCN and larger TDI differences between drought and control transcriptomes also 289 

suggest that regulation of the cell-cycle is likely an ancestral (older) strategy of stress response. 290 

Alternatively, it is also possible that the transcriptome of the cell-cycle GCN may have been 291 

evolving and changing in older times, and reached a conserved structure in recent times. 292 

Conversely, changes of metabolic pathways and rewiring of the metabolic GCN may appear 293 

to be more pronounced and/or common in recent times. 294 

The contributions of the low divergence DS classes (low Ka/Ks in DS1 to DS5) in the 295 

cell-cycle GCN (~ 50% of the genes) are larger than in the metabolic GCN (DS1 to DS5 about 296 

30%), especially in DS1 (lowest Ka/Ks ratio; Figure 5C and 5D). This indicates that purifying 297 

selection pressure is acting on genes of the cell-cycle GCN, possibly constraining further 298 

changes. In contrast, the metabolic network genes show about 70% contributions in high DS 299 

(higher Ka/Ks ratio in DS6 to DS10), especially in DS10 (highest Ka/Ks ratio), indicating that 300 

genes in the metabolic network evolve under weaker purifying selection pressure and that 301 

recent evolutionary changes occurred. For the cell-cycle network, the TAI profile is almost 302 

entirely composed of older phylostrata (PS1 to PS8), while new genes contribute about 20% 303 
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to the TAI profile of the metabolic network (Figure 4D and 4E). This indicates that the gene 304 

expression levels of the cell-cycle network have likely been optimized and fixed early on during 305 

evolution as an adaptive strategy to cope drought stress (Harrison et al. 2012). TDI profiles 306 

support this claim: conserved genes do contribute more to the TDI profiles in cell-cycle 307 

networks and show adaptive changes in expression for drought response (higher TDI 308 

difference between control and drought transcriptomes in cell-cycle network, Figure 6B). In 309 

contrast, drought-responsive genes in metabolism network appear unstable in their expression 310 

in response to drought stress, because this strategy may be linked to an initial response to 311 

severe water scarcity (Dubois and Inzé 2020). 312 

Population genetics analysis of drought-responsive networks 313 

We also study the selective forces acting on the identified drought-responsive gene networks 314 

at the intraspecific time scale. Using full genome sequences of six S. chilense populations 315 

(C_LA1963, C_LA3111, C_LA2931, SC_LA2932, SC_LA4107, and SH_LA4330; five plants 316 

each) recently reported in (Wei et al. 2022) aligned to the reference genome of S. chilense, we 317 

identify 45,208,263 high-quality single-nucleotide variants (SNPs), in which 111,606 SNPs are 318 

found in genes of the cell-cycle GCN and 167,334 SNPs in genes of the metabolic GCN. We 319 

first compare population structure between the whole-genome data and drought-responsive 320 

genes (Figure S8). The results corroborate the genetic structure revealed in (Wei et al. 2022) 321 

based on the sequence alignment to S. pennellii reference (Figure S8A and S8C). However, 322 

the structure exhibited by drought genes shows stronger differentiation among populations, 323 

especially to SH_LA4330, than the WGS data (especially for clustering of populations of the 324 

central region). Moreover, the strong differences from WGS data between the two south 325 

coastal populations (SC_LA2932 and SC_LA4107) is attenuated when analyzing SNPs from 326 

the drought-responsive genes (Figure S8B and S8D). 327 

We find that the mean nucleotide diversity (π) per gene does not differ between the two 328 

GCNs (Figure S9A; Table S6; Kolmogorov-Smirnov test, P = 0.15). In addition, the π values of 329 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.18.524537doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524537
http://creativecommons.org/licenses/by-nc-nd/4.0/


the promoter regions (2kb upstream of the transcription initiation site) are significantly higher 330 

than those of the gene (coding) regions (Figure S9A; Table S6; Kolmogorov-Smirnov test, P = 331 

0.03). This result may be due to relaxed selective constrain in promoter regions while possibly 332 

explaining why few TFs can bind to multiple genes in the GCN (Table S3). TFs are indeed 333 

conserved at the coding sequence level, especially at the functional domains, but higher 334 

amount of polymorphism of TF binding sites in the promoter can be indicative of complex and 335 

diverse regulation, for example in response to stressful conditions (Spivakov 2014; Sato et al. 336 

