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Abstract:  19 

In this study, the impact of traditional rice-based fermented alcoholic beverages (Apong) on the 20 

gut microbiome and health of the Mishing community in India was examined. Two groups that 21 

consumed one of these beverages were compared to a control group that did not consume either 22 

beverage. Gut microbial composition was analyzed by sequencing 16S rRNA of fecal 23 

metagenomes and analyzing untargeted fecal metabolites, and short-chain fatty acids (SCFAs). 24 

We also collected data on anthropometric measures and serum biochemical markers. Our results 25 

showed that Apong drinkers had higher blood pressure, but lower blood glucose and total protein 26 

levels than other non-drinkers. Also, gut microbiome composition was found to be affected by 27 

the choice of Apong, with Apong drinkers having a more diverse and distinct microbiome com-28 

pared to non-drinkers. Apong drink type or being a non-drinker explained even a higher variation 29 

of fecal metabolome composition than microbiome composition and Apong drinkers had lower 30 

levels of the SCFA isovaleric acid than non-drinkers. Overall, this study shows that a single die-31 

tary factor can significantly impact the gut microbiome of a community and highlights the poten-32 

tial role of traditional fermented beverages in maintaining gut health. 33 

Key words: Gut microbiome, alcoholic beverage, fermented beverage, short chain fatty acids, 34 

fecal metabolites 35 
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Introduction: 40 

The gut microbiome is a collection of microorganisms in the human intestine that performs many 41 

important functions, including digestion, transformation of nutrients, and immune system regula-42 

tion1. A well-balanced gut microbiome composition can provide health benefits, while imbalanc-43 

es can lead to disorders related to metabolism and immunity2. The gut microbiome is influenced 44 

by various factors, including diet, medication, and age. Diet is a particularly important factor that 45 

affects the gut microbiome composition and its interactions with the host5-7. Fermented foods and 46 

beverages, such as yogurt, kefir, fermented cottage cheese, kimchi, and kombucha tea, are rich in 47 

microorganisms that can have an effect on the gut microbiome and increase overall microbial 48 

diversity8-12.  49 

Rice-based fermented beverages are an important part of the diet and cultural heritage of Mon-50 

goloid communities in South-East Asia13. In Assam, India, the Mishing community consumes 51 

two types of rice-based alcoholic beverages called Poro Apong and Nogin Apong. Poro Apong is 52 

prepared with roasted rice, ash of rice husk, and a starter cake, and undergoes solid-state fermen-53 

tation for 7-10 days. It is filtered through ash to produce a dark, clear liquid with physical and 54 

sensory properties similar to stout beer. Nogin Apong is made with steamed rice, and has physi-55 

cal and sensory properties similar to Maakoli, a fermented beverage from South Korea. Within 56 

the Mishing community, some subgroups consume only one type of Apong, despite having simi-57 

lar lifestyles and dietary habits. We previously found that Nogin Apong had a diverse array of 58 

lactic acid bacteria and was rich in saccharides and amino acids, while Poro Apong was domi-59 

nated by Lactobacillus14. In this study, we aimed to determine how the different compositions of 60 

microbes and metabolites in these two types of Apong may affect the gut microbiome in volun-61 
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teers from the same ethnicity who have similar dietary patterns, but differ in their choice of 62 

Apong. 63 

Results: 64 

Apong drinkers have distinct levels of biochemical markers compared to non-drinkers, in-65 

cluding differences in blood pressure, glucose, protein levels, and liver enzymes 66 

Most individuals in this study had normal physiological and biochemical test results regardless 67 

of their lifestyles and dietary habits. However, blood pressure was significantly higher in Poro 68 

drinkers compared to the controls. (Figure 1B, a-b). Both Nogin and Poro drinkers had lower 69 

total protein and albumin levels in their blood than non-drinkers (Figure 1B, c-d), with Nogin 70 

drinkers having a lower albumin to globulin ratio (Figure 1B, f).  Both Nogin and Poro drinkers 71 

also had lower blood glucose levels than non-drinkers (Figure 1B, g), which is consistent with 72 

the blood glucose-lowering properties of fermented foods and beverages15. Lipid levels, as 73 

measured by triglycerides, were within the normal range and comparable in all participants 74 

(Figure 1B, h). Poro drinkers had significantly lower levels of SGPT (Figure 1B, i) and SGOT 75 

