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Abstract  
 
Sensorimotor adaptation is essential for keeping our movements well-calibrated in response to changes in 
the body and environment. For over a century, we have studied sensorimotor adaptation in highly controlled 
laboratory settings that typically involve small sample sizes. While this approach has proven useful to 
characterize different learning processes, laboratory studies are typically very underpowered to generate 
data suited for exploring the myriad of factors that may modulate motor performance. Here, using a citizen 
science website (testmybrain.org), we collected over 2000 sessions on a visuomotor rotation task. This 
unique dataset has allowed us to replicate classic motor findings, reconcile controversial findings in the 
learning and memory literature, and discover novel constraints underlying dissociable implicit and explicit 
learning processes supporting sensorimotor adaptation. Taken together, this study suggests that large-scale 
motor learning studies hold enormous potential to advance sensorimotor neuroscience.  
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Introduction  
 
Sensorimotor adaptation keeps our movements well-calibrated in response to changes in the body and 
environment. For example, sensorimotor adaptation can help a tired basketball player compensate for their 
muscle fatigue and accelerate recovery in patients undergoing neurorehabilitation (1–3).  
 
The study of sensorimotor adaptation traces back to the early days of experimental psychology (4,5): For 
example, in 1897, George Stratton published his classic self-experiment, describing the behavioral and 
psychological changes he experienced when wearing mirror-inverting glasses for eight consecutive days. 
In the 21st century, these questions are typically addressed by using environments and virtual reality systems 
that allow the experimenter to perturb the movement feedback (6–9). For example, a visuomotor 
perturbation can be introduced by rotating the position of the cursor from the actual hand position. The 
mismatch between the expected and actual position of the visual feedback elicits adaptation, that is, 
movements in the opposite direction of the rotation that reduce and eventually nullify the visuomotor error. 
If the perturbation is small, this change in hand angle emerges gradually and occurs outside the participant’s 
awareness, a phenomenon known as implicit recalibration (10). If the perturbation is large, the adaptive 
response may be accompanied by more explicit adjustments in aiming (11–16).  
 
Studies of sensorimotor adaptation are typically conducted with specially designed apparatuses in 
controlled laboratory settings. This approach has been extremely successful in revealing critical spatial (17–
20) and temporal (21–25) constraints on adaptation, as well as examining the contributions of different 
neural systems to this form of learning (1,2,12,26–32). However, in-person research typically involves 
small, homogenous samples (33), making certain research questions impractical and difficult to answer 
(e.g., exploring how different demographic factors modulate motor behavior). Moreover, analyses that 
identify potential causal underpinnings using small datasets are susceptible to overfitting, which increases 
the likelihood that findings fail to generalize outside the experimental context and to different populations 
(34).  
 
To address these issues, we designed a web-based visuomotor rotation task (35,36) and collected more than 
2000 sessions of data through a citizen science website (www.testmybrain.org) (37–40). Leveraging this 
unique dataset (41), we built a cross-validated, predictive model to identify factors that support successful 
motor adaptation. The results from this study not only replicate classic findings in the literature but also 
highlight novel, widely generalizable constraints underlying sensorimotor learning.  
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Results and Discussion   
 
The viability of studying sensorimotor adaptation outside the traditional laboratory  
 
We collected 2,121 sessions of data through the testmybrain.org website. The data included results from a 
demographic survey and behavior from a web-based visuomotor rotation task. Participants completed 
different numbers of sessions and we employed a few variants of the task (Methods: Table 1-2).  
 
We first focused on naïve participants who completed a task in which all reaches were to a single target (# 
of sessions = 1,747): After a familiarization block with veridical feedback, a 45° visuomotor rotation was 
imposed between the participant’s movement and visual cursor feedback (Figure 1a). To compensate for 
this rotation, participants exhibited significant changes in hand angle in the opposite direction of the 
rotation, gradually drawing the cursor closer to the target (Figure 1b). Individuals exhibited changes in hand 
angle during both early (Mean ± SEM: 22.3° ± 0.3°) and late phases of adaptation (Mean ± SEM: 34.5° ± 
0.3°) (Figure 1d). When asked to forgo the use of any strategy-based change in behavior and reach directly 
to the target without visual feedback, participants exhibited robust aftereffects – a signature of implicit 
recalibration (Mean ± SEM: 12.6° ± 0.2°). Together, these data show a striking resemblance with those 
collected in the lab (35) (also see (42,43)).  
 