2016). Albeit, there is no difference in the nucleotide diversity at the promoter regions between 337 

the two GCNs (Figure S9A; Table S6).  338 

Furthermore, the genes for the metabolic GCN show lower Tajima’s D values than those 339 

of the cell-cycle GCN (Figure S9B; Table S6; Kolmogorov-Smirnov test, P = 0.04), suggesting 340 

more prevalent recent positive or negative selection pressure in the metabolic GCN. There is 341 

a very weak correlation between Tajima’s D and Ka/Ks ratio for the cell-cycle GCN and 342 

absence of correlation for the metabolic GCN (Figure S10A and S10B). As a negative 343 

correlation between Tajima’s D and Ka/Ks ratio is indicative of possible recent positive 344 

selection, the results could slightly hint to the occurrence of recent positive selection acting at 345 

more genes of the metabolic GCN (Figure S9B; Table S6). 346 

We further find significant, but opposite, correlations between nucleotide 347 

diversity/Tajima’s D and the contributions of the different DS for the two GCNs (Figure S10C 348 

and S10D). In the cell-cycle GCN, the contributions of different DS have significant positive 349 

correlation with nucleotide diversity and Tajima’s D (Figure S10C and S10E). This indicates 350 

that DS of high contribution to TDI profiles show high nucleotide diversity (and positive Tajima’s 351 

D), meaning that older genes are under stronger purifying selection than younger genes in this 352 

network because the sequence divergence of cell-cycle genes occurred at old time periods. In 353 

contrast, a negative correlation is observed between the contribution of each DS and 354 

nucleotide diversity or Tajima’s D in the metabolic network (Figure S10D and S10F). Hence, 355 

DS with high contribution show low nucleotide diversity and low Tajima’s D, especially DS10. 356 
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Therefore, it appears likely that the metabolic genes, which may be recently evolved, may be 357 

under recent positive selection due to the recent evolution of the drought response 358 

transcriptome. 359 

Drought-responsive genes under positive selection promote adaptive evolution in 360 

response to drought stress 361 

Genome scan analyses have been recently used to detect candidate genes under positive 362 

selection in six populations of S. chilense (Wei et al. 2022). We search for overlap between 363 

genes of two drought-response GCNs studied here and our previously identified 799 candidate 364 

genes under positive selection (Wei et al. 2022). We find 74 and 126 drought-responsive genes 365 

in the cell-cycle and metabolic networks, respectively under the list of positive selection 366 

candidate genes (Figure 6A; Table S7). This indicates that drought stress is likely an important 367 

driver of adaptation and these drought-response genes may play key roles for colonization of 368 

new arid or hyper-arid habitats. Similar numbers of drought-responsive genes likely under 369 

selection are observed across different populations of S. chilense encompassing different parts 370 

of the range, except for SH_LA4330 (Wei et al. 2022). The number of candidate genes 371 

belonging to the metabolic or cell-cycle GCNs is similar in the three central populations 372 

(C_LA1963, C_LA3111 and C_LA2931) (Figure 6A; Table S7). The most recent diverged 373 

highland population (SH_LA4330) contains the largest number of positively selected drought-374 

responsive genes (Figure 6A; Table S7) with a similar proportion of genes from both networks. 375 

Noticeably, in the two south-coast populations (SC_LA2932 and SC_LA4107) a large majority 376 

of genes under positive selection belong to the metabolic GCN (showing absence of cell-cycle 377 

genes in population SC_LA2932, Figure 6A; Table S7). 378 

Previous studies have demonstrated that positively selected genes exhibit pleiotropy in 379 

local adaptation, and proposed connectivity of molecular networks for quantifying pleiotropic 380 

effects (Wagner et al. 2007; Erwin and Davidson 2009; Hämälä et al. 2020). To address the 381 

role that (putatively) positively selected genes play in drought-responsive networks, we 382 
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compare the gene connectivity of our candidate genes under selection in the two networks 383 

(Figure 6B; Table S8). In the metabolic network, the connectivity of positively selected genes 384 

(0.55 ± 0.10) is significantly higher than other drought-responsive genes (0.44 ± 0.12) (Figure 385 

S11A; Kolmogorov-Smirnov test, P = 0.017), but we do not observe such significant difference 386 

for the cell-cycle network (Figure S11A; Kolmogorov-Smirnov test, P = 0.43). Furthermore, the 387 

connectivity of positively selected genes of the metabolic network is much higher than those 388 

from the cell-cycle network in six populations (Figure 6B; Table S8; Kolmogorov-Smirnov test, 389 

P = 0.007). This result suggest that highly pleiotropic genes in the metabolic GCN may have 390 

facilitated the recent colonization of new habitats (Hämälä et al. 2020) during the divergence 391 

process of S. chilense. In contrast, the connectivity of positively selected genes in the cell-392 

cycle network is significantly lower (Figure S11A). Therefore, we suggest that the two networks 393 

underwent different evolutionary selective pressures during the range expansion of S. chilense.  394 

Finally, we compare the age of the selective sweep at the candidate genes of the two 395 

GCNs based on the results in Wei et al. (2022). We find that sweep ages at the cell-cycle 396 

genes are slightly younger than at those of the metabolic network, especially in the three 397 

highland populations (C_LA2931, C_LA3111 and SH_LA4330; Figure S11B and S11C; Table 398 

S8). This suggest that drought adaptation is in line with the inferences of demography and 399 

colonization found in our previous studies (Stam et al. 2019; Wei et al. 2022). Interestingly, we 400 

find significantly positive correlation between the age of the sweep and gene connectivity for 401 

both GCNs and across all six populations (Figure 6C). Figure 6D and 6E provide the 402 

visualizations of two networks and exhibit the relationship between sweep age and connectivity 403 