(Figure 1B, j), which is a sign of a healthy liver16, and lower levels of bilirubin total and biliru-76 

bin direct (Figure 1B, k-l). Although high bilirubin levels can indicate liver damage, low levels 77 

are not a concern for health. 78 

 79 

The gut microbiota composition varies between non-drinkers and Apong drinkers 80 

We compared the gut microbial composition of Apong drinkers and non-drinkers. We found sig-81 

nificant differences between Nogin and Poro drinkers and drinkers and non-drinkers (Figure 82 
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2A). Overall, the participants were dominated by Bacteroidota and Firmicutes, with smaller pro-83 

portions of Proteobacteria. However, while Bacteriodata made up a significant proportion of the 84 

gut bacterial community in Nogin drinkers and non-drinkers, it made up a smaller proportion in 85 

Poro drinkers. Notably, Actinobacteria was only detected in non-drinkers. Next, we identified 86 

taxa at the family level that significantly differed in abundance among the Apong drinkers and 87 

non-drinkers (Figure 2B). Apong drinkers had higher colonization by Enterobacteriaceae and 88 

Ruminococcaceae compared to non-drinkers. On the other hand, Poro drinkers had significantly 89 

less Prevotellaceae than Nogin drinkers and non-drinkers. 90 

We also identified microbes that were specific to Apong drinkers (Figure 2C). To do this, we 91 

identified and compared ASVs that were detected in at least 50% of all participants at a mini-92 

mum abundance of 0.1% in Apong drinkers and non-drinkers. Most of the ASVs were shared 93 

(n=52) among all participants and were part of the "core" microbiome. However, certain ASVs 94 

were only detected in Nogin (n=9) or Poro drinkers (n=6). Four of the Poro-specific ASVs were 95 

from the Lachnospiraceae family, while the others were from the Succinivibrionaceae family and 96 

an unknown family of Bacteroidales. The majority of the Nogin-specific ASVs were from the 97 

Prevotellaceae family (n=7), with the remaining ASVs coming from the Ruminococcaceae and 98 

Enterobacteriaceae families. The only ASV that was detected in non-drinkers but not in Apong 99 

drinkers was from the Prevotellaceae family. 100 

 101 

Gut microbial diversity in Apong drinkers is higher than in non-drinkers, and high-102 

frequency Nogin drinkers have lower gut microbial diversity than other Nogin drinkers 103 
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We estimated the gut microbial diversity in Apong drinkers and non-drinkers using three differ-104 

ent diversity metrics (Figure 3A). Gut microbial diversity was significantly higher in the Apong 105 

drinkers than the non-drinkers.  106 

We divided the participants into three categories based on their Apong consumption frequency: 107 

high (HD), medium (MD), and low (LD). Poro consumption frequency did not have an effect on 108 

microbial diversity (Supplementary Figure 1). However, among Nogin drinkers, high-109 

frequency drinkers had significantly lower gut microbial diversity. 110 

Apong consumption and frequency has a significant effect in gut microbial composition 111 

We investigated microbial composition between participants by computing Bray-Curtis and 112 

weighted UniFrac beta-diversity (Figure 3). The distance matrices revealed small but significant 113 

differences among the non-drinkers, Nogin drinkers, and Poro drinkers, as well as among sub-114 

groups of Apong drinkers based on frequency of consumption (Figure 3A). 115 

Although location also had a significant effect on microbial composition, Apong usage had a 116 

larger overall effect. (Figure 3A). When blocking “location” in the perMANOVA, drink type 117 

(non-drinker vs. Nogin, or Poro drinker) still explains a significant portion of the variation in mi-118 

crobial composition (Bray-Curtis: R2= 0.034; p= 0.003 & Unifrac: R2= 0.035; p= 0.001). Despite 119 

inhabiting the same location (Majuli), the gut microbial composition of non-drinkers (n=24) and 120 

Nogin drinkers (n=18) formed two different clusters of PCoAs (R2= 4.79; p=0.005) 121 

(Supplementary Figure 2). 122 
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Notably, blood serum biochemistry markers, such as total protein, albumin and globulin levels, 123 

and blood glucose and pressure, explained significant variation in the presence or absence of cer-124 

tain microbes, but not in the phylogenetic diversity of gut microbial composition. 125 

