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Abstract  

Background: Phase 2a trials in tuberculosis typically use early bactericidal activity (EBA), the 
decline in sputum colony forming units (CFU) over 14 days, as the primary outcome for testing 
the efficacy of drugs as monotherapy. However, the cost of phase 2a trials can range from 7 to 
19.6 million dollars on average, while more than 30% of drugs fail to progress to phase 3. Better 
utilizing preclinical data to predict and prioritize the most likely drugs to succeed will thus help 
accelerate drug development and reduce costs. We aim to predict clinical EBA using preclinical 
in vivo pharmacokinetic-pharmacodynamic (PKPD) data and a model-based translational 
pharmacology approach. 
 
Methods and Findings: First, mouse PK, PD and clinical PK models were compiled. Second, 
mouse PKPD models were built to derive an exposure response relationship. Third, translational 
prediction of clinical EBA studies was performed using mouse PKPD relationships and informed 
by clinical PK models and species-specific protein binding. Presence or absence of clinical 
efficacy was accurately predicted from the mouse model. Predicted daily decreases of CFU in the 
first 2 days of treatment and between day 2 and day 14 were consistent with clinical observations.  
 
Conclusion: This platform provides an innovative solution to inform or even replace phase 2a 
EBA trials, to bridge the gap between mouse efficacy studies and phase 2b and phase 3 trials, and 
to substantially accelerate drug development. 
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Introduction  1 

Mycobacterium tuberculosis remains one of the deadliest infectious agents globally. 2 

Tuberculosis (TB) drug discovery and development activity has increased emphasis on shorter, 3 

more universal regimens to treat all TB cases independent of resistance status1,2. However, with 4 

an increasing number of new drugs and limited resources for clinical trials, further innovation of 5 

drug development is imperative to identify effective drugs and regimens more efficiently and with 6 

higher confidence1–3. A phase 2a early bactericidal activity (EBA) study is typically the first 7 

clinical evaluation of novel anti-TB drug efficacy with the primary purpose of detecting the 8 

presence and magnitude of EBA and informing possible dose-response relationships4. However, 9 

the cost of phase 2a trials can range from 7 to 19.6 million dollars on average, while more than 10 

30% of drugs fail to progress to phase 35. This highlights the challenges inherent in translating 11 

results in preclinical models into successful clinical outcomes. Traditional translation of findings 12 

from preclinical in vivo models, by pharmacokinetic modeling and allometric scaling to identify 13 

the dosing regimen in humans that best matches the efficacious drug exposure in animals, is 14 

insufficient. Mechanistic mouse-to-human pharmacokinetic-pharmacodynamic (PKPD) models 15 

that describe the bacterial kill and PKPD relationships are better at predicting clinical results, 16 

including the results of late-stage trials6–8. Therefore, our objective is to establish a relevant and 17 

robust model-based translational platform that can reliably link preclinical to clinical drug 18 

development and predict early efficacy trials for anti-TB drugs across different compound classes 19 

(Figure 1). We compiled a comprehensive preclinical and clinical database of PK, PD, and baseline 20 

bacterial growth data for nine drugs. The drugs used to develop and validate our proposed platform 21 
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were rifampin (RIF), isoniazid (INH), pyrazinamide (PZA), rifapentine (RPT), bedaquiline (BDQ), 22 

delamanid (DLM), pretomanid (PMD), moxifloxacin (MXF) and linezolid (LZD).  23 

The translational platform in the present study intends to increase the accuracy of 24 

preclinical to clinical translation by enabling quantitative prediction of clinical studies from 25 

preclinical outputs and serves as a foundation for model-informed TB drug discovery and 26 

development. 27 

  28 
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Methods  29 

Drug dataset for model building and validation 30 

To build our model and evaluate its predictive accuracy for clinical EBA, nine first- and 31 

second-line anti-TB drugs (BDQ, DLM, INH, LZD, MXF, PMD, PZA, RIF, RPT) were selected 32 

for which mouse PK, mouse PD, human population PK models and human clinical EBA data were 33 

available.  34 

Data required to assess preclinical drug efficacy  35 

A large database of PK and PD data in mice was collected (Figure 2, Table S1). PK 36 

experiments in BALB/c mice were dose-ranging (2-10 dose levels), single or multiple oral dosing 37 

for up to 8 weeks, with 29-238 observations of plasma concentration per drug. PD experiments in 38 