(with weighted connection strength greater than 0.65 between any two genes). In other words, 404 

it appears that selective sweeps tend to happen first at more connected genes and, 405 

subsequently at less connected genes, during the history of colonization/adaptation of new 406 

arid habitats. To our knowledge, this is the first report of a correlation between the age of a 407 

selective sweep and the connectivity of genes in a network. To obtain more evidence to support 408 

this inference, we also calculate the tMRCA (time to most recent common ancestor) to estimate 409 
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the age of drought-responsive genes based on allele frequency of SNPs. The positive 410 

correlation between tMRCA of drought-responsive genes under the positive selection and 411 

connectivity also is observed (Pearson’s cor=0.69, P = 2.47e-5), consistent with the correlation 412 

with sweep age. Moreover, the low correlation (Pearson’s cor=0.31, P = 0.14) is observed 413 

between tMRCA of other (non-sweep) drought-responsive genes and connectivity. This may 414 

indicate a pattern of polygenic adaptation in GCNs where the positive selection acts first on 415 

core genes (high connectivity) of networks, and subsequently on the marginal genes (less 416 

connectivity). These positively selected genes ultimately regulate the expression of other 417 

genes in the network. 418 

 419 

Discussion 420 

In this study, we identify two drought-responsive GCNs by analyzing gene expression profiles 421 

of plants growing under control and drought conditions. Two GCNs involved in cell-cycle and 422 

metabolic biological processes are detected and their structural relevance are confirmed by 423 

TF/TFBS predictions. These networks represent two different strategies for drought response 424 

(Farooq et al. 2009; Danilevskaya et al. 2019). We then demonstrate that the cell-cycle network 425 

is evolutionary older and more conserved than the metabolic network. Despite the ancient 426 

history of these two GCNs, we further show that both GCNs contribute to the recent history of 427 

adaptation to drought conditions (aridity) when S. chilense colonizes new habitats around the 428 

Atacama desert. The joint analyses of genomic and transcriptomic data indicates that 1) at the 429 

transcriptome level, metabolic GCN is more sensitive to mutation with younger selection 430 

events in response to new environments, 2) cell-cycle GCN is less evolvable, explaining the 431 

more divergent transcriptome between drought and normal conditions, and 3) both networks 432 

still present signals of evolution under positive selection in core elements of the GCN, while 433 

peripheral genes of the network can be involved adaptation in later stages of the colonization 434 

processes. 435 
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Drought tolerance is mediated by regulation in cell proliferation and metabolism 436 

The organ development can be roughly divided into cell proliferation and cell expansion, with 437 

water deficit being a limiting factor for both processes (Alves and Setter 2004; Verelst et al. 438 

2013). Drought stress reduces the activity of the cell cycle and thus slows down the growth 439 

and development of plants. The down-regulated genes we find in the cell-cycle network also 440 

indicate that genes related to cell cycle are suppressed by drought stress possibly to restrict 441 

the cell division in S.chilense. Reduction of cell number due to mild drought stress is found in 442 

A. thaliana (Skirycz and Inzé 2010). This means that the cell-cycle response to drought may 443 

be very general and indirect. However, our speculations are mainly based on the aboveground 444 

tissues of S. chilense. The changes of fundamental metabolic activity may be a more early and 445 

variable drought-responsive strategy presumably related to an acclimation response (Harb et 446 

al. 2010). Plant water shortage is first reflected in changes in metabolic processes, such as 447 

accelerating the catabolism of macromolecules in order to regulate the penetration of tissues, 448 

to maintain physiological water balance, or slowing down metabolism to reduce energy and 449 

water consumption (Reddy et al. 2004; Gupta et al. 2020). In addition, the signaling pathways 450 

related to the metabolic gene network are also demonstrated to be a response to drought 451 

stress, for example, the abscisic acid (ABA) signaling pathway regulates the response to 452 

dehydration and optimizes water utilization (Harb et al. 2010; Wilkinson and Davies 2010). 453 

Although these two GCNs correspond to two different strategies of drought response, they are 454 

not isolated, but interact with one another in a time-dependent manner. Water deprivation and 455 

heat first change the metabolic processes leading to stomata closure, which leads then to cell 456 

cycle network to be affected under long-term lack of water. In return, the increased or 457 

decreased cell cycle gene expression affects the further physiology and metabolism of the 458 

plant (Gupta et al. 2020). Indeed, drought-responsive strategies regulating the cell cycle 459 

appear to be activated later than metabolism processes, as glucose metabolism rapidly follows 460 

drought stress, whereas the accumulation of amino acids which is a crucial part of the cell 461 

cycle response starts at a later time in response to drought (Fàbregas and Fernie 2019). 462 
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Rewiring of ancient GCNs drives recent adaptation to dry environments 463 