There were substantial individual differences in hand angle across the three phases (Figure 1d). Given the 
limited time available for each participant, we compared odd and even trials as an assessment of reliability. 
The split-half reliability was moderate to high across all three phases (Figure 1e; Early: 𝑅! = 0.58, 𝐼𝐶𝐶 =
0.72, 𝑝 < 	0.001; Late: 𝑅! = 0.86, 𝐼𝐶𝐶 = 0.93, 𝑝 < 	0.001; Aftereffect: 𝑅! = 0.59, 𝐼𝐶𝐶 = 0.77, 𝑝 <
	0.001). These results are especially noteworthy given that participants performed the task without any 
supervision.  
 
We next examined how individual differences in hand angle correlated across the three phases (Figure 2). 
The change in hand angle during early and late phases of adaptation were highly correlated (Early vs Late: 
𝑅 = 0.59, 𝑝 < 	0.001), whereas both measures were weakly correlated with that of the aftereffect phase 
(Early vs Aftereffect: 𝑅 = −0.05, 𝑝 = 	0.04; Late vs Aftereffect: 𝑅 = −0.03, 𝑝 = 0.25). These results are 
consistent with the classic idea that adaptation and aftereffect phases tap into dissociable learning processes, 
with the former including a substantial contribution from explicit strategic use (i.e., re-aiming) and the latter 
primarily reflective of implicit recalibration (44).   
 
The data also replicate two classic effects in the sensorimotor adaptation literature. First, repeated exposure 
to the same, large visuomotor rotation has been shown to enhance the rate of adaptation but attenuate the 
size of the aftereffect (45–50). The former is attributed to the recall of a successful re-aiming strategy (49), 
whereas the mechanism for the latter remains an open question (45). To quantify these effects in our data, 
we compared the learning functions between participant’s first session (# of sessions = 1,747) and 
subsequent sessions (i.e., # of sessions = 157) (Table 1). There was a significant phase x session interaction 
(𝐹(2, 5582) = 26.6, 𝑝 < 0.001) (Figure 1b): In subsequent sessions, an increase was observed for both 
early adaptation (𝑡(5582) = 8.0, 𝑝 < 0.001) and late adaptation (𝑡(5582) = 3.5, 𝑝 < 0.001). However, 
the aftereffect was reduced (𝑡(5582) = 2.2, 𝑝 = 0.02) (Figure 3a).  
 
Second, the data replicate classic contextual interference effects in the learning and memory literature 
(Figure 1c) (25,51–55). Specifically, contextual interference is a phenomenon where learning is slower but 
better retained in a random practice schedule compared to a blocked practice schedule (25,56). The constant 
switching between contexts in random practice is thought to create more elaborate and better retained motor 
memories (51,54,57). To evaluate this phenomenon in our data, we compared the learning functions of 
naïve participants (i.e., 1st session) who were tested on either a one-target (# of sessions = 1,747) or two-
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target (# of sessions = 181) version of our task (Figure 1c and see also Table 1). Note that the former is, by 
definition, blocked (i.e., there is only one target), whereas in the latter, the two targets are interleaved. There 
was a significant phase x version interaction (𝐹(2, 5777) = 23.5, 𝑝 < 0.001): For the two target version, 
early adaptation (𝑡(5777) = 6.0, 𝑝 < 0.001) and late adaptation (𝑡(5777) = 2.1, 𝑝 < 0.001) were 
attenuated, but the aftereffect was larger (𝑡(5777) = 3.6, 𝑝 < 0.001), reproducing the canonical signature 
of contextual interference.   
 