BALB/c mice infected through aerosol delivery were dose-ranging (2-15 dose levels) with 39 

treatment durations of 21-70 days, and 55-252 observations of lung CFU counts per drug. Most 40 

experiments were performed at Johns Hopkins University (Table S1). Lung CFU counts were 41 

measured by plating lung homogenates at designated time points. In case of murine data showing 42 

unexpected trends such as a double peak per oral dose in a PK profile e.g. DLM mouse PK (Figure 43 

2a), data accuracy was confirmed in collaboration with experimentalists. 44 

Mouse PKPD model development 45 

An integrated mouse PKPD model was developed for each drug. PK data were described 46 

using one- or two-compartment models with first order absorption with or without delay, and 47 

saturable elimination when necessary. The bacterial growth dynamics without treatment was 48 

described using our previously published baseline model (Eq. S1)9. The baseline model captures 49 

the decreased rate of growth over time and attributes the decline to time- and bacteria-dependent 50 

immune control over the infection. The drug effect, measured as the log10 CFU drop independent 51 
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of the immune effect over time, was incorporated using a sigmoidal Emax relationship (Eq. S2). 52 

A delay effect (Kd) was included to mouse PKPD models to establish an indirect relationship 53 

between plasma drug concentrations and drug effect at the site of action (Eq. S3 & S4). Detailed 54 

model development and model diagnostics can be found in supplemental materials. 55 

Prediction of the outcomes for clinical EBA studies 56 

The PKPD relationship quantified in mice was used to predict the clinical EBA. Drug 57 

concentrations in humans were simulated based on clinical population pharmacokinetic models 58 

(Table S1) to drive the concentration-effect relationship in the clinical predictions. Where clinical 59 

population PK models were unavailable, allometric scaling from mouse PK was used10. Protein 60 

binding ratios between humans and mice (𝑓!!"#$%&
#'()

) were used to convert unbound plasma drug 61 

concentrations from human to mouse to translate the mouse PKPD relationships (Table S1)11–17.  62 

Clinical predictions for 9 drugs were simulated, with 14 unique studies at several dose 63 

levels were used for validation. Predictions were done by simulating CFU decline in 1000 virtual 64 

patients treated with the same dose as reported in the clinical EBA study. The baseline (Day 0) 65 

sputum values used were derived from the mean value for each arm reported in each study, and 66 

the variability in baseline bacterial burden between individuals used was the baseline variance 67 

among all clinical studies. The net growth and death of bacteria without treatment was assumed to 68 

be zero (Eq. S5). Predictions were reported as the mean and standard deviation of the predicted 69 

time course of CFU decline. For drugs where observed data were available, the data were 70 

overlayed for visual inspection. Finally, quantitative predictions of commonly reported parameters 71 

(change from baseline to Day 2 and from Day 2 to Day 14) were compared to the observed at 72 

various dose levels along a line of unity.  73 

Software and Statistical method 74 
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Preclinical and clinical PKPD modelling was performed in NONMEM (7.4.3) through PsN 75 