 126 

Nogin drinkers have a more homogenous gut microbial community than Poro drinkers and 127 

non-drinkers 128 

The gut microbial community of Nogin drinkers clustered together in the principal coordinate 129 

analysis (PCoA) based on both weighted UniFrac and Bray-Curtis distances (Figure 3C). How-130 

ever, non-drinkers and Poro drinkers had more heterogeneous microbial communities than Nogin 131 

drinkers. This was also demonstrated by the higher distance to centroid (Multivariate homoge-132 

neity of groups dispersions) (Figure 3D), where Nogin drinkers had the lowest distance to cen-133 

troid, so highest homogeneity whereas Poro drinkers had a high distance, so more heterogeneity 134 

in the weighted UniFrac distance (considers phylogenetic relatedness). 135 

      136 

Fecal microbial metabolite profiles are different between the Apong drinkers and non-137 

drinkers 138 

To study the metabolic activity in the gut ecosystem of the cohorts, an untargeted metabolite pro-139 

filing with GC-MS analysis was performed. Metabolites of microbial origins were identified us-140 

ing the human metabolome database (HMDB) for subsequent analysis. We extracted a total of 141 

384 metabolites which comprises mainly amino acids, bile acids, fatty acids, indoles, and saccha-142 

rides. Apong consumption led to depletion of certain metabolites, such as acetamid, benzestrol, 143 
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butanedioic acid, and cyclopropanecarboxylic acid, while Poro drinkers had higher levels of 144 

undecanoic acid than non-drinkers and Nogin drinkers (Figure 4). 145 

We agglomerated gut microbes at family level and correlated these families to fecal metabolites 146 

using the mbOmic package in R17. We found 113 significant correlations (adjusted p-values < 147 

0.05) between microbial families and fecal metabolites. Only 23 of these correlations had a rho 148 

value higher than 0.70. Top ten correlations are listed in Figure 5A, and the majority of these 149 

correlations were with Clostridia or unknown Bacteroidota. All the correlations are listed in 150 

Supplementary Table 1. 151 

Although having relatively heterogeneous gut microbial composition among participants (Figure 152 

3C-D), Poro drinkers had a highly uniform composition of fecal metabolites (Figure 5B). Drink 153 

type (non-drinker, Nogin drinker, or Poro drinker) had even a larger effect on metabolite compo-154 

sition than on gut microbiome composition (Figure 5C). 155 

Taken together, these results show that Apong drinkers had distinct blood serum markers, gut 156 

microbial composition, and fecal metabolites compared to non-drinkers. 157 

 158 

Apong consumers had lower levels of iso-valeric acid among their fecal SCFAs compared to 159 

non-drinkers 160 

The gut microbiota helps to break down undigested food through fermentation, producing short-161 

chain fatty acids (SCFAs) as a result18. The SCFAs are important for gut homeostasis and health 162 

and their levels are affected by diet. Although BCFAs (branched-chain fatty acids) may be im-163 
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portant in the gut and could potentially serve as markers of gut microbial metabolism, they have 164 

received less attention than the major SCFAs19.  165 

We measured the levels of three major SCFAs and one BCFA (acetic acid, butyric acid, propion-166 

ic acid, and iso-valeric acid) in fecal samples from both Apong drinkers and non-drinkers using 167 

HPLC. Propionic acid was the most abundant SCFA in both groups, while butyric acid was the 168 

least (Figure 6). Some volunteers had very high levels of acetic acid, but it was not correlated 169 

with any other data (Supplementary Figure 3). Isovaleric acid, a BCFA and considered to be 170 

harmful to the colon epithelium20, was significantly lower in Apong drinkers compared to non-171 

drinkers, but there was no significant difference for the other SCFAs (Figure 6). 172 

 173 

Discussion  174 

The composition of the gut microbiome is influenced by various factors, including diet and life-175 

style4, 21-23, but the impact of a single component of diet within a population of the same ethnicity 176 

on the gut microbiome has not been studied before. This study investigates the effect of two 177 

types of a traditional, rice-based fermented alcoholic beverage (Apong) on the gut microbiome 178 

and health of the Mishing community in India. All volunteers in the study were of the same eth-179 

nicity, healthy, and had similar dietary habits, except for being an Apong drinker or not. 180 

Our study showed that the composition of the gut microbiome is affected by the choice of 181 

