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Abstract 1 

Closed-loop neuromodulation measures dynamic neural or physiological activity to optimize 2 

interventions for clinical and nonclinical behavioral, cognitive, wellness, attentional, or general 3 

task performance enhancement. Conventional closed-loop stimulation approaches can contain 4 

biased biomarker detection (decoders and error-based triggering) and stimulation-type 5 

application. We present and verify a novel deep learning framework for designing and deploying 6 

flexible, data-driven, automated closed-loop neuromodulation that is scalable using diverse 7 

datasets, agnostic to stimulation technology (supporting multi-modal stimulation: tACS, tDCS, 8 

tFUS, TMS), and without the need for personalized ground-truth performance data. Our approach 9 

is based on identified periods of responsiveness – detected states that result in a change in 10 

performance when stimulation is applied compared to no stimulation. To demonstrate our 11 

framework, we acquire, analyze, and apply a data-driven approach to our open sourced GX 12 

dataset, which includes concurrent physiological (ECG, EOG) and neuronal (EEG) measures, 13 

paired with continuous vigilance/attention-fatigue tracking, and High-Definition transcranial 14 

electrical stimulation (HD-tES). Our framework's decision process for intervention application 15 

identified 88.26% of trials as correct applications, showed potential improvement with varying 16 

stimulation types, or missed opportunities to stimulate, whereas 11.25% of trials were predicted 17 

to stimulate at inopportune times. With emerging datasets and stimulation technologies, our 18 

unifying and integrative framework; leveraging deep learning (Convolutional Neural Networks - 19 

CNNs); demonstrates the adaptability and feasibility of automated multimodal neuromodulation 20 

for both clinical and nonclinical applications.  21 
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Background 22 

Closed-loop neuromodulation encompasses types of brain machine interfaces (BMIs) or 23 

human machine interfaces (HMIs) that monitor dynamic neuronal and physiological signals to 24 

optimize the timing and dosage of brain stimulation, as well as to tailor the stimulation parameters 25 

to a particular individual1-3.  Closed-loop systems can be applied in clinical settings for several 26 

neurological disorders including age-related cognitive disorders or electrochemical disorders like 27 

drug resistant epilepsy. Nonclinical applications of such systems extend to health and wellness 28 

applications including attentional, behavioral, cognitive, or general performance enhancement. 29 

There are optimal and suboptimal times (“windows of opportunity”) for stimulation application, 30 

which derive from the dynamic nature of physiological/disease/performance states4-11. 31 

Conventional closed-loop approaches: 1) monitor a state (e.g., tremor, fatigue) or decode it from 32 

measured signals; 2) compare this current state to a desired target-state, producing an error 33 

signal which; 3) gates stimulation based on I/O models (of stimulation biophysics). Success of 34 

these approaches depends on the error signal reflecting optimal stimulation times and on 35 

stimulation-technology specific I/O models. Moreover, the tuning of such systems may integrate 36 

biases toward particular signal characteristics (e.g. triggered by signal amplitude at a given 37 

frequency) and selection of one stimulation type and may require ongoing feedback of outcomes 38 

which may not always be accessible.    39 

 Notwithstanding examples of such closed-loop approaches12-20, their generalization is 40 

limited by experiment-specific (subject-tuned) training, and specific assumptions on both 41 

meaningful error signals and stimulation mechanism of action. Many brain stimulation studies and 42 

clinical applications remain open-loop or minimally adaptive with single modality application, 43 

potentially applying stimulation interventions at suboptimal times relative to variations in targeted 44 

regions21; including most applications of transcranial electrical stimulation (tES). A preferred 45 

closed-loop algorithm - one that encourages deployment, development, and adoption - would 46 
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minimize invasiveness and unnecessary stimulation; operate with any timescale suited to the 47 

targeted physiological/disease/performance state; and once programmed, would not require 48 

tuning with each participant's ground-truth performance. Moreover, an extensively integrative, 49 

scalable, and generalizable system22 would employ data-driven optimization that can be 50 

incrementally trained from diverse data and any (multiple) stimulation modality (e.g., transcranial 51 

Direct Current Stimulation - tDCS, transcranial Alternating Current Stimulation - tACS, 52 

Transcranial Magnetic Stimulation -  TMS, transcranial Focused Ultrasound Stimulation - tFUS) - 53 

amassing and integrating more datasets/modalities, as they become available, to enhance a 54 

convergent system’s capability. Such a system could be integrated into wearables for health and 55 

wellness technologies23 (attentional, cognitive, or performance enhancement etc.24-26) as well as 56 

expanded to clinical wearable neuromodulation technologies that facilitate and improve at-home 57 

treatment with primary neuromodulation interventions (i.e. chronic pain, fibromyalgia, multiple 58 

sclerosis, long COVID, drug resistant epilepsy etc.27-33) or used as a pharmacological treatment 59 

compliment (i.e. neurovascular modulation of the blood brain barrier34).  60 

We present a flexible framework for designing and implementing closed-loop 61 

neuromodulation systems that utilize both deep learning techniques35-37 and workflows that avoid 62 

explicit state-decoding of stimulation modality (I/O model), and that gate stimulation based on a 63 

principle of responsiveness. Responsiveness depends on identifying epochs where a given 64 

stimulation modality will improve defined behavioral or physiological performance outcomes 65 

compared to not stimulating. These comparisons during training can be done with open-loop data 66 

while adapting ideas from causal inference such as potential outcomes comparisons38-40. To 67 

demonstrate and verify our framework we acquire and apply our analysis to the open-sourced GX 68 

dataset with convolutional neural networks (CNNs35,41,42) under data-driven optimization43. 69 

Leveraging electroencephalographic (EEG) and electrocardiographic (ECG) inputs, models 70 

identify periods of responsiveness, either positive or negative and map it to specific intervention 71 

types, which are then directly compared. We generate a framework-based decision process and 72 
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demonstrate the identification of responsiveness with recommendations on intervention 73 

application (whether to apply stimulation or no stimulation) with given stimulation modalities 74 

(which specific stimulation type to apply). We explain how, provided datasets and a stimulation 75 

approach satisfying certain elements, our integrative approach allows for scalability and tunability 76 

across varied clinical and nonclinical neuromodulation applications.   77 

 78 

Figure 1. Novel framework for scalable closed-loop neuromodulation with deep learning. (a) 79 

Open-loop training data collection consists of multiple trials (Trial) across a cohort (Participants) 80 
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where single trials record performance changes by stimulation (yellow and pink periods) as 81 

compared with no stimulation (gray). Note each stimulation intervention (e.g., Type 1: yellow, 82 

Type 2: pink periods) is preceded with a period of no stimulation (gray) where biomarkers (brain 83 

state) are collected. Training data can be arranged into biomarkers pre intervention (training Input 84 