The phylostratigraphic analyses support that most drought-responsive genes in S. chilense 464 

originated in the early to middle stages of plant evolutionary history. This is consistent with the 465 

time of origin of multiple abiotic response genes in Arabidopsis thaliana (Mustafin et al. 2019). 466 

The divergence times of land plants and flowering plants are important periods for the origin 467 

drought-responsive genes. The divergence of main plant groups have been linked to recurrent 468 

whole genome duplication events that promoted gene family expansions, gene neo- and sub-469 

functionalization and genome rearrangements (Wang et al. 2012; Clark and Donoghue 2018). 470 

Those genomic processes likely promote the enrichment of drought-responsive GCNs. For 471 

instance, key drought-response morphological traits such stomata are present in the ancestral 472 

land plant. However, stomatal genes predate the divergence of land plants showing multiple 473 

duplications along the evolution of the group, and their response to environmental cues such 474 

humidity, light, CO2 and ABA are widely distributed and possibly ancestral to land plants (Clark 475 

et al. 2022). Therefore, we suggest that our two drought-responsive networks were mainly 476 

shaped before or along the divergence of land plants and expanded subsequently.  477 

Previous studies show that TAI and TDI profiles across embryogenesis, seed 478 

germination and transition to flowering in A. thaliana exhibit a ‘hourglass pattern’ (older and 479 

conserved transcriptomes are preferentially active at the mid-development stages; Quint et al. 480 

2012; Drost et al. 2016). Though, our TAI/TDI profiles for the two developmental stages remain 481 

stable under the same conditions (Figures 4C and 5B). The similar TAI/TDI between 482 

developmental stages we obtained is certainly because our analyses focused on two modules 483 

(co-expressed genes) highly correlated to the differential expression between drought and 484 

control conditions (Figure S2D). Therefore, developmental stage-specific response genes are 485 

underrepresented in the two analyzed networks. However, increased TAI/TDI values under 486 

drought conditions suggest that stress response transcriptomes are composed of relatively 487 

more recently diverged genes, and therefore are more evolvable. We then highlight that this 488 

inference needs to be verified in other stress responsive transcriptomes (salt, heat, cold, etc.). 489 
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We then speculate, that although abiotic stress response regulatory networks are mostly 490 

composed of highly ancient and conserved elements across species (Chen and Zhu 2004), 491 

networks retain the ability to change expression patterns to respond rapidly to environmental 492 

changes or explore new ecological niches. Moreover, given the pleiotropic nature of the abiotic 493 

stress-response traits, we can expect shared patterns of evolution (at the constitutive and 494 

expression components) of the networks for different stress conditions (and possible trade-offs 495 

between traits and GCNs). 496 

Extensive network rewiring in relatively recent and short time-frames have been found in 497 

maize and tomato in response to domestication (Swanson-Wagner et al. 2012; Koenig et al. 498 

2013). It is therefore not surprising to find signs of adaptive variation in core elements of rather 499 

conserved regulatory networks related to the colonization processes of new habitats. The 500 

genetic (and morphological) divergence of the southern populations, southern coastal and 501 

highland marginal, is recent but strong (Raduski and Igić 2021). It is congruent with theoretical 502 

results showing that gene networks with higher mutation sensitivity (more evolvable) can 503 

facilitate local adaptation, increasing gene expression and lead to accelerated range 504 

expansion processes in abiotic environmental gradients (Deshpande and Fronhofer 2022). 505 

Complementarily, our empirical approach shows the existence of two regulatory networks with 506 

different evolutionary tendencies, one more conserved than the other and with different gene 507 

expression responses. One GCN would exhibits a faster and more variable response 508 

(metabolic) and the other a later (delayed) but more constitutive response (cell-cycle) to 509 

drought. Despite the differences in gene age and variation between the networks, our results 510 

show that both GCNs have undergone sufficient changes leading to their rewiring during the 511 

divergent process of colonization of S. chilense around the Atacama. Nevertheless, genes in 512 

the metabolic network show more recent evolution, with new genes members appearing in S. 513 

chilense, concomitantly with more variable expression in the drought transcriptome. 514 

 These drought-responsive genes to S. chilense likely facilitated the adaptation of this 515 

species to unique arid and hyper-arid habitats, especially when colonizing the southern part of 516 
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the range. Indeed, population structure based on SNPs indicates that drought-responsive 517 

genes reflected adaptation/colonization to arid habitats in S. chilense (Figure S8). Importantly, 518 

we found about 200 drought-responsive genes previously identified as candidate genes under 519 

positive selection (i.e. located within sweep regions; Wei et al. 2022). This confirms that 520 

drought stress is an important driver of ecological divergence in S. chilense. We finally provide 521 

some indirect evidence that changes at central genes (with higher connectivity) can be 522 

responsible for the short-term response to selection (Jovelin and Phillips 2009; Luisi et al. 2015) 523 

and promote rewiring of the gene network (Koubkova-Yu et al. 2018). Thus, highly connected 524 

genes may be targets of positive selection during the first phase of the environmental change 525 

or colonization to contrasting environments, and may be keys for ‘piggybacking’, defined as 526 

the change in gene expression of a focal gene driving phenotypic change. 527 

 528 

Limitations and further work 529 

A limitation of our gene expression study is that our transcriptomic analyses are based on 530 

individuals from a single location (near the putative region of origin of the species; Wei et al. 531 