These data also bear on a controversy in the motor learning literature concerning the effect of aging on 
sensorimotor learning. Several studies have reported no effect of age on motor adaptation (58–60). Others 
have found that aging impairs late adaptation (61–65), with this attenuation attributed to an age-related 
decline in strategy use. However, these previous studies have recruited modest sample sizes drawn from a 
limited age range (58,66). Leveraging our large dataset that spans a wide age range, we discovered a 
striking, inverted-U effect of age on all phases (quadratic AIC – linear AIC: early, ∆𝐴𝐼𝐶 = 	−5.2; late, 
∆𝐴𝐼𝐶 = 	−17.2; aftereffects, ∆𝐴𝐼𝐶 = 	−1.1; all p < 0.05) (Figure 3b). Interestingly, late adaptation reached 
a peak at around 20 and dropped off at 60 years old; in contrast, the size of the aftereffect reached a peak 
around 50 and dropped off at 70 years old. The mixed results in the literature may be due to different studies 
sampling different points on the inverted-U curve (also see: (67)).  
 
Taken together, the data indicate that our web-based visuomotor task yields data that are valid and reliable, 
replicate classic effects in the motor learning literature, and can elucidate unappreciated constraints on 
sensorimotor adaptation.  
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Figure 1. Web-based sensorimotor adaptation task and behavior. (a) Schematic of the sensorimotor adaptation 
task. The cursor feedback (white dot) was rotated 45° with respect to the movement direction of the hand. Participants 
were instructed to move such that the cursor would intersect the target (blue circle). Left, middle, and right panels 
display hand and cursor positions during the early, late, and aftereffect phases of learning, respectively. (b) Mean 
learning functions from naïve participants who completed the one-target version of the task for the first time (black; 
# of sessions = 1,747) vs. non-naïve participants completing the one-target version subsequent times (grey; # of 
sessions = 157). Shaded region represents SEM. (c) Mean time courses of hand angle for naïve participants who 
completed the one-target (black; n = 1,747) or two-target version (grey; n = 181) of the task. A hand angle of 0° 
denotes a movement directed to the target. (d) Distribution of participants’ mean hand angles during early, late, and 
aftereffect phases. (e) Split-half reliability correlating hand angles on even and odd trials across all three phases. Grey 
dots denote individual participants; grey lines represent the identity line. 
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Figure 2. Cross-correlations between early adaptation, late adaptation, and aftereffect phases. R denotes 
Spearman’s correlation.  

 

 
Figure 3. The effect of session and age on sensorimotor adaptation. (a) With exposure to the same visuomotor 
rotation across sessions (# of sessions = 1,863; Table 1), participants exhibit increased early and late adaptation across 
sessions but an attenuated aftereffect. (b) The inverted-U effect of age. For ease of visualization, participants’ age was 
binned based on increments of 10. Error bars denote SEM.  
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Identifying predictors of explicit strategic re-aiming  
 
By collecting a range of demographic and kinematic variables in a large sample, we are positioned to 
identify predictors of sensorimotor adaptation and forecast sensorimotor behavior that has not yet been 
observed (34). To this end, we adopted a machine learning approach that segregated our large sample of 
naïve participants who completed the one-target version on their first session (n = 1,747) into independent 
model development and testing subsets. Our cross-validated group lasso procedure not only avoids 
overfitting the data, but also enables us to discover novel features of motor adaptation in a powerful, 
exploratory fashion.  
 
The best model predicted (𝑅"#! ) 12.2%, 4.8%, and 18.6% of early, late, and aftereffect data, respectively. 
Our best model outperformed models built on randomly shuffled features (all pperm < 0.001), underscoring 
its ability to predict motor behavior better than chance. However, the predictive capacity of a model based 
on individual differences was not extremely high; indeed, the variability in our dataset made it difficult to 
draw strong inferences on an individual level. As such, we focused on how learning functions differed on 
a cruder, categorical level. When the predictor was continuous (e.g., movement time), the learning functions 
were plotted based on a median split, binning participants into binary categories (e.g., high vs low 
movement times) (Table 2). 
 