Apong. Despite the frequent consumption of an alcoholic beverage, the volunteers in the study 182 

had normal BMI and healthy vital organ function. Previous research has shown that both varie-183 

ties of Apong contain mild alcohol (~10%) and have a high content of phenolics14. 184 
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This study found that Apong consumers had a more diverse gut microbiome compared to the 185 

non-drinkers, which had a stable community with fewer ASVs. This suggests that a single die-186 

tary factor alone can significantly impact the gut microbiome of a community, consistent with 187 

previous research on the gut microbiome of children in Burkina Faso24. Our study also observed 188 

a strong association between variation in microbial composition and blood glucose levels and 189 

blood pressure, which has not been reported in previous studies. Further research is needed to 190 

understand the causal relationship between these factors and gut bacterial diversity, which may 191 

allow for the development of microbiome-based biomarkers for predicting lifestyle diseases. 192 

In this study, the gut microbiome of the Mishing community was found to be dominated by the 193 

Prevotellaceae family, a signature of the Indian population25-30, which has been previously asso-194 

ciated with a vegetarian or carbohydrate-rich diet7. However, Poro drinkers had lower levels of 195 

Prevotellaceae than non-drinkers and Nogin drinkers, even though their gut microbiomes were 196 

colonized to a high extent by Prevotellaceae. 197 

Lastly, we found that the gut microbiome of the Mishing population was colonized to a high ex-198 

tent by Succinivibrio, a bacterium not previously reported in the Indian population25-27. This bac-199 

terium is commonly found among hunter-gatherers and foragers31, 32. The presence of 200 

Succinivibrio in the microbiome was previously reported in the Hadza hunter gatherers and tradi-201 

tional Peruvian populations31,33. We speculate that the high abundance of Succinivibrio in the 202 

Mishing population may be due to co-habitation with domesticated animals. The co-presence of 203 

butyrate producers and other essential gut bacteria along with expected levels of SCFAs but low-204 

er levels of BCFA and blood serum measurements suggests that Apong does not have a detri-205 

mental effect on the structure and function of the gut microbiome. 206 
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Conclusion: In conclusion, this study found that the choice of Apong, a traditional rice-based 207 

fermented alcoholic beverage, significantly impacts the gut microbiome composition and blood 208 

serum markers in the Mishing community in India. The gut microbiomes of Apong consumers 209 

were more diverse than those of non-drinkers, and Poro drinkers had lower levels of 210 

Prevotellaceae than non-drinkers and Nogin drinkers. The gut microbiome of the Mishing com-211 

munity was also colonized by Succinivibrio, a bacterium not previously reported in the Indian 212 

population. The differences in gut metabolites between Apong drinkers and non-drinkers were 213 

even greater than those in the gut microbiome. These findings suggest that a single dietary factor 214 

can significantly impact the gut of a population and highlight the need for further research on the 215 

causal relationship between these factors and gut bacterial diversity for the development of 216 

microbiome-based biomarkers for predicting lifestyle diseases. 217 

 218 

 219 

Materials and methods 220 

Materials 221 

All the reagents, media and chemicals used in this study were of analytical grade. RNA-later so-222 

lution (Cat. No RM49049), short chain fatty acids standards viz. Acetic acid (Cat. No. 223 

5438080100), Butyric acid (Cat. No 19215), Isovaleric acid (Cat. No 78651), and Propionic acid 224 

(Cat No. 94425) were procured from Sigma-Aldrich, USA. QiAmp DNA stool mini kit (Cat. No: 225 

19590) was procured from Qiagen Inc, Germany. Blood collection vials K3-EDTA vial (Cat. No 226 

368860) and clot vials (Cat. No 368975) were procured from BD Diagnostics, Oxford, UK. 227 
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Blood serum biomarkers kits were procured from CCS ® Coral Clinical Systems, Tulip Diagnos-228 

tics (P) Ltd., Goa, India. 229 

Ethics statement 230 

This study was approved by the Ethics Committee of the Institute of Advanced Study in Sci-231 

ence Technology (IASST), Guwahati, India (Approval number: IEC(HS)/IASST/1082/2014-232 