2022), while variability in gene expression and phenotypic response has been observed 532 

between different populations (Mboup et al. 2012; Fischer et al. 2013; Nosenko et al. 2016). 533 

Further expression studies including plants from multiple locations would be useful to verify 534 

that the identified GCNs are also present and expressed in other populations and study the 535 

possible variation in the most southern populations. More evidence based on multiple 536 

populations is needed to confirm the ‘piggybacking’ phenomenon of gene expression in S. 537 

chilense. Additional support on the variability of transcriptome evolution across populations as 538 

well as long read sequencing of more genomes will be beneficial in assessing the role of gene 539 

duplication and gene deletion yielding the evolution of the gene networks. Such studies would 540 

also allow the analysis of evolution of adaptive gene networks and polygenic selection 541 

occurring for complex traits such as drought tolerance. Finally, more detailed studies with a 542 
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larger sample size from the field will help to discover other gene networks and their interactions 543 

related to abiotic stress and the evolution of the species. A detailed discussion of the potential 544 

biases associated with the use of multiplied accessions at TGRC (Tomato Genetics Resource 545 

Center, UC Davis, USA) compared to samples from natural populations is found in Wei et al. 546 

(2022). Sampling and experimental work in the field would improve the resolution of 547 

transcriptome and genomic studies, in order to assess phenotypic differences between organs 548 

and stages of development and thus extend the knowledge to other relevant characteristics 549 

such as secondary metabolism, which is known to have relevant influence on biotic and abiotic 550 

interactions (Mes et al. 2008; Bolger et al. 2014; Tapia et al. 2022). 551 

 552 

Material and methods 553 

Plant material and drought stress experiment 554 

Seeds of S. chilense accession LA1963 were acquired from Tomato Genetics Resource Center 555 

(TGRC), University of California at Davis. Seeds were soaked in 50% household bleach (2.7% 556 

sodium hypochlorite) for 30 minutes and rinsed thoroughly with water according to instructions 557 

provided by TGRC. The rinsed seeds were sown into pots containing sterilized soil with perlite 558 

and sand (1:2) and grown under controlled conditions (22C day/20C night, 16h light/8h dark 559 

photoperiod). On the 24th day after sowing, all plants were randomly distributed into two 560 

groups and watered with a sufficient volume to reach the bottom of containers (30-40 ml). The 561 

first group of plants were maintained under normal watering condition, watered with a sufficient 562 

volume of water (50-55 ml) on 4, 7 and 11 days after start of the experiment (day 24). A 563 

moderate water stress regime was imposed for second group of plants by stopping irrigation 564 

for 7 days followed by re-watering with 25 ml of water. On day 12, newly expanded leaf (1-1.5 565 

cm length) and shoot apices with immediately surrounding leaf primordia (shoot apices and 566 

P1-P5 leaf primordia) from each group were dissected carefully using razor blades and 567 

immediately grounded into fine powder in liquid nitrogen for RNA extraction. Four biological 568 
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replicates were used for all RNA-Seq experiments from each tissue type. Each replicate of leaf 569 

and shoot apex included the pooled tissues from five and six plants, respectively. 570 

RNA extraction and cDNA library construction 571 

Libraries were constructed and named as follows: leaves under control (optimal watering) 572 

condition (CL-A to D), shoot apices under control condition (CSA-E to H), leaves under drought 573 

condition (DL-I to L), and shoot apices under drought condition (DSA-M to P). Tissues were 574 

lysed using zircon beads in Lysate Binding Buffer containing Sodium Dodecyl Sulfate. mRNA 575 

was isolated from 200 μl of lysate per sample with streptavidin coated magnetic beads for 576 

indexed non-strand specific RNA-Seq library preparation according to the method described 577 

by (Kumar et al. 2012). 1 μl of 12.5 μM of 5-prime biotinylated polyT oligonucleotide and 578 

streptavidin-coated magnetic beads were used to capture mRNA and isolate captured mRNAs 579 

from the lysate, respectively. Equal amount of mRNA of each experimental group were used 580 

to construct 16 libraries. For library construction the rapid version of Kumar et al. (2012) RNA-581 

sequencing method (Townsley et al. 2015) was used. Each sample was barcoded using 582 

standard Illumina adaptors 1-16 to allow up to 16 samples to be pooled in one lane of 583 

sequencing on Illumina HiSeq4000. The libraries were eluted from the pellet with 10 μl 10 mM 584 

Tris pH 8.0 and pooled as described by Kumar et al. (2012). Quantification and quality 585 

assessment of resulting libraries were performed on Fragment Analyzer (FGL_DNF-474-2- HS 586 