(4.8.1.). For LZD preclinical PK, Monolix (5.0.0) was used. Models were developed following 76 

numerical and graphical diagnostics, assessing drop in objective function value through the 77 

likelihood ratio test and parameter precision, as well as goodness-of-fit plots and visual predictive 78 

checks, respectively, in addition to pharmacological relevance. Data transformation and graphical 79 

output were performed in R (4.1.3) through the RStudio (2022.02.3) interface using the xpose4 80 

and tidyverse packages.  81 

  82 
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Results  83 

Large preclinical and clinical PK and PD database of nine TB drugs   84 

We collated a rich longitudinal dataset of mouse PK (plasma concentrations, 1146 data 85 

points) and PD data (lung CFU counts, 4042 data points), as well as human population PK models 86 

and human PD data (sputum CFU counts) (Table S1). PD experiments were done mostly in mouse 87 

infection models infected via aerosol with an inoculum size no less than 3.5 log10 CFU/ml and 88 

incubation periods of 13-17 days, prior to the start of treatment. Exceptions were LZD, which had 89 

an incubation period of 5 days, but had a similar inoculation size of larger than 3.5 log10 CFU/ml, 90 

and RPT which had an incubation period of 41 days but a lower inoculation size than 3.5 log10 91 

CFU/ml.  92 

Human PK data were simulated using published models from literature (Table 1 and Figure 93 

2C). Human PD data with a total of 260 human sputum CFU datapoints originating from Phase 2a 94 

trials across 13 different studies ranging from 2 to 14 days were used to validate our Phase 2a EBA 95 

predictions.  96 

 97 

Preclinical PK and PKPD models adequately described mouse data 98 

The final PK and PKPD model parameter estimates are shown in Table 1. A 2-compartment 99 

model with saturated clearance described via the Michaelis Menten equation best described the 100 

mouse plasma concentration data for BDQ, INH, LZD, PMD, PZA and RIF. MXF was best 101 

described using a 2-compartment model with linear elimination, RPT by a 1-compartment model 102 

with saturated elimination, and DLM by a 1-compartment model with linear elimination. Visual 103 

predictive checks of the final model for both mouse PK and PKPD data showed good fits (Figures 104 

S1 & S2). The exposure-response relationships for each drug in mouse infection models are 105 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.18.524608doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524608


 9 

summarized in Table 1 and Figure S4 and aligned with clinical knowledge of the efficacy of each 106 

drug.  107 

 108 

Clinical EBA was well predicted by translational platform 109 

The translational platform predicted clinical EBA in TB patients receiving monotherapy 110 

with the nine drugs as shown in Figure 3. Our predictions overlapped well with the observed data 111 

across multiple doses and timepoints for most of the drugs. BDQ and LZD had slight 112 

overpredictions at the later time, and RPT showed activity up to 5 days after a single dose, whereas 113 

our model predicted limited declines in CFU.  114 

Agreement between predicted and observed quantitative change in CFU is shown in Figure 115 

4 as a correlation plot for EBA at time intervals of 0-2 days and 2-14 days. Most predictions for 116 

0-2 days fell within 0.25 log10 CFU/ml/day of the observed EBA as indicated by the line of unity 117 

and corresponding dotted lines. Predictions for 2-14 days were even closer to observed. Predictions 118 

were overall consistent with the observed data in the clinical EBA studies for all nine drugs, except 119 

for RPT where activity was underpredicted.  120 

 121 

  122 
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Discussion 123 

We established a mouse-to-human translational platform by integrating a bacterial 124 

dynamics model, mouse PKPD relationships, clinical PK and species-specific drug plasma protein 125 

binding and validated the platform with clinical EBA data (Figure 1). The changes in sputum CFU 126 

counts over the first two days and from Day 2 to Day 14 in TB patients receiving monotherapy 127 

with each of nine TB drugs in 13 clinical EBA studies were successfully predicted, except for RPT 128 

(Figure 3 and 4). Of the clinical EBA studies included in our analysis, the RPT EBA trial was the 129 

only one in which EBA was assessed for multiple days after a single dose. Our human population 130 

PK model indicated RPT was mostly cleared from the body two days after a single dose, but the 131 

trial results indicated RPT was still exerting an effect on bacterial load between two and five days 132 

post-dose. It is possible that RPT has a post-antibiotic effect that was not sufficiently captured by 133 

the model18. The model overpredicted the EBA of BDQ. However, in the model, the active 134 

metabolite, BDQ-M2, was not considered. In mice, M2 is estimated to contribute approximately 135 