15/6) and was conducted following the guidelines and regulations. Written informed consents 233 

were taken from the volunteers along with some standard questionnaires. 234 

Study sites, volunteers, and sample collection 235 

In this study, potential volunteers were identified through an electoral database and surveyed in 236 

locations dominated by the Mishing community. The control group consisted of individuals who 237 

do not consume Apong but follow the same dietary pattern, while the experimental group includ-238 

ed 166 individuals from the Mishing community and 24 individuals from a Vaishnavite satra 239 

with slightly different dietary habits. A bi-lingual survey questionnaire was used to collect in-240 

formation on dietary patterns, age, sex, medical history, family lineage, and demographics. In-241 

clusion criteria were age (18-50 years) and ethnicity, while exclusion criteria were the use of an-242 

tibiotics, health supplements and other drugs, consumption of any other liquor except Apong, and 243 

medical history. The Mishing population was stratified based on the amount of rice beer con-244 

sumed per week, with non-drinkers classified as those who did not consume Apong, low-drinkers 245 

as those who consumed less than 250 ml, medium-drinkers as those who consumed 250-500 ml, 246 

and high-drinkers as those who consumed more than 500 ml per day. The control group included 247 

monks from Vaishnavite satras, who avoided alcoholic beverages and red meat but consumed 248 

fish as part of their regular diet.  249 
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Fecal and blood samples were collected from the Mishing population living in the Telam, 250 

Dhemaji, and Majuli districts of Assam. A customized kit was used to collect fecal samples, with 251 

one container, including 2 ml of RNA later solution, used for DNA extraction and another for 252 

metabolomics studies. Three ml of blood was withdrawn from individuals by a phlebotomist. 253 

Blood was collected in a K3-EDTA vial and clot vials to separate plasma and serum, respective-254 

ly. All the samples were immediately frozen after collection and were transported to the labora-255 

tory in frozen condition. Fecal and blood samples were stored at -80 ℃, until processed. In addi-256 

tion to the samples and questionnaires, anthropometric data such as height, weight, BMI, and 257 

blood group were also collected from the volunteers. 258 

Analysis of biochemical parameters of plasma and serum  259 

The plasma samples were analyzed using standard biochemical assay kits (CCS ® Coral Clinical 260 

Systems, Tulip Diagnostics (P) Ltd., Goa, India), following the manufacturer’s instructions. Se-261 

rum glucose, HDL cholesterol, albumin, globulin, total protein, and liver function tests, for ex-262 

ample, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase 263 

(SGPT), and alkaline phosphatase (ALP), direct and total bilirubin contents were determined. 264 

DNA extraction from faecal sample 265 

DNA extraction was performed within 72 h of faecal sample collection.  QiAmp DNA stool mini 266 

kit (Cat. No: 19590 Qiagen Inc, Germany) was used for the extraction of metagenomic DNA 267 

from the faecal samples following the manufacturer’s instruction. Briefly, a 400 µl of faecal 268 

sample was mixed to 1400 µl of ASL buffer (provided with the kit) and incubated at 90 ℃ for 10 269 
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min. The supernatant was collected after brief centrifugation at 13,000 rpm for 2 min, to which 270 

Inhibitex tablet and ProteinaseK (supplied with the kit) were added. After a short incubation of 271 

10 min at 70 ℃, the mixture was centrifuged at 13,000 rpm for 3 min. The supernatant was col-272 

lected in a filter with a silica column. The column was washed twice with a wash buffer (provid-273 

ed with the kit) and the bound DNA was eluted with a preheated elution buffer (supplied with the 274 

kit). The amount of dsDNA was quantified using a dsDNA estimation kit with a Fluorometer 275 

(Quantiflour, Promega, Madison, USA). 276 

Library preparation, 16S rDNA amplicon sequencing and analyses 277 

The V3-V4 region of the 16S rDNA was amplified using the primer pairs 341F & 805R3441.  The 278 

indexing and library preparation of the amplified DNA fragments were carried out using Nextera 279 

XT library preparation and indexing kits according to the Illumina MiSeq protocol35. DNA frag-280 

ments were multiplexed and subjected to 2 X 300 bp paired-end sequencing in an Illumina 281 

MiSeq machine with the sequencing service provider (Macrogen Inc., Seoul, Republic of Korea). 282 

Bioinformatics analyses of the amplicon dataset 283 

The paired-end reads generated from Illumina sequencing were processed using the LotuS2 pipe-284 

line36. Reads having less than 170 bases in length were filtered out from the analysis. In LotuS2, 285 