NGS Fragment 1-6000bp.mthds) and sequenced using the Illumina HiSeq 4000 platform to 587 

generate 100 bp single-end reads at the Vincent J. Coates Genomic Sequencing Facility at 588 

UC Berkeley.  589 

Transcriptome and genome data processing and mapping 590 

For transcriptome data, the adapters were removed from raw reads by two consecutive rounds 591 

using BBDuk in BBTools v38.90 (Bushnell 2014). Two sets of parameters were used in two 592 

rounds respectively: first round ‘ktrim=r k=21 mink=11 hdist=2 tpe tbo minlength=21 593 

trimpolya=4’; second round ‘ktrim=r k=19 mink=9 hdist=1 tpe tbo minlength=21 trimpolya=4’. 594 
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Then Low-quality reads were also removed with BBDuk using parameters ‘k=31 hdist=1 595 

qtrim=lr trimq=10 maq=12 minlength=21 maxns=5 ziplevel=5’. The clean reads of each sample 596 

were mapped to the S. chilense reference genome (Silva-Arias et al. submited) using BBMap 597 

in BBTools. The SAM files were then converted and sorted to BAM files using Samtools v1.11 598 

(Wysoker et al. 2009). The number of reads were mapped to each gene were counted via 599 

featureCounts v2.0.1 in each sample (Liao et al. 2014). To eliminate the differences between 600 

samples, the gene expression level was normalized using the TPM (Transcripts Per Kilobase 601 

Million) method (Wagner et al. 2012). In addition, the transcriptome data also was processed 602 

and mapped using CLC Genomics Workbench 10 (Liu and Di 2020) based on reference 603 

genome of S. lycopersicum (ITAG 3.0; The Tomato Genome Consortium 2012). Parameters 604 

considered for filtration were adapter trimming, removing the low-quality reads (Q < 25), 605 

removal of bases of the start of a read and the end of a read (Score < 25). Reads were mapped 606 

to the ITAG 3.0 reference genome using Large Gap Read Mapping tool of Transcript Discovery 607 

Plugins of CLC Genomics Workbench 10. Annotated reference sequences predicted by CLC 608 

bio Transcript Discovery Tool were extracted and used as reference in a subsequent RNA-Seq 609 

analysis. Finally, TPM value was also calculated. 610 

The relationships among transcriptome samples were evaluated using the TPM values. 611 

The correlation coefficient between two samples was calculated to evaluate repeatability 612 

between samples using Pearson’s test. Principal component analysis (PCA) was performed 613 

using the plotPCA() function in DESeq2 R package (Love et al. 2014).  614 

Identification of differentially expressed genes and gene co-expression analysis 615 

Differential expression analysis of groups among the different conditions and tissues was 616 

performed using the DESeq2 R package. The raw read counts were inputted to detect 617 

Differential Expressed Genes (DEGs). The P-value ≤ 0.001, the absolute value of 618 

log2FoldChange ≥ 1 and a false discovery rate (FDR) adjusted P ≤ 0.001 were classified as 619 

differentially expressed genes. 620 
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To identify the gene co-expression networks, weighted gene correlation network analysis 621 

(WGCNA) was constructed using TPM values to identify specific modules of co-expressed 622 

genes associated with drought stress (Langfelder and Horvath 2008). We first checked for 623 

genes and samples with too many missing values using goodSamplesGenes() function in 624 

WGCNA R package. We then removed the offending genes (the last statement returns 625 

‘FALSE’). To construct an approximate scale-free network, a soft thresholding power of five 626 

was used to calculate adjacency matrix for a signed co-expression network. Topological 627 

overlap matrix (TOM) and dynamic-cut tree algorithm were used to extract network modules. 628 

We used a minimum module size of 30 genes for the initial network construction and merged 629 

similar modules exhibiting > 75% similarity. To discover modules of significantly drought-related, 630 

module eigengenes were used to calculate correlation with samples with different conditions. 631 

The visualization of networks were created using Cytoscape v3.8.2 (Su et al. 2014). 632 

Identification of transcript factor families and transcript factor binding sites 633 

The protein sequences were obtained from the reference genome and annotation ‘gff’ file with 634 

GffRead (Pertea and Pertea 2020), and were used to identify TF families using online tool 635 

PlantTFDB v5.0 (Guo et al. 2007). Furthermore, the upstream 2000 bp sequences of the 636 

transcription start sites (TSS) were extracted as the gene promoter from the reference genome 637 

to detect TFBS. The TFBS dataset of relative species S. pennellii was also downloaded from 638 

Plant Transcriptional Regulatory Map (PlantRegMap, http://plantregmap.gao-lab.org/) as 639 

background of TFBS identification (Tian et al. 2020). Then, the TFBS of S. chilense was 640 

identified using FIMO program in motif-based sequence analysis tools MEME Suit v5.3.2 641 