X) and stimulation response (Labels y). (b) Multiple varying model architectures (spanning model 85 

space M) ingest multi-channel and multi-sample input data. Note, each set of model ensembles 86 

are trained on different intervention types, which allows for interchanging intervention types as 87 

needed. Next, the independent selection of stimulation decision (S) rules allows for the 88 

incorporation of extraneous factors such as stimulation cost. (c) In a closed-loop deployment, 89 

biomarker measurements (X(t)) from a novel participant are passed to each ensemble (e.g. No 90 

Stimulation, Stimulation Type 1, Stimulation Type 2) of the Model Stack. Each ensemble yields a 91 

performance prediction with Model Confidences for the condition it was trained for, which are then 92 

compared together to support specific stimulation Decisions Rules. The stimulation decision (S(t)) 93 

selects among the stimulation candidates or no stimulation, is delivered to the participant, and the 94 

loop continues. Note, in deployment, ground truth (y(t)) data are not required, and models can be 95 

independently updated as more training data becomes available. The implementation of a 96 

stackable ensembled workflow lends advantages of scalability, agnosticism to (multiple) 97 

stimulation modalities (e.g., TMS, tFUS), without explicit biomarker decoding or I/O models, or 98 

need for personalized ground-truth performance. See bottom key for definition of symbols. 99 

 100 

 101 

 102 
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Results 103 

Scalable Closed-loop Neuromodulation Framework Architecture  104 

The novel closed-loop framework is crafted from several aspects that make up the input 105 

(X(t)) to stimulation decision (S(t)) pipeline (Figure 1c). Input data (X(t)) is passed to a Model 106 

Stack, composed of an ensemble of independent models (numbered 1-M), each trained on a 107 

unique stimulation condition (in this case No Stimulation, Stimulation Type 1, and Stimulation 108 

Type 2; Figure 1c). Each ensemble predicts a response (i.e., class labels of an increase or 109 

decrease in behavioral or physiological outcomes) per its stimulation condition. These model 110 

outputs and confidences are compared under user-defined rules to produce stimulation decisions 111 

(Stimulation Decision S(t)). Importantly, the decision is based on responsiveness, namely an 112 

improvement in predicted performance (the potential outcome) with stimulation compared to 113 

predicted performance with no stimulation. A final stimulation decision (S(t)) is made where the 114 

stimulation type is applied, and the loop continues.  115 

At the point of training, application of our framework for data-driven closed-loop 116 

neuromodulation using deep learning starts with designing an appropriate open-loop stimulation 117 

experiment (Figure 1a) and selecting appropriate deep learning model architectures (Figure 1b). 118 

The outcomes of these stages serve to verify the feasibility of the given implementation (described 119 

below) and ultimately (with additional data collection / training) drive a closed-loop implementation 120 

(Figure 1c). 121 

The behavioral task used in training sessions determines the performance target for the 122 

closed-loop system. The stimulation modalities used in training are the options available to the 123 

closed-loop intervention, based on biomarkers used within the training data. A simple way to 124 

design open-loop trials is with a continuous performance metric, measuring acute changes in 125 

performance in response to stimulation, and with biomarkers collected prior to the stimulation 126 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.18.524615doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524615
http://creativecommons.org/licenses/by-nd/4.0/


Page 7 of 43 
 

(and in the absence of stimulation) in order to compose a causal structure for the stimulation 127 

intervention to predict responsiveness.  128 

Our framework does not require that a biomarker predict (decode) performance before or 129 

in response to stimulation. Further, whereas conventional closed-loop systems compared 130 

decoded brain state/performance against a desired level in order to trigger stimulation; here we 131 

require only that the biomarker-derived features indicate a brain state where simulation is likely 132 

to improve outcome. For example, if a closed-loop algorithm that inadvertently resorts to detecting 133 

sleep in EEG and uses that as an indicator of task performance, then this is far from ideal; since 134 

in this case the algorithm would chose to stimulate only when sleep is detected, continue to do 135 

so if the participant stays asleep, and not necessarily stimulate when stimulation would benefit 136 

the participant to change the outcome measure. In contrast, stimulation responsiveness identifies 137 

brain states suggesting both poor performance without stimulation and improved performance 138 

with stimulation, similar to potential outcomes frameworks. 139 

 At the point of implementation (Figure 1c) the input data, denoted as X(t), is provided to 140 

the models, and the input data labels (y(t)) are not needed since models are already trained. The 141 

input data can consist of a segment of time series data (such as EEG or ECG), sampled at a 142 

particular time (t), that should be a biomarker of responsive brain state (Figure 1c). There are 143 

several model ensembles which form a Model Stack. Each model ensemble is previously trained 144 

to precise responses to its designated stimulation type (Stimulation Type 1, Stimulation Type 2…) 145 

and one ensemble trained to identify response to no stimulation (Figure 1c, No Stimulation). 146 

Within each model ensemble set, each model (models 1 - M) can have different architectures or 147 

compositions to extract different characteristics of input data, however, all models within an 148 

ensemble set should be trained on the same stimulation modality and training data. For example, 149 

the No stimulation model ensemble set can contain multiple convolutional neural network (CNN) 150 

models that each have different kernel sizes or different layering architectures.  151 
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The main advantage of model stacking is that it allows for interchangeability and flexibility 152 

between ensemble sets within the Model Stack meaning interventions can be added or removed 153 

as needed without the need for robust retraining. For example, the Stimulation Type 1 can be 154 

completely removed from the system leaving behind only the No Stimulation and Stimulation Type 155 

2 stacks. Similarly, a new model ensemble can be added to the Model Stack as needed, to include 156 

a new stimulation type. This not only reduces training time but allows for utilizing different cohorts 157 

for training data (e.g. varied experiment durations, varied number and rates of stimulation, and 158 

both open-loop or closed-loop sessions), provided that their input data type and performance 159 

metrics match the Model Stack.  160 

A further aspect of our pipeline involves comparing the outputs from each ensemble of the 161 