50 percent of the drug effect. One possible reason for the overprediction are the parent-to-136 

metabolite ratios between species differ. Future studies can account for these differences.    137 

 Murine TB models are routinely and often exclusively used as in vivo efficacy models in 138 

preclinical TB drug development19. As the inoculum size and incubation period for bacterial 139 

infection in the lung prior to treatment can affect drug response9, we standardized our inclusion 140 

criteria to experiments using the most common design with the incubation duration of 13-17 days 141 

and inoculum size to larger than 3.5 log10 CFU/ml. Incubation durations outside this range were 142 

considered only when data were otherwise not available, which was the case for LZD and RPT.  143 

 144 
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A key component to our model accuracy is the addition of the bacterial dynamics model. 145 

Mouse and human immune activation against TB infection differ significantly, therefore the 146 

underlying baseline of bacterial dynamics will differ. Subtracting the mouse immune effect on 147 

bacterial decline more accurately estimates the drug contribution to CFU decline. Without such 148 

consideration, the clinical CFU decline is overpredicted (Figure S3). Despite inherent differences 149 

between species in terms of drug PK, sampling (whole lung homogenate versus sputum), and 150 

infecting bacterial strain, the relationship between drug effect on bacteria and the concentration to 151 

achieve the effect appear, based on this analysis, to be portable between mice and patients. In 152 

addition, although the mouse strain used in the studies (BALB/c) models intracellular bacteria but 153 

not extracellular bacteria in caseous lesions20, the PKPD relationships observed in this model, 154 

when derived in comparison to the baseline bacterial dynamics, appear to accurately reflect those 155 

observed in EBA studies. Other approaches or more information may be needed to fully account 156 

for drug exposures at the site of infection in cavities or other caseous lesions or any PK/PD 157 

relationships unique to those microenvironments. 3,21,22 158 

Clinical EBA was predicted well across 14 studies spanning more than two decades. 159 

Compared to the participants enrolled in more recent EBA studies (2007 to 2015)23–29 at the same 160 

site, the participants enrolled between 1992 and 200530–34 had more severe disease and therefore 161 

higher baseline CFU counts in their sputum samples (mean baseline: 6.9 log10 CFU per mL). 162 

However, the predictive accuracy of our model was robust despite this large variation in baseline 163 

bacterial burden. For example, RIF had a good overlap of predicted and observed EBA (Figure 3) 164 

despite the study being conducted in 2015 with the lowest median baseline of 4.58 log10 CFU per 165 

mL24.  166 

 167 
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Clinical EBA studies are the only acceptable way to evaluate a drug as monotherapy in TB 168 

patients despite their limitations on predicting long-term efficacy. In addition to detecting the 169 

presence of an EBA response, the trial can inform on the dose-response curve (e.g., INH and RIF), 170 

which could be used in dose selection for future trials22,24,35. We have shown here that our 171 

translational platform can adequately predict these outcomes. With limited resources, this costly 172 

clinical study can be designed more efficiently or avoided altogether by using our approach to 173 

predict a reliable result regarding clinical dose-response effects, and to provide useful information 174 

about dose and/or drug candidate selection for further clinical development. This scenario is well 175 

exemplified by the nitroimidazole, PMD. PMD has a dose response at doses up to 192 mg/kg in 176 

mice which, following the conventional allometric scaling method, approximates 1500 mg in 177 

humans. However, such translation is problematic as the clinical observations from two human 178 