DADA2 algorithm37 was used to cluster sequences into amplicon sequence variants (ASVs). Us-286 

ing the options for LULU (-lulu)3845 and UNCROSS2 (-xtalk), sequence clusters were curated 287 

and refined. ASVs were aligned with Lambda39 to SILVA 138.140, to obtain taxonomic assign-288 

ments for ASVs using the LotuS2 LCA algorithm. Otherwise, default options in LotuS2 were 289 
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used. As a result, 28,083,099 total reads were clustered into 7550 ASVs in the final matrix, 290 

summing to 14,893,374 reads after quality filtering and removal of contaminants41.  291 

The processed samples were further analysed with phyloseq package42 in R (version 3.6.1). 292 

Samples were rarefied to an even depth using the rtk tool43 for diversity analysis. For estimation 293 

and calculation of diversity indices, vegan44 package was used.  294 

Metabolomics analyses of fecal samples 295 

The following techniques were used for the analyses of fecal samples.  296 

Gas chromatography-mass spectroscopy (GC-MS) analysis 297 

Untargeted fecal metabolite profiles were determined by GC-MS analysis. A 40 mg of lyophi-298 

lized fecal sample was extracted with 1 ml of HPLC grade methanol (Merck, Mumbai, India) 299 

and kept in a shaker overnight at 1200 rpm. The sample was centrifuged at 10000 rpm for 10 min 300 

at 10°C. The extract was then dried at room temperature using a vacuum desiccator and re-301 

suspended in a mixture of 40 µl of pyridine and 20 mg/ml of methoxyamine hydrochloride. After 302 

a brief vortex, the solution was incubated at 30 °C for 90 min and then derivatized with 20 µl of 303 

N- methyl-N-trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane (Merck, USA) at 70 304 

°C for 30 min54. The sample was then centrifuged at 3000 rpm for 5 min and used for GC-MS 305 

analysis. 306 

Samples were run in a Shimadzu GC 2010Plus-triple quadrupole (TP-8030) system fitted with an 307 

EB-5MS column (length: 30 m, thickness: 0.25 μm, ID: 0.25 mm). A 1 µl of the sample was in-308 

jected in split less mode at 300°C using helium as carrier gas at a 1 ml/min flow rate. The oven 309 

program was set at 70°C initially, ramped at 1°C/min for 5 min up to 75°C. Subsequently, it was 310 
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increased at 10°C/min up to 150 °C, and held for 5 min, followed by increasing at the same rate 311 

up to 300 °C and held for 5 min. The mass spectrometer was operated at a continuous scan from 312 

45 to 600 m/z in the electron ionization (EI) mode at 70ev with 200 °C as the source tempera-313 

ture. Peak identification was performed using the National Institute of Standards and Technology 314 

library, USA, by matching the mass spectra. 315 

Quantification of faecal short-chain fatty acids (SCFAs) by RP-HPLC analysis 316 

Faecal samples were lyophilized, and 100 mg of each sample was dissolved in a solvent prepared 317 

using acetonitrile (Cat. No 271004 Merck Millipore, Germany) and 10-mM KH2PO4 (pH 2.4) 318 

(Cat. No P5379, Sigma Aldrich, USA) in 1:1 ratio. The solutions were then vortexed vigorously 319 

for 5 min. ensuring proper mixture, centrifuged at 4000 rpm for 5 min. The supernatant was col-320 

lected and filtered through a 0.22 µm syringe filter for downstream analysis. 321 

Quantification of the organic acids was carried out in an analytical HPLC instrument (Waters, 322 

USA) with 5 µm ODS2 (4.6 x 250 mm, Waters SPHERISORB) reversed- phase C18 analytical 323 

column. Two HPLC grade solvents (solvent A was 10-mM KH2PO4, pH 2.4 with phosphoric ac-324 

id, while solvent B was 100% acetonitrile) were used in a gradient system with a flow rate of 1.5 325 

ml/min. The absorbance of the eluted compound was monitored at 210 nm by the PDA detector. 326 