Model Stack to make a stimulation decision (S(t)). Importantly, this decision is based on the 162 

principle of responsiveness which compares the performance predicted with each stimulation type 163 

and no stimulation. For example, if the No Stimulation model ensemble predicts that a 164 

participant’s response will not increase if no stimulation is applied, and the Stimulation Type 1 165 

ensemble set indicates that the participant’s response will improve with this type of stimulation, 166 

then this indicates responsiveness to Stimulation Type 1 and suggests it should be applied. On 167 

the other hand, if the No Stimulation model ensemble predicts that a participant’s response will 168 

increase with no stimulation applied, and the Stimulation Type 1 ensemble predicts a smaller 169 

improvement, then this indicates no responsiveness to Stimulation Type 1 and suggests no 170 

stimulation should be applied.  171 

Next, the determination of which stimulation type (S(t)) to apply based on Model Stack 172 

outputs, is application specific, and defined by decision rules, which can compare all potential 173 

outcomes. One method would be to consider an average or majority vote among each model 174 

ensemble set (where predictions can be binary outcomes – improvement or no improvement) as 175 

well as some metric of confidence with each prediction (e.g., comparing the prediction probability 176 

of improvement across all stimulation types, where prediction probabilities are averaged within 177 
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each ensemble set). The decision rule, as an independent stage, is application specific. For 178 

example, if the No Stimulation model ensemble predicts that a participant’s response will 179 

moderately increase if no stimulation is applied, and the Stimulation Type 1 ensemble set 180 

indicates that the participant’s response will significantly improve with this type of stimulation, a 181 

decision rule may still limit stimulation based on factors like the cost of stimulation (i.e., tolerability, 182 

power consumption, elapsed time since last stimulation bout etc.). 183 

In training a closed-loop algorithm (from open-loop data) the notion of responsiveness 184 

needs to be stipulated: we are concerned with identifying biomarker-based features that predict 185 

when stimulation is likely to produce an improvement in performance compared to no stimulation. 186 

A condition where performance would increase or decrease regardless of if stimulation is applied, 187 

can be considered neutral from the perspective of the stimulation value. A condition where 188 

performance would increase with stimulation and decrease without stimulation application (i.e., 189 

due to vigilance decrements, inattentiveness, or sleepiness), is considered positive from the 190 

perspective of the stimulation value. A condition where performance would decrease with 191 

stimulation and increase without stimulation application, is considered negative from the 192 

perspective of the stimulation value. Responsiveness-based gating supports the preferred system 193 

feature of minimized unnecessary stimulation (“light touch”).  194 

There is no stipulation that datasets have a homogenous format (e.g., duration of 195 

experiment or number of test stimuli) supporting scalability, and any distinct stimulation modality 196 

can be developed in parallel supporting integration. Predicates for our framework is the existence 197 

of (and identifying) at least one fixed stimulation dose that is broadly effective, and the 198 

identification of generalized brain/physiological states that track the time of sensitivity to the 199 

ascribed dose - together representing responsiveness. We speculate such features are more 200 

likely to exist for interventions with limited focality and where targeted performance is dynamic 201 

(on the timescale of mins to sec). Use of non-invasive approaches is consistent with our 202 
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suggestion of a preferred platform for scalable training and deployment - such as tES / EEG 203 

considered in the next section. 204 

 205 

Figure 2. Dataset summary and model architecture. (a) The GX dataset was collected in two 206 

phases or experiments. Experiment 1 consisted of a parameter space exploration where 9 207 

different stimulation conditions were tested. This was followed with Experiment 2 which tested 208 

two parameters (F30 and M30) from Experiment 1 on a different participant cohort with 20 trials 209 
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of each parameter. (b) The behavioral task for the GX dataset consisted of a 70-min 210 

compensatory tracking task (CTT) where participants used a trackball to keep a moving circle at 211 

the center of the screen. The radial distance or deviation from the center of the screen at each 212 

frame determined participant’s behavioral performance. (c) EEG (light blue) and stimulation sites 213 

for frontal (orange), and motor (purple) stimulation. (d) MRI-derived head model used to visualize 214 

stimulation electrode placement. Trial-wise percent improvement derived from change in 215 

deviation for all participants in Experiment 2 for (e) F30 and (f) M30. Trial-wise implementation of 216 

stimulation trials for (g) Experiment 1 repeated three times for each participant to cover all 9 217 

parameters and (h) Experiment 2 repeated two times for each participant to cover 2 selected 218 

parameters (F30 and M30). (i) EEG and CTT timeseries data for one session for participant 24 219 

where M30 was applied. Insets indicate stimulation location. (j) Trials were segmented from each 220 

session into 30 sec pre, during, and post stimulation. The percent change in CTT deviation (𝚫𝚫) 221 

was calculated from averaged CTT data in the course of the pre and during stimulation periods. 222 

See panel e for trial-wise and participant-wise results. (k) A typical segment of input training data 223 

consisted of 15 channels (14 EEG and 1 ECG) X 3000 samples (30 secs). (l) A CNN architecture 224 

was utilized to as a classifier to predict response indicated by changes in the percent change in 225 

deviation (𝚫𝚫) during the CTT (Better or Worse).  226 

 227 

 228 

Framework Application to Exemplary Dataset  229 

Our framework for closed-loop neuromodulation can be applied to a wide range of 230 

applications with use-case specific implementation. We illustrate one application which is based 231 

on acquisition and analysis of the open-sourced GX dataset, containing continuous EEG, ECG, 232 

EOG and behavioral metrics (Figure 2b) in response to High-Definition tES with varied doses 233 

(Figure 2c-d)44.  234 
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For this implementation biomarkers of response consisted of 32-channel pre-stimulation 235 

EEG and ECG, and labels of response included a behavioral compensatory tracking task (CTT) 236 

where participants’ goal was to use a trackball to keep a dynamic cursor-controlled circle at the 237 

center of the screen at all times. Lower radial ball deviation from the center of the screen indicated 238 

good task performance (Figure 2j). Stimulation conditions included 9 different combinations of 239 

stimulation location (Frontal, Motor, Parietal) and frequency (0, 5, 30 Hz), denoted with the first 240 

letter of the location and the frequency number (i.e., Frontal stimulation at 30 Hz as F30; Figure 241 

2a). In acquiring the GX dataset, Experiment 1 was used as a parameter space exploration to 242 

identify stimulation conditions that produced the largest degree of behavioral improvement and 243 

demonstrate an open-loop effect (Figure 2a). Experiment 1 served an important function in 244 

framework implementation (Figure 1a) since a detectable open-loop effect is a prerequisite. 245 

Frontal (F30) and Motor (M30) stimulation at 2 mA and 30 Hz, were selected from Experiment 1 246 

and reimplemented in Experiment 2 with more trials and a different cohort (Figure 2g-h). 247 