We start by focusing on features that predict early and late adaptation but are not predictive of the aftereffect 
(Figure 4a; a beta coefficient of 0 = not predictive). These features may be related to the participants’ 
efficiency in using strategic processes to counter the perturbation (e.g., re-aiming). First, the participant’s 
overall enjoyment rating of the experiment predicted early and late adaptation (Figure 4b). Whether 
adapting more causes greater enjoyment (i.e., more task success) or greater enjoyment elicits greater 
adaptation remains to be seen. Second, movement time predicted early and late adaptation, with faster 
movements times associated with greater adaptation (Figure 4c). Participants who moved faster may be 
those who were motivated to perform well (68). Alternatively, the strength of the error signal may weaken 
with movement time – an intriguing hypothesis that can be rigorously evaluated in the lab.  
 
Third, the participant’s sex (Figure 4e) predicted early and late adaptation. Compared to women, men were 
faster at counteracting the perturbation and reached a higher level of performance, consistent with what has 
been observed in in-person studies (69) (but see (67)). This result suggests that men are more likely to 
engage strategic processes to compensate for the visuomotor rotation. Fourth, participants who reported 
visual impairments adapted less than those who reported no visual impairments (Figure 4d). This finding 
suggests that successful strategic re-aiming may require high-fidelity visual input (also see Figure S1 for 
learning functions from other predictors).  
 
Identifying predictors of implicit recalibration  
 
Next, we describe features that selectively predict variation in the size of the aftereffect (Figure 5a), our 
proxy of implicit recalibration. The effect of baseline motor variability on implicit recalibration has been a 
controversial topic (70,71). One perspective suggests that a more variable motor system may be sensitized 
to correct motor errors (72,73), and thus, would be associated with stronger implicit recalibration. 
Alternatively, it has been argued that large intrinsic noise reduces sensitivity to external perturbation by 
amplifying a “credit-assignment” problem (74–76). By this view, greater baseline variability would be 
associated with weaker implicit recalibration. Our results are consistent with the latter perspective: Higher 
baseline variability was associated with a lower asymptote (Figure 5b).  
 
Second, the participant’s level of education predicted the extent of the aftereffect (Figure 5c), with greater 
education associated with a larger aftereffect. This result may seem counterintuitive given that, a priori, we 
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would expect education to be linked with cognitive variables such as strategy use. However, years of 
education is collinear with age (𝑟	 = 	0.53, 𝑝	 < 	0.001), a feature observed to modulate aftereffects (Figure 
2b). As such, we suspect that those with more education may have been older, and thus exhibited slightly 
greater implicit recalibration (61,66,77–79).  
 
Third, participant’s return time predicted the extent of aftereffects (Figure 5d), with longer baseline return 
times associated with a larger aftereffect. Participants who were slower to return their (hidden) cursor to 
the start position may be those who were less kinesthetically aware (i.e., less aware of where they had 
moved), a factor shown to correlate with the extent of implicit recalibration (46,80) (but see: (81,82)). 
Alternatively, longer return times may provide sufficient time for learning to consolidate (83), and as such, 
increase the extent of implicit recalibration.  
 
Fourth, we observed an unexpected effect of target location on implicit recalibration. Participants who 
reached to diagonal target locations had an aftereffect that was almost twice as large as that observed for 
participants who reached towards cardinal targets. This result is especially noteworthy in that target location 
– being a variable of interest for motor control (i.e., different baseline movement biases) (84–86) – is often 
considered an nuisance variable for sensorimotor adaptation (with some exceptions, e.g., (87)). Future 
studies are required to evaluate the underlying mechanisms that give rise to these effects.  
 