Statistical analyses: 327 

All the statistical tests were performed in the R platform by using base functions and calling spe-328 

cialized packages such as phyloseq42, vegan44, microeco45, microbiome46, microbiomeutilities10, 329 

mbOmic17, rstatitix51. Comparisons among the anthropometric measures and serum biochemical 330 

markers were carried out using the Kruskal-Wallis test. To compare the microbial diversity 331 
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among Apong drinkers and non-drinkers, the samples were first rarefied to an equal depth. Then, 332 

the alpha diversity indices were calculated for each sample, including the number of unique fea-333 

tures (richness), the Shannon diversity, and Chao1 metric. To determine if there were significant 334 

differences in microbial diversity among Apong drinkers and non-drinkers, a Kruskal-Wallis test 335 

was performed. Before calculating the beta distance (Bray-Curtis and weighted UniFrac), the ta-336 

ble was normalized to relative abundances. “adonis” and “mantel” functions in the vegan package 337 

were used to run PERMANOVA (Permutational Multivariate Analysis of Variance) and Mantel 338 

tests to calculate metadata variables explaining variation based on beta diversity distances. 339 

“betadisper” function in the vegan package was used to estimate the homogeneity of drink types 340 

groups in the PCoAs. The "corr" function from the mbOmic package was used to calculate Pear-341 

son correlations between the metabolomics data and microbial taxa at the family level and ad-342 

justed p values for multiple comparisons were used. 343 
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Figure 1. A) Summary of the cohort. B) A comparison of anthropological factors and serum bio-487 

chemical markers among Apong drinkers and non-drinkers (a) Systolic Blood pressure, (b) Dias-488 

tolic Blood pressure, (c) Total protein (d) Albumin, (e) Globulin, (f) Albumin/Globulin ratio, (g) 489 

Blood Glucose, (h) Triglycerides, (i) serum glutamic-pyruvic transaminase SGPT, (j) Serum glu-490 

tamic-oxaloacetic transaminase (SGOT), (k) Bilirubin total and, (l) Bilirubin direct.  The proba-491 

bility of significance is denoted by *’s, where **** depicts significance level of 0.0001, *** de-492 

picts 0.001, ** depicts 0.01, * depicts 0.05. Only significant p-values are indicated. 493 

Figure 2. A) Relative abundance of microbial taxa at phylum level in Apong drinkers and non-494 

drinkers. B) Top ten microbial families that are differentially abundant among Apong drinkers 495 

and non-drinkers. Only significant p-values are indicated. C) Venn diagram of microbial features 496 

(ASVs) shared between different drink type groups or special to each group. 497 

 498 

Figure 3. A) Microbial diversity of Apong drinkers and non-drinkers as estimated by ASV rich-499 

ness and Shannon and Chao1 indices.  B) The inferred variance (adjusted R2) explained by each 500 

identified covariate as determined by PERMANOVA, calculated based on weighted UniFrac and 501 

Bray–Curtis dissimilarities. Statistically significant covariates with an adjusted p�<�0.05 using 502 

the Benjamini–Hochberg (BH) method are shown. C) PCoA of the weighted UniFrac and Bray-503 

Curtis distances of the gut bacterial composition of Apong drinkers and non-drinkers. D) Disper-504 

sion (i.e. distance to centroid of the groups) of each drink type group in the PCoA plots. 505 

Figure 4. Top ten fecal metabolites that are differentially abundant among Apong drinkers and 506 

non-drinkers. Only significant p-values are indicated. 507 
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Figure 5. A) Top ten highest correlations between gut microbial taxa at family level and fecal 508 

metabolites. B) PCoA of the Bray-Curtis distances of the fecal metabolites of Apong drinkers 509 

and non-drinkers. The table shows explained variance by drink type (Nogo, Poro, and non-510 

drinker) for microbial and fecal metabolites composition. 511 

Figure 6. Composition of the four short chain fatty acids (SCFAs) in the fecal samples of Apong 512 

drinkers and non-drinkers. Only significant p-values are indicated. “ms” denotes marginal 513 

significance. 514 

Supplementary Figure 1: Microbial diversity of Apong drinkers estimated by ASV richness: 515 

“low-drinkers” (less than 250 ml per day), “medium-drinkers” (250-500 ml per day), and “high-516 

drinkers” (more than 500 ml per day). 517 

Supplementary Figure 2: PCoA of the weighted UniFrac and Bray-Curtis distances of the gut 518 

bacterial composition of Apong drinkers and non-drinkers where colors depict Nogin, Poro, and 519 

non-drinkers and shapes depict different locations. 520 

Supplementary Figure 3: Composition of the four short chain fatty acids (SCFAs) in the fecal 521 

samples of the participants 522 

Supplementary Table 1: Correlations between gut microbial taxa at family level and fecal me-523 

tabolites. 524 
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