Once an open-loop stimulation effect on performance is established, models are trained 248 

to predict when stimulation would most effectively change performance. In our case, we utilized 249 

the data acquired during Experiment 2 as our input training data since we could effectively extract 250 

response from individual trials where segments of no stimulation (or pre stimulation) preceded 251 

segments of stimulation. We utilized the percent change in average task cursor deviation (𝚫𝚫) or 252 

distance from the center of the screen at each screen frame (~16 Hz), from pre to during 253 

stimulation (Figure 2b and j) as our response label (see Figure 2e for trial-wise and participant-254 

wise results) and the pre-stimulation EEG and ECG (15 channels X 3000 samples) as our 255 

predictive brain states to train each of the individual models (Figure 2k). For our no stimulation 256 

comparisons, data where no stimulation was applied was divided similarly to that of the stimulation 257 

portions of data (see Figure 2i from 0-20 mins). Each pre-stimulation trial was labeled as Better 258 

or Worse, where class labels were binned identifiers calculated from the percent change in 259 

behavioral performance (CTT deviation; Figure 2j 𝚫𝚫) during stimulation compared to the pre-260 
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stimulation period. A negative percent change in deviation (-𝚫𝚫, compared to pre stimulation) was 261 

classed as Better, whereas a positive change in deviation (+𝚫𝚫, compared to pre stimulation) was 262 

classed as Worse. In terms of model architecture, a modified CNN (EEGNet architecture42) was 263 

used with differing input kernel lengths (Figure 2l).  264 

 265 

 266 

Framework Verification with Exemplary Dataset 267 

The acquired GX dataset was used to present and verify a proof-of-concept of the 268 

application of our framework44. Data from Experiment 2 met our framework criteria (for training 269 

data) of an open-loop effect of stimulation and CNN models were selected to be applied to the 270 

dataset. For our framework verification and proof-of-concept, data from Experiment 2 were 271 

selected for further analysis in order to maintain homogeneity with experimental intervention 272 

timing and maximize the number of training trials. 273 

For each stimulation condition (No Stimulation, F30, M30) two models, each with differing 274 

kernel lengths were tasked with producing binary classifications of trials of pre-stimulation input 275 

data (14 EEG and 1 ECG channels X 3000 samples). Each of the 6 models produced prediction 276 

accuracies of trial-wise binarized change in deviation (Better: a CTT deviation less than pre 277 

stimulation period, Worse: a CTT deviation more than pre stimulation period) above 50%, 278 

indicating that models were able to effectively ingest minimally processed input data (EEG and 279 

ECG) and that the input data across stimulation conditions contained predictive information on 280 

responsiveness (Figure 3d-f). Models 1 and 2, for the No Stimulation condition reached 281 

respective cohort testing (816 total trials; Better/Worse ratio: 1.0503) accuracy of 73.5% and 282 

73.2%, and misclassifications of 26.5% and 26.8% (Figure 3d). Similarly, for the F30, both 283 

Models 1 and 2 reached cohort testing (120 total trials; Better/Worse ratio:2.6364) accuracy of 284 

67.5%, and misclassifications of 32.5% (Figure 3e). For M30, Models 1 and 2 reached respective 285 
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cohort testing (120 total trials; Better/Worse ratio: 3.2857) accuracy of 71.7%, and 69.2%, and 286 

misclassifications of 28.3% and 30.8% (Figure 3f). 287 

Due to the open-loop effect of stimulation across stimulation conditions (Figure 3a-c), 288 

training and testing data suffered from class imbalances between both classes (Better and 289 

Worse). Weighted (by class frequency) metrics of precision, recall, and F1 were therefore 290 

calculated to better reflect model performances (Figure 3g). Aforementioned metrics along with 291 

the area under the precision-recall curves (PR-AUC; Figure 3i) were computed as the mean and 292 

standard error of the mean (SEM) across participants and trials (N=6, Stim: 20 and NoStim:136 293 

trials for each participant) in the test set. All model metrics are summarized in Table 1 and Figure 294 

3i.  295 
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No Stim F30 M30 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Accuracy 75.4±1.0 73.2±1.0 67.5±5.7 67.5±5.7 71.7±9.4 69.2±8.5 

F1 75.2±1.1 73.2±1.0 64.9±6.2 65.6±5.7 72.1±9.3 70.0±8.5 

Precision 73.6±3.7 72.8±2. 60.9±8.8 63.7±7.8 76.9±12.1 77.1±11.9 

Recall 78.3±3.1 73.9±1.6 76.1±6.5 74.2±7.6 72.0±7.1 70.4±7.0 

PR-AUC 0.84±0.03 0.82±0.02 0.66±0.15 0.66±0.19 0.78±0.29 0.78±0.29 

Table 1: Summary of model performance metrics (mean±SEM) for each of the two models 296 

for No Stim, F30, and M30.   297 

 298 

Predictions for the No Stimulation condition had a relatively balanced correct classification 299 

between both classes and correct classifications were widely distributed over percent changes in 300 

deviation (Figure 3h). For F30 and M30 stimulation conditions, correct predictions were skewed 301 

to the major class (Better), where a higher percentage of the major class was correctly predicted 302 

as compared to the minor class (Worse).  303 

 These results indicate that models within ensemble sets (e.g., Model 1 and Model 2 would 304 

be an ensemble for No Stimulation) for all stimulation conditions utilized, can effectively identify 305 

out-of-training responsive trials. These predictions (for each stimulation type) can then be 306 
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compared directly, post-prediction, to determine the appropriate stimulation decision and 307 

stimulation application of each trial (see Figure 1c and Figure 4).      308 

 309 

Figure 3. Data label distribution and model prediction metrics. Distribution of training and testing 310 

data used for (a) No Stimulation, (b) F30, and (c) M30 stimulation conditions. Confusion matrices 311 

for Model 1 and 2 for (d) No Stimulation, (e) F30, and (f) M30. (g) Scores for Models 1 and 2 in 312 

terms of accuracy; and weighted scores for precision, recall, and F1 with SEM. (h) Correct and 313 

incorrect classifications for Models 1 and 2 with their respective percent change in deviation. 314 

Boxplots are indicated for correct classifications only. (i) Precision-recall curves across test data 315 
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input type and models with the area under the curve (AUC) computed for the average precision 316 

recall across participants with SEM.  317 

 318 

 319 

 320 

Once trained all models can then be combined to produce responsiveness predictions. To 321 

demonstrate responsiveness predictions, comparisons, and stimulation decision making; all test 322 

trials were individually passed as inputs to an ensemble of all 6 models (Figure 4a-c). Model 323 

predictions were aggregated and averaged, and responsiveness comparisons (Figure 4c) were 324 

made followed by a simple decision rule, where the maximum probability of improvement (or 325 

potential outcome) across stimulation intervention types (above a threshold of 0.65) was selected 326 

as the stimulation decision. Figure 4c-d demonstrates the responsiveness comparisons and 327 

stimulation decisions for 10 exemplary trials. In terms of the responsiveness comparisons with 328 

our implementation, a decision rule algorithm first considers if the average NoStim probability of 329 

improvement is more than 0.65. If yes then the stimulation decision is NoStim, if not then F30 and 330 

M30 are compared directly to check that both their probabilities of improvement are more than 331 

0.65 and that one average probability is more than the other, leading to either F30 or M30 being 332 

chosen as the stimulation decision. If these criteria are not met the stimulation decision reverts to 333 