(Bailey et al. 2015). The TFBS was extracted with p < 1e-5 and q < 0.01. 642 

Gene ontology (GO) analysis 643 

We first constructed the dataset of assigned GO terms for all genes used protein sequence by 644 

PANTHER v16.0 (Mi et al. 2021). Then, the GO enrichment analysis of drought-responsive 645 

genes was performed using clusterProfilter v3.14.2 (Yu et al. 2012). Benjamini–Hochberg 646 
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method was used to calibrate P value, and the significant GO terms were selected with P-value 647 

below to 0.05. 648 

Construction of phylostratigraphic map 649 

We performed phylostratigraphic analysis based on the following steps. First, the phylostrata 650 

(PS) was defined according to the full linkage of S. chilense from NCBI taxonomy database. 651 

The similar PS was merged and finally 18 PS were generated (Figure 4A). Second, the protein 652 

sequences were blast to a database of non-redundant (nr) proteins downloaded from NCBI 653 

(https://ftp.ncbi.nlm.nih.gov/blast/db/) with a minimum length of 30 amino acids and an E-value 654 

below 10-6 using blastp v2.9.0 (Camacho et al. 2009). Third, each gene was assigned to its PS 655 

by the following criterion: if no blast hit or only one hit of S. chilense with an E-value below 10-656 

6 was identified, we assigned the gene to the youngest PS18. When multiple blast hits were 657 

identified, we computed lowest common ancestor (LCA) for multiple hits using TaxonKit v0.8.0 658 

(Shen and Ren 2021) and then assigned LCA to specific PS.  659 

Construction of divergence map 660 

We performed divergence stratigraphy analysis to construct sequence divergence map of S. 661 

chilense using function divergence_stratigraphy() of R package ‘orthologr’ (Drost et al. 2015) 662 

following four steps: 1) the coding sequences for each gene of S. chilense and S. pennellii 663 

(NCBI assembly SPENNV200) were extracted from their reference and annotation files. 2) We 664 

identified orthologous gene pairs of both species by choosing the best blast hit for each gene 665 

using blastp. We only considered a gene pair orthologous when the best hit has an E-value 666 

below 10-6, the gene pair is considered orthologous; otherwise, it is discarded. 3) Codon 667 

alignments of the orthologous gene pairs were performed using PAL2NAL (Suyama et al. 668 

2006). Then, Ka/Ks values of the codon alignments were calculated using Comeron’s method 669 

(Comeron 1995). And 4) all genes were sorted according to Ka/Ks values into discrete deciles, 670 

which are called divergence stratum (DS).  671 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.18.524537doi: bioRxiv preprint 

https://ftp.ncbi.nlm.nih.gov/blast/db/
https://doi.org/10.1101/2023.01.18.524537
http://creativecommons.org/licenses/by-nc-nd/4.0/


Estimation of transcriptome age index and transcriptome divergence index 672 

The TAI is computed based on phylostratigraphy and expression profile, which assign each 673 

gene to different phylogenetic ages by identification of homologous sequences in other species 674 

(Domazet-Lošo et al. 2007). The evolutionary age of each gene was quantified combining its 675 

PS and expression level to obtain weighted evolutionary age. Finally, weighted ages of all 676 

genes are averaged to yield TAI, which is defined as the mean evolutionary age of a 677 

transcriptome (Domazet-Lošo and Tautz 2010). A lower value of TAI describes an older mean 678 

evolutionary age, whereas a higher value of TAI denotes a younger mean evolutionary age 679 

and implies that evolutionary younger genes are preferentially expressed in the corresponding 680 

sample or condition (Domazet-Lošo and Tautz 2010; Piasecka et al. 2013). The TDI represents 681 

the mean sequence divergence of a transcriptome quantified by divergence strata (DS) and 682 

gene expression profile (Quint et al. 2012). The genes are assigned to different DS and then 683 

weighted by their expression level to yield the TDI. A lower value of TDI describes a more 684 

conserved transcriptome (in terms of sequence dissimilarity), whereas a higher value of TDI 685 

denotes a more variable transcriptome. Here, we calculate TAI and TDI profiles in different 686 

samples using PlotSignature() function of the myTAI R package. 687 

Population genetics analysis and detection of positive selection on drought-responsive 688 

genes 689 

Whole-genome sequence data from six populations S. chilense (five individuals each) 690 

previously analyzed in (Wei et al. 2022; BioProject PRJEB47577) were used to calculate 691 

population genetics statistics for coding and promoter region sequences for all genes identified 692 

in the GCNs. Single nucleotide variants (SNPs) based on the short-read alignment to the new 693 

reference genome for S. chilense (Silva-Arias et al. submitted) using the same methods in Wei 694 

et al. (2022). Population genetics statistics namely, nucleotide diversity (π) and Tajima’s D 695 

were calculated with ANGSD v0.937 (Korneliussen et al. 2014) over gene and promoter 696 

regions. These statistics first were calculated at per site in gene and promoter regions, and 697 
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then we used a R script (https://gitlab.lrz.de/population_genetics/s.chilense-drought-698 

transcriptome) to obtain statistics in each gene and promoter regions. PCA on SNP data from 699 