EBA trials demonstrated no dose response above 200 mg in human EBA. Using our translational 179 

platform, we found that the drug effect of PMD reaches plateau after 200 mg which is consistent 180 

with clinical observations (Figure S4). Therefore, our translational platform could serve as a 181 

powerful tool for, but not limited to, better dose selection for clinical trials design. By better 182 

informing dose selection, the translational modeling platform may reduce the time and effort spent 183 

in early clinical development, and therefore, accelerate progress to trials that are more informative 184 

of long-term outcomes.  185 

 Building on our translational framework, efficacy of combination regimens of TB drugs 186 

tested preclinically can be predicted in future work. This shows the principles of how preclinical 187 

data used in a model-based translational framework can inform the design of clinical late-stage 188 

efficacy studies, such as phase 2b studies. Future goals to improve the platform include 189 

characterizing PKPD relationships of combination regimens by accounting for PKPD drug-drug 190 
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interactions, as well as characterizing lesion-specific PKPD relationships. Clinical TB disease (e.g., 191 

caseation necrosis and cavitation) will be represented in the translational platform to include 192 

infection and efficacy data in animal models of TB with more human-like necrotic lesions, such 193 

as C3HeB/FeJ mice and New Zealand white rabbits21. Our translational platform may then be able 194 

to predict late-stage trials of combination regimens. If so, our platform could reduce dependence 195 

on phase 2a efficacy studies by predicting EBA and also directly inform the design of phase 2b 196 

and phase 3 studies to assist clinical anti-TB regimen development. 197 

 In summary, we established a foundation for translating the results from mouse efficacy 198 

models to clinical EBA studies through establishing quantitative relationships involving mouse 199 

PK and PD, as well as drug dose response in vivo. In the future, our platform will be expanded to 200 

include combination regimens and longer durations of treatment by accounting for PKPD drug-201 

drug interactions, and necrotic lesion penetration. This platform is an innovation to accelerate TB 202 

drug development and a good example of model-informed drug discovery and development.  203 

  204 
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Figures:  220 

 221 

 222 

Figure 1. The translational pharmacology approach to predicting early bactericidal activity 223 

in patients. Components necessary for translation include mouse PKPD and clinical PK (actual 224 

or scaled). The estimated relationship between drug concentration and bacterial kill is assumed to 225 

be portable after correction for protein binding and integrated with clinical PK. Using baseline 226 
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bacterial burden from previous EBA trials as initial conditions, the early bactericidal activity is 227 

simulated with the translational model. 228 

 229 
230 
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 231 
Figure 2. A rich dataset of mouse and human PK and PD data for 9 first- and second-232 

line TB drugs was compiled for model building. Only minimum, median and maximum doses 233 

are represented as median lines when multiple doses were present. Data points for all doses are 234 

plotted. Information on all doses is present in Table 1. 235 

(A) Mouse pharmacokinetic (PK) data presented for the following doses: BDQ 12.5, 25 236 

mg/kg; DLM 2.5, 3 mg/kg; INH 1.56, 6.25, 25 mg/kg; LZD 5, 100, 500 mg/kg; MXF 237 

100, 200, 400 mg/kg, PMD 6, 28.8, 486 mg/kg; PZA 7, 100, 900 mg/kg; RIF 10, 15, 40 238 

mg/kg; RPT 5, 10, 20 mg/kg. All doses were given once daily unless otherwise stated.  239 
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(B) Mouse pharmacodynamic (PD) data presented for the following doses: BDQ 12.5, 25, 50 240 

mg/kg; DLM 3, 10, 100 mg/kg; INH 0.1, 6.25, 100 mg/kg; LZD 100, 300, 1000 mg/kg; 241 

MXF 25, 50, 100 mg/kg; PMD 6.25, 30, 600 mg/kg; PZA 3, 50, 900 mg/kg; RIF 2.5, 40, 242 

640 mg/kg; RPT 5, 10, 20 mg/kg. All doses were given once daily, 5 days a week, unless 243 

otherwise stated. 244 

(C) Human PK simulations from validated population PK models presented for the following 245 

doses: BDQ 25, 200, 400 mg; DLM 100, 200, 400 mg; INH 9, 75, 600 mg; LZD 600 mg 246 

once daily, 600 mg twice daily; MXF 400 mg; PMD 50, 200, 1200 mg; PZA 2000 mg; 247 