NoStim, inline with our “light touch” approach to stimulation.  334 

 To assess the responsiveness predictions, stimulation decisions were classified into 335 

correct assessments, potential improvements, wrong assessments, or missed opportunities. This 336 

was done for each test set data type as well as all test set trials (Figure 4e-f). Trials classed as 337 

correct assessments were instances where the stimulation decision matched the factual label of 338 

the given stimulation intervention that was applied and showed an improvement in behavioral 339 

performance. Potential improvements indicated trials where the stimulation decision was an 340 

intervention type that could have resulted in a behavioral improvement based on open-loop 341 
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effects. Wrong assessments were trials where the stimulation decision was an intervention that 342 

was known to produce a given decrement in behavioral performance, given factual trial labels. 343 

Missed opportunities were trials where the stimulation decision was to apply no stimulation, even 344 

though factual trial labels indicated that there would be behavioral improvements with a given 345 

intervention type (i.e., F30 or M30).  346 

 347 

   348 

Figure 4. Simulation of closed-loop responsiveness predictions. (a) A total of 1056 input test data 349 

trials (15 channels X 3000 samples) were individually passed to all 6 models. (b) The predictions 350 

from all 6 models were aggregated and compared post prediction. (c) Model predictions (with 351 

SEM) for 10 exemplary trials where the probability of improvement (probability of trial classed as 352 

Better) is averaged over predictions for each respective model (i.e., predictions from Models 1 353 

and 2 for NoStim, F30, and M30). Using simple decision rules, model predictions are compared. 354 

(d) Stimulation decisions for 10 example trials in c. (e) To assess simulation outcomes, stimulation 355 

decision predictions of test trials where no stimulation, F30, and M30 stimulation were applied 356 
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were divided into four classes: correct assessment, potential improvement, wrong assessment, 357 

and missed opportunities. (f) These four classes were then aggregated across all test data.  358 

 359 

 360 

 361 

Discussion 362 

 This work presents a novel framework for implementing data-driven, integrative, closed-363 

loop stimulation that is scalable in terms of stimulation modalities and training datasets; agnostic 364 

to stimulation modalities and dataset format; and omits the need for ground truth performance 365 

data in its application stage. Leveraging the acquired and open-sourced GX dataset44,45 as base 366 

brain stimulation training data and deep learning techniques35,41,42, we demonstrate applicability 367 

and a proof-of-concept. We show that with this structured technique, minimally processed neural 368 

and physiological input data can be used to effectively identify conditions anticipating stimulation 369 

responsiveness. Using responsiveness identification, our framework's flexible decision process 370 

for intervention application identified 88.26% of trials as correct applications, showed potential 371 

improvement with varying stimulation types, or missed opportunities to stimulate, whereas 372 

11.25% of trials were predicted to stimulate at inopportune times. Overall, in a closed-loop system, 373 

these identified states of responsiveness, within our framework, combined with mutable decision 374 

rules (e.g., causal inference) predict when and which stimulation will optimize 375 

performance/outcomes.  376 

Our framework leverages tools from prior closed-loop techniques but provides special 377 

benefits in overall implementation. Agnosticism to modality allows any stimulation modality (e.g., 378 

electrical46,47, light48,49, sound3,50,51) to be incorporated, moreover using open-loop training data. 379 

Although multimodal stimulation is rare, our framework accommodates the use of multi stimulation 380 
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types and opens both clinical and research avenues of exploration for these types of stimulation 381 

applications52. As such we avoid an explicit I/O model (hypothesized mechanism). Our framework 382 

parallelizes stimulation predictions across modalities allowing integration into a single controller. 383 

The expandable training stage is distinct from closed-loop implementation, omitting the need for 384 

ground truth performance in the target participant. Together these support scalability. Our 385 

approach allows for selecting a timescale for updating predictions, that would be informed by the 386 

time-course of the stimulation and performance change.  387 

Our framework revolves around the concept of responsiveness. This circumvents the 388 

reliance of closed-loop systems to explicitly decode a latent brain state (or performance) to 389 

compare a target condition, with the resulting error triggering stimulation (based on a separate 390 

I/O model). Rather, responsiveness predicts how a given stimulation modality will change 391 

performance, which can be compared to expected performance without stimulation (or with 392 

another stimulation modality). Application-specific decision rules can then be implemented, for 393 

example based on the confidence of prediction or the costs of stimulation. These decision rule 394 

classifications can be adjusted to accommodate stricter (as in our “light touch” to stimulation 395 

applied here) or more flexible classifications, leading to potential reductions in outcome variability; 396 

and can be contrasted with open-loop stimulation applications (stimulation applied without 397 

informed timing or responsiveness), which can have larger outcome variability and probabilities 398 

of stimulation application at inopportune times. Once fully defined, our framework can be 399 

implemented to make autonomous stimulation decisions upon deployment.   400 

As demonstrated here our framework leverages deep learning techniques, namely CNNs, 401 

which have been shown to be particularly effective for ingesting and classifying timeseries signals 402 

like EEG and ECG; however, our framework is agnostic any one specific deep learning technique 403 

and can integrate several different types of models. Inspired by the cytoarchitecture and 404 

processing pathways within the visual cortex, CNNs utilize spatial and temporal computations on 405 

input data in order to create hierarchical representations. These hierarchical feature 406 
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representations can be explicitly examined to produce interpretable learned spatial and temporal 407 

filters and have exhibited increased performance with smaller models as compared to larger 408 

ones53. Similar to other deep learning techniques applied to neural and physiological (EEG, ECG, 409 

electromyography - EMG, photoplethysmography - PPG etc.) data classification35, such as 410 

recurrent neural networks (RNNs)54, generative adversarial networks (GANs)55, and Long Short-411 

Term Memory (LSTMs)56-58; CNNs too require large amounts of labeled training data, an issue 412 

typically addressed with data augmentation as applied here. Indeed, there currently exists a 413 

dearth of large open-sourced neuromodulation datasets, however with advances in data modeling 414 

and augmentation59 techniques (diffusion models, variational autoencoders – VAEs, GANs etc.60-415 

64), transfer learning65,66,   and improved data integration and sharing infrastructure with data 416 

harmonization67, these deficits will be addressed.   417 

 Our framework can be applied to any recording and stimulation approaches, invasive or 418 

noninvasive, while adopting a data-driven approach to circumvent biases related to brain state 419 

and performance or the mechanisms of action of stimulation. The application of our approach 420 

therefore spans existing neuromodulation technologies and emerging interventions such as 1) 421 

using wearables23 to guide invasive stimulation (e.g. spinal cord stimulation for pain68 or deep 422 

brain stimulation for essential tremor69); 2) invasive70-74 and non-invasive20,75 closed-loop 423 

neuromodulation to enhance memory and cognition 3) invasive76-80 and noninvasive81-83 closed-424 

loop neuromodulation for movement disorders and pain; and 4) EEG84,85 or heart rate86,87 guided 425 