Summary and Conclusions 
  
Our data-driven web-based approach offers a powerful method to study sensorimotor learning outside the 
traditional laboratory (also see: (83,88–99)). First, we have shown that these data are reliable and valid, 
reproducing classic findings in the literature. For example, re-exposure to the same visuomotor rotation not 
only increased early and late adaptation (48,49,100–102) but also attenuated the aftereffect (45). Moreover, 
we observed the signature of contextual interference, in which blocked training (fixed target location) 
accelerated learning but weakened retention in comparison to training with multiple, interleaved targets.  
 
Second, the large sample sizes possible in web-based studies offer a novel means to examine controversies 
in the sensorimotor learning literature. For example, we expect it may be difficult to detect the effects of 
age in lab-based studies with small sample sizes. Our results highlight a subtle, but striking, inverted-U 
effect of age, with late adaptation peaking between 20-50 years old and aftereffects peaking around 50-60 
years old (also see: (67)). Future in-lab studies can home in on the mechanisms underlying these non-
monotonic functions, asking how age-related cognitive decline may disrupt strategic re-aiming, and how 
age-related neural degeneration may impact implicit recalibration.  
 
Third, our web-based approach allows us to tackle questions typically inaccessible to the lab and discover 
new predictors of sensorimotor adaptation. Leveraging this large dataset and a machine learning approach, 
we discovered that the participant’s sex, movement speed, and overall enjoyment of the experiment 
predicted the extent of strategic re-aiming. Age, level of education, return time, target location, and 
movement variability predicted the extent of implicit recalibration. Elucidating why these new, 
unappreciated features modulate different learning processes underlying sensorimotor adaptation will be an 
exciting area for future research. 
 
There are notable limitations with this data-driven approach. Our predictive model only explained between 
5% - 20% of the variance in the data. This may be because of the noisiness inherent in on-line data 
collection. One way to reduce this noise is to collect more data; doubling the number of trials would only 
add an additional 10 minutes to the current procedure. Our model is, of course, limited by our choice of 
measures. Future studies can build on the current model by assaying a wider range of features, including 
those we might expect to be predictive of motor performance (e.g., athleticism, musicality) as well as others 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.18.524634doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524634
http://creativecommons.org/licenses/by-nc/4.0/


we expect to be less predictive (e.g., geographic location, socio-economical background). These additions 
would take us closer to a more holistic model and understanding of sensorimotor learning.  

 
Figure 4. Predictors of early and late adaptation. (a) Beta coefficients indicate whether a feature positively (circle) 
or negatively (crosshairs) correlates with hand angle data. (b-e) Representative features that predict early and late 
adaptation: Rating of overall enjoyment, baseline movement time (median split), visual status, and sex. Shaded region 
denotes SEM.  
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Figure 5. Predictors of motor aftereffect. (a) Beta coefficients indicate whether a feature positively (circle) or 
negatively (crosshairs) correlates with hand angle data. (b-e) Representative features that predict the size of the 
aftereffect: Baseline movement variability, level of education, baseline return time (median split), and target location. 
Shaded region denotes SEM.  
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Methods 
 
Ethics statement 
 
All participants gave written informed consent in accordance with policies approved by the UC Berkeley’s 
Institutional Review Board. 
 
Participants and Sessions 
 
Participants were recruited between 2019 and 2022 on a citizen science website (TestMyBrain.org) that 
provides personalized performance feedback in exchange for study participation. A total of 2,289 
experimental sessions were collected. For the visualization (Figure 1b-c), we excluded 168 sessions with 
erratic movements (i.e., the standard deviation of hand angle exceeded 25°, or more than 20% of outlier 
datapoints were removed; see Data Analysis) or systematic movements to the wrong direction (i.e., mean 
heading angle less than 0° or exceeded 75°), leaving 2,121 eligible sessions.  
 
For the model-based analysis, we limited the data to participants who completed the one-target version of 
the task on their first session (n = 1,747). This criterion excluded 374 sessions (see Table 1) in which there 
may have been confounds (e.g., the two-target version impacted learning at all phases) and possible within-
participant effects on behavior (e.g., savings or interference (45)). A summary of demographic and task 
features are provided in Table 2.  
 