RIF 600, 1350, 1950 mg; RPT 300, 600, 1200 mg. All doses were given once daily, 248 

unless otherwise stated.  249 

(D) Human Phase 2a early bactericidal activity study data presented for the following doses: 250 

BDQ 25, 200, 400 mg; DLM 100, 200, 400 mg; INH 9, 75, 600 mg; LZD 600 mg once 251 

daily, 600 mg twice daily; MXF 400 mg; PMD 50, 200, 1200 mg; PZA 200 mg; RIF 252 

600, 1350, 1950 mg; RPT 300, 600, 900, 1200 mg. All doses were given once daily, 253 

unless otherwise stated.  254 
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 256 

 257 

Figure 3. Translational (mouse to human) PKPD model predicts clinical EBA trial 258 

results well. Medians and 95% confidence intervals of 1000 simulations from the translational 259 

model overlap with observed EBA data from clinical trials. 260 

 261 

  262 
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 266 

Figure 4. Model-based prediction of daily change in log10 CFU/mL correlates well with 267 

clinically observed daily change in log10 CFU/mL for nine TB drugs at multiple dose levels 268 

of monotherapy between Day 0 to 2 (top) and Day 2 to 14 (bottom). For some drugs, Day 14 269 

data were not available. Line of unity (dashed line) ± 0.25 (dotted lines). BDQ = bedaquiline, DLM 270 

= delamanid, INH = isoniazid, LZD = linezolid, MXF = moxifloxacin, PMD = pretomanid, PZA 271 

= pyrazinamide, RIF = rifampin, RPT = rifapentine. *regimen contained a loading dose 272 
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Table 1. Parameter estimates of final PK and PKPD models for nine TB drugs in mouse studies 

Table 1.1 Mouse PK parameters  

Drugs BDQ DLM INH LZD MXF PMD PZA RIF RPT 

PK Model 2 cmt 1 cmt 

2 cmt,  

non-linear 

elim 

2 cmt,  

non-linear 

elim 

2 cmt 
2 cmt, non-

linear elim,  

2 cmt,  

non-linear elim 

2 cmt,  

non-linear 

elim 

1 cmt,  

non-linear 

elim 

PK Model 

Parameters 

 

Ka = 3.24 (15.1%) h-1 

CL = 0.0243 (5.9%) L/h 

Vc = 0.24 (11.4%) L 

Vp = 0.822 (29.3%) L 

Q = 0.0127 (11.5%) L/h 

 

 

Ka=0.446 h
-1 

(25%) 

CL = 0.0092 L/h 

(8%) 

V2=0.0747 L 

(1%) 

CL
IN

=29.5 (7%) mL/hr 

K
m

 =22.3 (19%) ug/mL 

K
a
=8.23 (30%) 1/hr 

V
1
=19.7 (21%) mL 

Q =11.3 (46%) mL/hr 

V
2
 =8.81 (26%) mL 

ka = 10 h
-1

FIX 

CL
int

=0.0526 L/h 

Vc = 0.0178 L  

Vp =0.00836 L 

Q = 0.00175 L/h 

KM = 8.03 mg/L 

Ka=4.51 h
-1 

(14%) 

Q=0.148 L/h 

(40%) 

Vc = 0.116 L 

(35%) 

Vp = 0.454 L 

(23%) 

CL=0.164 L/h 

(14 %) 

ka = 1.31 h
-1 (19%) 

CL
int

=0.0161 L/h 

(8%) 

Vc = 0.0578 L (11%) 

Vp =0.0697 L (23%) 

Q = 0.129 L/h (12%) 

KM = 9.85 mg/L 

(18%) 