TMS. The implementation here with the GX dataset is exemplary as a demonstration of our 426 

proposed framework and validating our approach. With additional experimental datasets and 427 

techniques, the performance of our framework becomes expandable with potential increases in 428 

predictive performance and wider applicability. 429 
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Methods 430 

Dataset Description 431 

 To explore the flexibility of our proposed framework we acquired and utilized the open-432 

sourced GX dataset44,45,88-91. The dataset is one of the largest concurrent tES, EEG, ECG, and 433 

behavioral datasets, contains over 68 hours of EEG data recorded during a continuous tracking 434 

task developed by Makeig et al92,93. Data used from the GX dataset consisted of a total of 19 435 

participants (7 females, 12 males). Participants ranged in age from 19-43 (mean age 29.10±6.75 436 

years) and were recruited from the New York Metropolitan area. All experimental procedures were 437 

reviewed and approved by the Western Institutional Review Board and all procedures were 438 

conducted in accordance with the ethical guidelines set forth by the Declaration of Helsinki in 439 

1964 and its later amendments. All participants were financially compensated for their 440 

participation. Data collection and procedures are detailed elsewhere44 and is briefly detailed 441 

below.  442 

 443 

Experimental Design 444 

The GX dataset was collected in two main phases or experiments. The first experiment 445 

was a parameter space mapping experiment that explored different combinations of applying tES 446 

at different scalp locations and different stimulation frequencies. In total, Experiment 1 explored 447 

9 stimulation conditions, which consisted of 3 scalp locations: Frontal, Motor, and Parietal; and 3 448 

stimulation frequencies: 0, 5, 30 Hz (Figure 2a). Each stimulation condition was applied across 4 449 

trials in each participant, with each bout of stimulation lasting 30 secs with a 5 sec ramp up and 450 

5 sec ramp down (Figure 2g). In total, data from 10 participants was collected for Experiment 1, 451 

where the 9 stimulation conditions were applied across three 70 min sessions (3 conditions per 452 

session). At the conclusion of Experiment 1, the stimulation combinations of Frontal 30 Hz (F30) 453 
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and Motor 30 Hz (M30) were selected as the best candidates to examine in Experiment 2. These 454 

were selected based on their open-loop behavioral effect and similar scalp sensation.  455 

For Experiment 2, F30 and M30 were applied to each participant over 20 trials, where 456 

each trial consisted of 30 sec of stimulation with a 5 sec ramp up and 5 sec ramp down (Figure 457 

2h). The application of these stimulation conditions was broken up across two 70 min sessions, 458 

where one stimulation condition was applied per session. In total 9 participants completed 459 

Experiment 2 and 4 participants were asked to return either once or twice to repeat both 460 

experimental sessions.   461 

 462 

Behavioral Task 463 

The behavioral task consisted of a continuous compensatory tracking task (CTT)92. The 464 

goal of the task was to keep a moving circle at the center of the screen at all times (Figure 2b). 465 

The circle was endowed with oscillatory and dampening forces, allowing it to be responsive and 466 

in constant motion. Participants controlled the location of the circle with their dominant hand using 467 

a trackball. The radial distance from the center of the screen at each time point (~16 ms) indicated 468 

vigilant performance over the task duration. The task was performed continuously over each of 469 

the 70 min sessions, in a dark room. Some participants were offered foam earplugs for ambient 470 

sound attenuation. During task performance, participants were left undisturbed even if they 471 

exhibited hypnagogic states or fell asleep.  472 

 473 

EEG and Physiology 474 

EEG data were acquired using a 32-channel wired EEG cap (ANT Neuro, Hengelo, The 475 

Netherlands) using the 10/10 international system (Figure 2c). Within the Waveguard cap, 29 476 

plastic holders (Soterix Medical Inc., New York, USA) were interleaved to allow for the application 477 
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of electrical stimulation. Electrolyte gel (SignaGel, Parker Laboratories Inc., New Jersey, USA) 478 

was used between the electrode scalp interface for both EEG acquisition and electrical stimulation 479 

and was placed using blunt tip syringes (15-gauge; Cortech Solutions Inc., North Carolina, USA).  480 

Signals were grounded at AFz, references to CPz and sampled at 2 kHz. The amplifier 481 

voltage range was set to 1 V peak to peak with a bandwidth of 0-520 Hz. EEG electrode 482 

impedances were monitored and adjusted to <20 kΩ prior to data acquisition. Lead I ECG and 483 

EOG were acquired from bipolar snap electrodes. For ECG electrodes were placed across the 484 

chest below participants' left (anode) and right (cathode) clavicles, whereas for EOG electrodes 485 

were placed at the left (anode) and right (cathode) outer canthus of participants’ eyes.   486 

 487 

HD-tES 488 

During both Experiments 1 and 2 electrical stimulation was applied for 30 secs with a 5 489 

sec ramp-up and ramp-down time. Electrical stimulation was applied through 9 Ag/AgCl sintered 490 

ring electrodes (Soterix Medical Inc., New York, USA) at standard EEG 10/10 locations using a 491 

current controlled current source (MxN 9-channel high-definition transcranial electrical stimulation 492 

stimulator; Soterix Medical Inc., New York, USA). Stimulation electrodes were placed in plastic 493 

holders (Soterix Medical Inc., New York, USA), where electrolyte gel (SignaGel, Parker 494 

Laboratories Inc., New Jersey, USA) was used to interface between electrodes and scalp94.  495 

For both experiments, electrodes were placed in an HD-MxN ring configuration where one 496 

electrode was placed at the center and between 3-4 were used as outer electrodes. For Frontal 497 

stimulation the return electrode was placed at F5, whereas the surrounding electrodes were AF3, 498 

FT7, and FC3. For Motor stimulation the return electrode was placed at C5, whereas the 499 

surrounding electrodes were placed at FT7, FC3, CP3, and TP7. For Parietal stimulation the 500 

return electrode was placed at CP3 whereas the surrounding electrodes were placed at C5, C1, 501 

P1 and TP7. Stimulation was only applied at one location per trial.  502 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.18.524615doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524615
http://creativecommons.org/licenses/by-nd/4.0/


Page 25 of 43 
 

Stimulation waveform frequencies consisted of 0, 5 and 30 Hz. Waveforms were applied 503 

as either a monophasic DC (0 Hz) or as biphasic sinusoidal waveforms (for 5 or 30 Hz). With DC 504 

stimulation the center electrode was used as the cathode whereas the surrounding electrodes 505 

were used at anodes.  506 

 507 

Data Preparation and Deep Learning Models 508 

Dataset and Preparation 509 

 All data preprocessing was conducted with custom scripts in MATLAB (2019b, Mathworks, 510 