 

Target # / Session # 1st-session 2nd-session 3rd -session 4th-session Not identified Total 
1-target 1,747 80 13 23 41 1,904 
2-target 181 7 2 2 3 195 
4-target 10 1 0 1 0 12 
8-target 10 0 0 0 0 10 

Total 1948 88 59 25 44 2,121 
 

Table 1. 2,121 total experimental sessions broken down by session number and target version. 44 sessions 
were not identified due to an error in our survey configuration.  

Web-based sensorimotor adaptation task  
 
All participants used their own laptop or desktop computer to access the TestMyBrain.org webpage that 
hosted the experiment (see a demo of the task at: https://multiclamp-c2.web.app/). Participants made 
reaching movements by moving the computer cursor with their mouse or trackpad. The size and position 
of stimuli were scaled based on each participant’s screen size. For ease of exposition, the stimuli parameters 
reported below are for a typical monitor size of 13” (1366 x 768 pixels), and the procedure reported below 
is for the one-target version of the task.   
 
On each trial, the participants made a center-out planar movement from the center of the workspace to a 
peripheral target. The center position was indicated by a white annulus 0.5 cm in diameter, and the target 
location was indicated by a blue circle that was also 0.5 cm in diameter. The radial distance of the target 
from the start location was 6 cm. For each participant, the target always appeared at the same location on 
every trial. Each individual was randomly assigned a single target location selected from a set of eight 
possible locations (cardinal targets: 0°, 90°, 180°, 270°; diagonal targets: 45°, 135°, 225°, 315°).  
 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.18.524634doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524634
http://creativecommons.org/licenses/by-nc/4.0/


Total n = 1, 747 (first experimental session; one-target version) 

Age 26.3 (9 – 96) Sex 
Female 
Male 
Other 

855 
839 
53 

Rating of clumsiness 3.0 (1.1) Vision intact Yes 
No 

1584 
163 

Rating of enjoyment  3.3 (1.1) Screen size Height 
Width 

787.3 (160.7) 
1525.8 (319.1) 

Hours of computer use 6.9 (3.2) 

Browser 

Chrome 
Firefox 
Edge 
Opera 
Safari 
Not detected 

1375 
142 
3 
42 
177 
8 

Hours of sleep per night  7.1 (1.4) 

Handedness 
Right 
Left 
Ambidextrous 

1547 
150 
50 

Target location Cardinal 
Diagonal 

835 
912 

Device 

Mouse 
Trackpad 
Trackball 
Other    

764 
942 
18 
23 

Undergraduate  
Major 

STEM 
Psychology 
Social Science 
Business 
Arts/Humanities 
Other 

695 
208 
108 
162 
201 
373 

Racial  
origin 

Multi-racial 
White 
Asian 
Latinx 
African American 
Native American 
Pacific Islander 
Other 
Rather not say 

79 
833 
431 
116 
55 
22 
5 
93 
113 

Highest level  
of education 

Primary 
Middle 
Secondary 
Some college 
Technical school 
Bachelor 
Graduate 
Other 
Rather not say 

21 
286 
358 
388 
54 
313 
262 
11 
54 

Baseline  
variability 

High  
Low 

5.4 (2.1) 
2.8 (0.7) 

Movement  
Time 

Fast 
Slow 

97.4 (27.6) 
267.7 (130.8) 

Reaction  
Time  

Fast 
Slow 

231.2 (37.0) 
348.5 (59.8) 

Search  
Time 

Fast  
Slow 

1384.5 (151.5) 
1897.2 (273.4) 

 
Table 2: Summary of demographic and task features. The mean age (min – max) is provided. The mean and SDs 
are provided for self-reported Likert ratings of clumsiness (“I am clumsy”) and self-reported Likert ratings of overall 
experience completing the experiment (“I enjoyed the experiment”). A rating of 1 and 5 signified that the participant 
strongly disagreed or strongly agreed with the statement, respectively. Median splits for baseline variability (°), 
reaction time (ms), movement time (ms), and search time (ms) are provided.  
  