FDIF=1 FIX 

Dose=182 mg/kg FIX 

𝞤=1 FIX 

CL
IN

=14.4 (12%) ug/hr 

K
m

=82.9 (61%) ug/mL 

K
a
 = 100 FIX 1/hr 

V1=13.3 (49%) mL 

Q=3.11 (19%) mL/hr 

V2 =10.9 (37%) mL 

F17 mg/kg = 1 FIX 

ED50 = 18.2 (23%) mg*kg-1 

Fmax = 0.574 (34%) 

V
max

=15.2 (6%) ug/hr  

K
m

=1.16 (20%) ug/mL  

K
a
=0.272 (10%) 1/hr 

V
1
=3.39 (12%) mL 

Q=0.725 (6%) mL/hr 

V
2
=27.4 (39%) mL 

F1
10 mg/kg

=1 FIX 

F1
15 mg/kg

=0.743 (0%)  

F1
20 mg/kg

=0.845 (1%) 

F1
40 mg/kg

 =0.493 (2%) 

ka = 0.894 (31%) h
-1

  

V = 0.0139 (6%) L 

K
m

 = 75.8 (31%) ug/mL 

V
max 

= 0.0333 (24%) ug/hr 

  

Protein 

binding(fu, 

Human/Mouse) 

1.0 36 1.0 37 1.455 38,39  0.986 14,40 0.797 41 0.71 38,42 

0.925 43(mouse 

data JHU 

unpublished) 

4.545 39,44 0.422 45,46 
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Table 1.2 Mouse PKPD parameters 

Drug PK/PD Model PK/PD Model Parameters Model Type 

BDQ Direct Emax Function Emax = 0.515 (1%) day-1 

EC50 = 0.228 (5%) mg/L 

Subacute 

DLM Delayed Emax Function Emax = 0.51 (17%) day-1 

EC50 = 0.187(25%) mg/L 

Kd = 5.92 (10%) day-1 

Subacute 

INH Delayed Sigmoidal Function Emax = 0.887 (10%) day-1 

EC50 = 0.00399 (3%) mg/L 

𝞤	=	12.4 (90%) 

Kd = 7.75 (6%) day-1 

Subacute 

LZD Delayed Sigmoidal Function Emax = 1 day-1 (FIX) 

EC50 = 2.77 (1%) mg/L 

𝞤	=	0.21 (3%) 

Kd = 6.75 (0%) day-1 

Acute 
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MXF Delayed Sigmoidal Function Emax = 0.589 (12%) day-1 

EC50 = 0.0029 (55%) mg/L 

𝞤	=	1 FIX  

Kd = 0.0125 (47%) day-1 

Subacute 

PMD Delayed Emax Function Emax = 0.636 (5%) day-1 

EC50 =6.10 (14%) mg/L 

Kd = 10.5 (3%) day-1 

Subacute 

PZA Delayed Emax Function Emax = 0.34 (10%) day-1 

EC50 (AUC)= 13.6 (42%) mg*day/L 

Kd = 6380 (16%) day-1 

Subacute 

RIF Delayed Sigmoidal Function Emax = 0.678 (16%) day-1 

EC50 = 1.92 (39%) mg/L 

𝞤	=	1.38 (24%) 

Kd = 1.34 (79%) day-1 

Subacute 

RPT Direct Sigmoidal Function Emax = 0.299 (1%) day-1 

EC50 = 6.02 (0%) mg/L 

𝞤	=	2.36 (7%) 

Chronic 
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-: data not available 
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Supporting information 1 

Supplemental Methods 2 

Figure S1 Visual predictive checks for final mouse PK models at representative 3 

doses 4 

Figure S2 Visual predictive checks for final mouse PD models at representative 5 

doses 6 

Figure S3 Comparison between human plasma drug concentrations reached at 7 

clinical dose levels (light grey), upper limits of drug concentrations 8 

within safety ranges (dark grey) and concentration-response 9 

relationships for nine TB drugs 10 

Figure S4 The immune component of the model-based translational platform is 11 

essential for accurate prediction of early bactericidal activity 12 

Table S1 Mouse and human PK and PD database of nine TB drugs 13 
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