1 Andes virus genome mutations that are likely associated with animal-model attenuation

2 and human person-to-person transmission

- 3 Carla M. Bellomo^{1,*,#}, Daniel O. Alonso^{1,*}, Unai Pérez-Sautu², Karla Prieto^{2,3}, Sebastian
- 4 Kehl¹, Rocio M. Coelho¹, Natalia Periolo¹, Nicholas Di Paola², Natalia Ferressini-Gerpe⁴,
- 5 Jens H. Kuhn⁵, Mariano Sanchez-Lockhart²; Gustavo Palacios^{4,6,*}, Valeria P. Martínez^{1,*,#}
- 6 ¹Laboratorio Nacional de Referencia de Hantavirus, Instituto Nacional de Enfermedades
- 7 Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G.
- 8 Malbran", Ciudad Autónoma de Buenos Aires, Argentina
- 9 ²Center for Genome Sciences, United States Army Medical Research Institute of Infectious
- 10 Diseases, Fort Detrick, Frederick, Maryland, USA
- ³College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
- ⁴Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New

13 York, USA

- ⁵Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute
- 15 of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick,

16 Maryland, USA

⁶Global Health Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New
York, New York, USA

19

20 Running Title: Pathogenic determinants in the Andes virus genome

- 22 *These authors contributed equally to the study.
- [#]Address correspondence to Gustavo Palacios, <u>Gustavo.palacios@mssm.edu</u> or Valeria P.
- 24 Martínez, <u>valepm@gmail.com</u>.
- 25 Word counts: Abstract, 180; text, 3,227

26 STRUCTURED ABSTRACT

27 Abstract

28 We performed whole-genome sequencing with bait-enrichment techniques to analyze Andes 29 virus (ANDV), a cause of human hantavirus pulmonary syndrome. We used cryopreserved 30 lung tissues from a naturally infected long-tailed colilargo; early, intermediate, and late cell-31 culture passages of an ANDV isolate from that animal; and lung tissues from golden hamsters 32 experimentally exposed to that ANDV isolate. The resulting complete genome sequences 33 were subjected to detailed comparative genomic analysis against American 34 orthohantaviruses. We identified four amino-acid substitutions related to cell-culture 35 adaptation that resulted in attenuation of ANDV in the typically lethal golden hamster animal 36 model of hantavirus pulmonary syndrome. Mutations in the ANDV nucleocapsid protein, 37 glycoprotein, and small nonstructural protein open reading frames correlated with mutations 38 typical for ANDV strains associated with increased pathogenesis in the small animal model. 39 Finally, we identified three amino-acid substitutions, two in the small nonstructural protein 40 and one in the glycoprotein, that were only present in the clade of viruses associated with 41 person-to-person efficient transmission. Our results indicate that there are virulence-42 associated and transmission-associated single-nucleotide polymorphisms that could be used 43 to predict strain-specific ANDV virulence and/or transmissibility. 44 Importance 45 Several orthohantaviruses cause the zoonotic disease hantavirus pulmonary syndrome (HPS)

46 in the Americas. Among them, HPS caused by Andes virus (ANDV) is of great public-health

47 concern because it is associated with the highest case-fatality rate (up to 50%). ANDV is also

48 the only orthohantavirus associated with relatively robust evidence of person-to-person

49 transmission. This work reveals nucleotide changes in the ANDV genome that are associated

50 with virulence attenuation in an animal model and increased transmissibility in humans.

- 51 These findings may pave the way to early severity predictions in future ANDV-caused HPS
- 52 outbreaks.