Natick, USA) and Python (3.9, Python Software Foundation). Associated toolboxes included the 511 

EEGLAB toolbox95, ROAST96,97, Raincloud plots98, Tensorflow with Keras (version 2.7.0)99, 512 

Pandas (version 1.3.4)100, Numpy (version 1.20.3)101, Seaborn (version 0.11.2)102, Scikit-learn 513 

(version 1.0.1)103, and SciPy (version 1.7.1)104.   514 

 EEG and physiological data were minimally preprocessed prior to utilization. Data were 515 

baseline corrected between a 0-25 sec period at the start of each recording (for each 70 min 516 

session). Each 70 min session was divided into 30 sec trails. For Experiment 1 and 2, during the 517 

stimulation enabled (Stim Enabled) periods data were divided into trials based on stimulation 518 

triggers (Figure 2i-j). All data were portioned into three 30 sec periods (Figure 2j): 30 secs before 519 

stimulation was applied (Pre-Stim.), 30 secs during stimulation (excluding ramp-up and ramp 520 

down intervals; During Stim.), and 30 secs after stimulation was applied (Post Stim.). Similarly, 521 

the stimulation off periods (Stim Off) were sequentially divided into trials with a 15 sec overlap 522 

between the Pre and Post Stim periods. EEG during stimulation was excluded from further 523 

analysis due to nonlinear artifacts that can be introduced due to stimulation application105-107. All 524 

EEG and physiological data used for further analysis were then bandpass filtered with a 6th order 525 

Butterworth filter between 0.25-35 Hz, downsampled to 100 Hz, and min-max normalized.  526 
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Behavioral data (CTT circle deviation) were smoothed with a 5 sec moving average 527 

window then averaged for the 30 sec pre (Dpre), and during stimulation (Dduring; Figure 2j). The 528 

calculated percent change in deviation between the during stimulation (𝚫𝚫) and pre stimulation 529 

period was used as a marker of response to stimulation, whereas this same calculation for the 530 

stimulation off periods was used as marker of response to no stimulation. With this configuration 531 

a negative delta (-𝚫𝚫) indicated that participants’ behavioral performance or response increased or 532 

got better with the given condition, whereas as a positive delta (+𝚫𝚫) indicated that participants’ 533 

behavioral performance or response decreased or got worse with the given condition.    534 

 535 

Input and Labels 536 

To demonstrate our approach, we framed our deep learning model development as a data 537 

classification problem, where, giving input EEG and physiological data, models were tasked with 538 

predicting whether participants would increase or decrease their behavioral performance 539 

(response) in the following 30 secs, with a given stimulation condition (No Stimulation, F30, M30), 540 

as compared to the prior 30 secs (Figure 2j). Here, models were developed for each stimulation 541 

condition (No Stimulation, F30, M30) then compared post prediction using a set of decisions rules 542 

and model confidences resulting in a responsiveness comparison.  543 

Data from Experiment 2 was exclusively used as model inputs in order to unionize 544 

stimulation intervention timing as well as stimulation condition and amplitude distribution. 545 

Experiment 2 also consisted of participants who repeated their experimental sessions on different 546 

days. These repeated experiments were from participant 12 (repeated participant ID: 19), 547 

participant 15 (repeated participant ID: 18), participant 21 (repeated participant ID: 25,26), and 548 

participant 22 (repeated participant ID: 23, 24). In this case input data were divided into three 549 

main groups: No Stimulation, F30, and M30. This division resulted in 68 trials of no stimulation, 550 

20 trials of F30, and 20 trials of M30, for each session (30 sessions total for Experiment 2).    551 
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The minimally processed EEG and ECG data were used as model inputs whereas the 552 

binarized percent change in behavioral performance (CCT deviation, ±𝚫𝚫) was used as trial labels. 553 

EEG data were further subsampled from 32 to 14 scalp electrodes. These included EEG 554 

channels: FPz, Fz, FC1, FC2, Cz, C3, C4, CP2, CP6, P4, POz, O1, Oz, O2 (Figure 2c-d). In total 555 

15 channels (14 EEG, 1 ECG) over 30 secs (15 channels X 3000 samples) were used as model 556 

inputs for each trial (Figure 2k). Labels (CCT deviation, ±𝚫𝚫) were converted from floating point 557 

numbers to integers (0 or 1) and one-hot encoded. Calculated negative delta deviations (-𝚫𝚫), 558 

which indicated an improvement in behavioral performance with a respective condition or an 559 

increase in response, was encoded as a 0; whereas positive delta deviations (+𝚫𝚫), which indicated 560 

a decrement in behavioral performance with a respective condition or a decrease in response, 561 

was encoded as a 1. 562 

 563 

Deep Learning Models and Training 564 

 We selected the EEGNet model architecture, a convolutional neural network (CNN) model 565 

designed to ingest minimally processed, multichannel EEG  data42. The model architecture utilizes 566 

a sequence of 2D convolutional layers, including depthwise and separable convolutional layers 567 

with interleaved batch normalization, dropout108,  and average pooling (Figure 2l). For each 568 

stimulation condition the EEGNet architecture was modified in order to reduce the model’s 569 

capacity and reduce overfitting41. 570 

Two models were developed for each of the three stimulation conditions (No Stimulation, 571 

F30, M30). For the No Stimulation models, the number of temporal filters were set to 8, pointwise 572 

filters to 16, batch size to 4, learning rate to 5E-5, dropout rate of 50%, and normalization rate of 573 

0.1. The No Stimulation models had kernel sizes of 34 and 64 and were trained for 34 epochs. 574 

For the F30 and M30 models, the number of temporal filters were set to 2, pointwise filters to 6, 575 

batch size to 30 (100 for M30), learning rate to 5E-3, dropout rate of 80%, and normalization rate 576 
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of 0.1. Both the F30 and M30 models had kernel sizes of 100 and 105 and were trained for 150 577 

epochs. All models utilized the ADAM109 optimizer with focal loss110 where alpha and gamma 578 

parameters were set to 0.2 and 5.0, respectively. 579 

The training set consisted of participants 12, 14, 16, 18, 20, 22, and 26, this gave a total 580 

of 952 trials for No Stimulation (Figure 3a); and 140 trials for F30 and M30, respectively (Figure 581 

3b-c). The test data consisted of participants 11, 19, 21, 23, 24, 25, with 816 trials for No 582 

Stimulation (Figure 3a); and 120 trials for F30 and M30, respectively (Figure 3b-c). Since training 583 

data were comparatively small and the distribution of classes was imbalanced (due to the open-584 

loop effect of stimulation); class weighting and data augmentation were utilized. For data 585 

augmentation, normally distributed random noise with 0 mean and standard deviations of 0.25, 586 