To initiate each trial, the participant moved the cursor, represented by a white dot on their screen into the 
start location. During an introductory phase, feedback was only provided when the cursor was within 2 cm 
of the start circle. Once the participant maintained the cursor in the start position for 500 ms, the target 
appeared. The participant was instructed to reach to the target using the cursor. If the movement was not 
completed within 500 ms, the message “too slow” was displayed in red 20 pt. Times New Roman font at 
the center of the screen for 750 ms. 
  
During the experimental phase,  visual feedback could take one of the following forms: Veridical feedback, 
rotated feedback, and no feedback. During veridical feedback trials, the movement direction of the cursor 
was veridical with respect to the movement direction of the hand up to the target distance (6 cm). Once this 
distance was reached, the cursor position was frozen for 50 ms and then the cursor disappeared. During 
rotated feedback trials, the cursor moved at a 45° angular offset relative to the position of the hand up to 
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the target distance (6 cm) before freezing for 50 ms. During no-feedback trials, the feedback cursor was 
extinguished as soon as the hand left the start circle and remained off for the entire movement. During the 
return phase after each movement, the veridical cursor was visible upon moving within 2 cm of the start 
circle.  
  
Given the access demands for the testmybrain website, we were limited to only about 10 min of data 
collection. The study was designed to completed in under 10 minutes. As such, participants completed three 
blocks of trials (90 total trials): Baseline veridical-feedback block (30 trials), rotated-feedback block (54 
trials), and a no-feedback block (6 trials). During the rotation block, the direction of rotation (i.e., clockwise, 
or counterclockwise) was counterbalanced across participants.  
 
Data analysis 
 
The primary dependent variable was hand angle, defined as the angle of the hand relative to the target when 
the amplitude of the movement reached the target radius (6 cm). Positive hand angle values correspond to 
the direction opposite the rotated feedback (i.e., we flipped all hand angle values at targets where a 
counterclockwise rotation was provided).  
 
The data were baseline subtracted. Baseline was defined as mean hand angle over all trials in the baseline 
block. Outlier trials were defined as trials in which the hand angle deviated by more than three standard 
deviations from a moving 5-trial window, or if the hand angle on a single trial was greater than 90° from 
the target. These trials were discarded since behavior on these trials likely reflects attentional lapses 
(average percent of trials removed: 1.6% ± 2.1%).  
 
The degree of adaptation was quantified as the change in hand angle in the opposite direction of the rotation. 
We calculated hand angle during early adaptation, late adaption, and the aftereffect phase. Early adaptation 
was defined as the mean hand angle over the first 10 trials during the rotation block. Late adaptation was 
defined as the mean hand angle over the last 10 trials during the rotation block. Aftereffect was 
operationalized as the mean hand angle during the no-feedback block.  
 
The hand angle data during early, late, aftereffect phases were entered into a group lasso regression as 
dependent variables (R function: cv.glmnet; (103)), and all the features in Table 2 were entered in as 
independent predictors. Categorical variables were assigned dummy variables (104); continuous variables 
were z-scored (105). We have opted to highlight results from group lasso regression since this procedure 
penalizes unimportant independent variables (i.e., sets them to zero). As such, the method is conservative 
in terms of identifying predictors. Group lasso also forces the model to keep or discard a pre-defined set of 
grouped variables (e.g., undergraduate major).  
 
We used 10-fold cross validation on 80% of the sessions to select the model with the minimum mean cross-
validation error. We fixed the best performing model’s beta coefficients and evaluated the degree to which 
this model predicted held out data (the remaining 20% of sessions). The absolute value of the beta-
coefficient represents the importance of this feature in the model. We used the coefficient of determination 
(𝑅"#! ) between the predicted and the actual held-out data as our key metric of model performance.  
 
Data availability statement 
 
Data and code will be available upon publication at: https://github.com/itsalwaysnow/Identifying-
predictors-of-sensorimotor-adaption-with-180-000-reaches.git.  
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Figure S1. Other predictors of sensorimotor adaptation. Shaded region denotes SEM. 
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