30 whole genomes was also performed using GCTA (v1.91.4; Yang et al. 2011). The genetic 700 

structure inference was performed using ADMIXTURE v1.3.0 (Alexander et al. 2009). 701 

Drought-responsive genes under positive selection were extracted by blast (e-value < 702 

1e-6) between drought-responsive genes identified in this study and the genes located inside 703 

sweep regions in our previous study using S. pennellii as the reference genome. We also use 704 

the sweep ages obtained in Wei et al. (2022).  705 

Estimation of allele age  706 

We implemented in GEVA (Genealogical Estimation of Variant Age; Albers and McVean 2020) 707 

to dating genomic variants in the drought-responsive genes. We generated input for GEVA 708 

based on the recombination rate 3.24 x 10-9 per site per generation (based on the overall 709 

recombination density in S. lycopersicum [1.41 cM/Mb] Anderson and Stack 2002; Nieri et al. 710 

2017; and within the possible range of rates in Wei et al. 2022). We used population size (Ne) 711 

20,000 and mutation rate 5.1 x 10-9 (Roselius et al. 2005; Wei et al. 2022), and then relied on 712 

the recombination clock to estimate the age of alleles (tMRCA). 713 
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Figure legends 984 

 985 

Figure 1. Exploratory analyses of RNA-seq differential expression patterns in 16 libraries of Solanum 986 

chilense. (A) PCA reveals stronger clustering associated with the experimental conditions. (B) Heatmap 987 

plot of sample correlation (Pearson’s test) reveals exact drought specificity. RNAseq libraries 988 

abbreviations, CL-A to CL-D: leaves in control condition, CSA-E to CSA-H: shoot apex in control 989 

condition, DL-I to DL-L: leave in drought condition, DSA-M to DSA-P: shoot apex in drought condition. 990 

Color scale indicates correlation coefficients from high values in red to low values in white. 991 

 992 

Figure 2. Identification of drought-response networks in Solanum chilense. (A) Differentially 993 

Expressed Genes (DEGs) identified from three comparison groups from left to right: 8 control versus 8 994 

drought samples, 4 control leaves versus 4 drought leaves, 4 control shoot apices versus 4 drought 995 

shoot apices. Red indicates significantly upregulated genes, and green indicates significantly 996 

downregulated genes between control and drought samples using fold change higher than two (P ≤ 997 

0.001). (B) Venn diagram show 2,484 shared DEGs in three comparison groups. (C) The correlation 998 

between samples expression patterns for the eight modules. Color scale indicates correlation 999 

coefficients from high positive coefficient in red to high negative coefficient in green. No correlation is 1000 

indicated in white. 1001 

 1002 

Figure 3. Gene ontology (GO) term enrichment in the cell-cycle and metabolic drought-response 1003 

networks. (A) Top 20 terms of biological process. (B) Top 20 terms of cellular component. 1004 

 1005 

Figure 4. Transcriptome age index (TAI) profiles of cell-cycle and metabolic networks. (A) 1006 

Phylostratigraphic map of two networks and phylogeny used in the search for the evolutionary origin of 1007 

Solanum chilense genes. Numbers in parentheses denote the number of genes assigned to each 1008 

phylostratum (PS) in cell-cycle and metabolic network, respectively. (B) Gene ratio in each PS for two 1009 

networks. (C) TAI profiles of two networks across samples. (D) TAI contributions split according to 1010 

different PS in cell-cycle network. (E) TAI contributions split according to different PS in metabolic 1011 

network. 1012 

 1013 

Figure 5. Transcriptome divergence index (TDI) profiles of cell-cycle and metabolic networks. (A) 1014 

Distribution of Ka/Ks ratio of genes in two networks, respectively. (B) TDI profiles of two networks across 1015 

samples. (C) TDI contributions split according to different DS in cell-cycle network. (D) TDI contributions 1016 

split according to different DS in metabolic network. 1017 

 1018 
Figure 6. Drought-responsive genes under positive selection. (A) The candidate genes under positive 1019 

selection were identified in our previous study (Wei et al. 2022). The bar plot shows that number of 1020 

positive selection genes in the cell-cycle and metabolic networks, the pie charts denote positive selection 1021 

genes of two networks in six populations. The size of pie represents number of genes (see also Table 1022 

S6). (B) The connectivity of drought-responsive genes under positive selection in the two networks and 1023 
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six populations. (C) The correlations between connectivity and age of drought-responsive genes under 1024 

positive selection in the two networks and six populations. (D) The visualization of cell-cycle network. 1025 

(E) The visualization of metabolic network. Red-to-orange colored dots denote candidate genes under 1026 

positive selection identified in Wei et al. (2022). The red-to-orange scale denote the ages of selective 1027 

sweeps. The location of the dots closer to the center of the networks indicates that the gene exhibits 1028 

higher connectivity. 1029 
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