0.5, 1.0 and 1.5 were added to the training data, the channels with added noise were then flipped 587 

in time, while preserving their channel-wise order59.  588 

Data availability 589 

All raw data acquired and used in the text can be accessed directly at: 590 

https://doi.org/10.5281/zenodo.3837212. The dataset is made available in multiple formats across 591 

repositories and is compatible across most analysis pipelines including MATLAB and Python. The 592 

dataset is additional formatted to the Brain Imaging Data Structure (BIDS) specifications and can 593 

be accessed directly at: https://doi.org/10.18112/openneuro.ds003670.v1.1.0 . Each stimulation 594 

trial within the dataset can be visually inspected in the time and frequency domain directly at 595 

https://doi.org/10.6084/m9.figshare.14810517.v1 for Power Spectral Densities, 596 

https://doi.org/10.6084/m9.figshare.14810442.v1 for time-frequency spectrograms; and 597 

https://doi.org/10.6084/m9.figshare.14810478 for scalp voltage topographies. Additional 598 

formatted data is available upon request.     599 
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Code availability 600 

The latest version of all accompanying code for this work is available at: 601 

https://github.com/ngebodh/GX_DL_Framework. Additional code to parse and extract aspects of 602 

the GX dataset can be acquired within this repository: 603 

https://github.com/ngebodh/GX_tES_EEG_Physio_Behavior. Additional resources are available 604 

upon request.     605 
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All Figures 932 

 933 
Figure 1. Novel framework for scalable closed-loop neuromodulation with deep learning. (a) 934 
Open-loop training data collection consists of multiple trials (Trial) across a cohort (Participants) 935 
where single trials record performance changes by stimulation (yellow and pink periods) as 936 
compared with no stimulation (gray). Note each stimulation intervention (e.g., Type 1: yellow, 937 
Type 2: pink periods) is preceded with a period of no stimulation (gray) where biomarkers (brain 938 
state) are collected. Training data can be arranged into biomarkers pre intervention (training Input 939 
X) and stimulation response (Labels y). (b) Multiple varying model architectures (spanning model 940 
space M) ingest multi-channel and multi-sample input data. Note, each set of model ensembles 941 
are trained on different intervention types, which allows for interchanging intervention types as 942 
needed. Next, the independent selection of stimulation decision (S) rules allows for the 943 
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incorporation of extraneous factors such as stimulation cost. (c) In a closed-loop deployment, 944 
biomarker measurements (X(t)) from a novel participant are passed to each ensemble (e.g. No 945 
Stimulation, Stimulation Type 1, Stimulation Type 2) of the Model Stack. Each ensemble yields a 946 
performance prediction with Model Confidences for the condition it was trained for, which are then 947 
compared together to support specific stimulation Decisions Rules. The stimulation decision (S(t)) 948 
selects among the stimulation candidates or no stimulation, is delivered to the participant, and the 949 
loop continues. Note, in deployment, ground truth (y(t)) data are not required, and models can be 950 
independently updated as more training data becomes available. The implementation of a 951 
stackable ensembled workflow lends advantages of scalability, agnosticism to (multiple) 952 
stimulation modalities (e.g., TMS, tFUS), without explicit biomarker decoding or I/O models, or 953 
need for personalized ground-truth performance. See bottom key for definition of symbols.  954 
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 955 
Figure 2. Dataset summary and model architecture. (a) The GX dataset was collected in two 956 
phases or experiments. Experiment 1 consisted of a parameter space exploration where 9 957 
different stimulation conditions were tested. This was followed with Experiment 2 which tested 958 
two parameters (F30 and M30) from Experiment 1 on a different participant cohort with 20 trials 959 
of each parameter. (b) The behavioral task for the GX dataset consisted of a 70-min 960 
compensatory tracking task (CTT) where participants used a trackball to keep a moving circle at 961 
the center of the screen. The radial distance or deviation from the center of the screen at each 962 
frame determined participant’s behavioral performance. (c) EEG (light blue) and stimulation sites 963 
for frontal (orange), and motor (purple) stimulation. (d) MRI-derived head model used to visualize 964 
stimulation electrode placement. Trial-wise percent improvement derived from change in 965 
deviation for all participants in Experiment 2 for (e) F30 and (f) M30. Trial-wise implementation of 966 
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stimulation trials for (g) Experiment 1 repeated three times for each participant to cover all 9 967 
parameters and (h) Experiment 2 repeated two times for each participant to cover 2 selected 968 
parameters (F30 and M30). (i) EEG and CTT timeseries data for one session for participant 24 969 
where M30 was applied. Insets indicate stimulation location. (j) Trials were segmented from each 970 
session into 30 sec pre, during, and post stimulation. The percent change in CTT deviation (𝚫𝚫) 971 
was calculated from averaged CTT data in the course of the pre and during stimulation periods. 972 
See panel e for trial-wise and participant-wise results. (k) A typical segment of input training data 973 
consisted of 15 channels (14 EEG and 1 ECG) X 3000 samples (30 secs). (l) A modified EEGNet 974 
architecture was utilized to as a classifier to predict response indicated by changes in the percent 975 
change in deviation (𝚫𝚫) during the CTT (Better or Worse).   976 
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 977 
Figure 3. Data label distribution and model prediction metrics. Distribution of training and testing 978 
data used for (a) No Stimulation, (b) F30, and (c) M30 stimulation conditions. Confusion matrices 979 
for Model 1 and 2 for (d) No Stimulation, (e) F30, and (f) M30. (g) Scores for Models 1 and 2 in 980 
terms of accuracy; and weighted scores for precision, recall, and F1 with SEM. (h) Correct and 981 
incorrect classifications for Models 1 and 2 with their respective percent change in deviation. 982 
Boxplots are indicated for correct classifications only. (i) Precision-recall curves across test data 983 
input type and models with the area under the curve (AUC) computed for the average precision 984 
recall across participants with SEM.  985 
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   986 
Figure 4. Simulation of closed-loop responsiveness predictions. (a) A total of 1056 input test data 987 
trials  (15 channels X 3000 samples) were individually passed to all 6 models. (b) The predictions 988 
from all 6 models were aggregated and compared post prediction. (c) Model predictions (with 989 
SEM) for 10 exemplary trials where the probability of improvement (probability of trial classed as 990 
Better) is averaged over predictions for each respective model (i.e., predictions from Models 1 991 
and 2 for NoStim, F30, and M30). Using simple decision rules, model predictions are compared. 992 
(d) Stimulation decisions for 10 example trials in c. (e) To assess simulation outcomes, stimulation 993 
decision predictions of test trials where no stimulation, F30, and M30 stimulation were applied 994 
were divided into four classes: correct assessment, potential improvement, wrong assessment, 995 
and missed opportunities. (f) These four classes were then aggregated across all test data. 996 
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