53 INTRODUCTION

54	Approximately	25 rodent-borne	orthohantaviruses	(Bunyavirales: Hantaviridae:
•••	1 ippi ommately		or monune in abeb	(Duit) difficultes i factori factori

- 55 Orthohantavirus) have been identified as etiologic agents of human hantavirus pulmonary
- 56 syndrome (HPS) in the Americas (1). In Argentina, most HPS cases are caused by Andes
- 57 virus (ANDV) and somewhat uncharacterized ANDV-like viruses (e.g., Buenos Aires virus
- 58 [BASV], Lechiguanas virus [LECV], Orán virus [ORNV]). HPS has a case-fatality range of
- 59 21–50%, with ANDV typically causing the highest lethality (2-5). American
- 60 orthohantaviruses are pathogenic for humans and subclinically infect cricetid rodents in
- 61 nature; ANDV is primarily maintained by long-tailed colilargos (Oligoryzomys longicaudatus
- 62 (Bennett, 1832)) (<u>6</u>).

63 The route of orthohantavirus transmission to humans is typically zoonotic, i.e., *ex vivo*

64 without intermediate vectors (7). However, in 1996, an HPS outbreak caused by ANDV

65 strain Epilink/96 that began in El Bolsón, Río Negro Province, Argentina, was attributed for

66 the first time to person-to-person transmission (4, 8, 9). Sporadic HPS outbreaks with very

67 limited person-to-person ANDV transmission have occurred over the last 25 years (2, 3, 10).

68 Recently, state-of-the-art molecular epidemiology applied to a 2018–2019 HPS outbreak in

69 Epuyén, Chubut Province, Argentina, confirmed the unique capacity of some strains of

70 ANDV (in this instance, ANDV/Epuyén/18-19) to sustain forward orthohantavirus

71 transmission in humans (<u>11</u>).

ANDV and Maporal virus (MAPV) are the only orthohantaviruses that have been
documented to reproduce key features of HPS and cause lethal disease in a rodent model, i.e.,

74 golden hamsters (*Mesocricetus auratus* (Waterhouse, 1839)) (12-14). Immunocompetent

75 golden hamsters provide uniformly lethal results when exposed to the Chilean strain

76 ANDV/CHI-9717869 (isolated from a long-tailed colilargo collected from Lago Atravesado,

77 Coyhaique, Aysen Region, Chile, in 1997) (<u>12</u>, <u>15</u>) or the Argentinean strain ANDV/ARG

78	(isolated from a long-tailed colilargo collected in the vicinity of the primordial site of
79	discovery of ANDV [El Bolsón] in 2000) (<u>14</u>). However, the golden hamster model did not
80	produce lethal results when exposed to a closely related strain, ANDV/CHI-7913 (isolated
81	from clinical samples from a fatal case that was a family contact of the index case of an
82	outbreak near Santiago, Chile, in 1999) (<u>16</u>). These findings indicated that subtle strain-
83	specific genomic differences may have dramatic phenotypic consequences (<u>17</u>).
84	
04	Cell-culture passaging has been associated with viral virulence attenuation for
85	Cell-culture passaging has been associated with viral virulence attenuation for multiple orthohantaviruses in animal models (<u>18</u> , <u>19</u>). We therefore hypothesized that serial
85	multiple orthohantaviruses in animal models (18 , 19). We therefore hypothesized that serial
85 86	multiple orthohantaviruses in animal models ($\underline{18}$, $\underline{19}$). We therefore hypothesized that serial cell-culture passaging of an ANDV known to be uniformly lethal in golden hamsters would

90 **RESULTS**

91 Cell-culture passaging of Andes virus strain ARG results in virulence attenuation *in*92 *vivo*.

- 93 Andes virus strain ARG (ANDV/ARG) is one of a select few available strains isolated
- 94 directly from the rodent reservoir, long-tailed colilargos. To our knowledge, it is also the only
- 95 ANDV strain directly sequenced from rodent material (passage 0 [p0]). We hypothesized that
- 96 cell-culture passaging attenuates ANDV/ARG. To test this hypothesis, we passaged
- 97 ANDV/ARG p9, described previously as causing 100% lethality in golden hamsters at 10 d
- 98 after exposure (<u>14</u>), an additional 10 times in grivet Vero E6 cells (to p19). In a side-by-side
- 99 comparison, all golden hamsters exposed via intramuscular injection of ANDV/ARG p9
- 100 uniformly reached euthanasia criteria, as expected, whereas 33.3% of those exposed to
- 101 ANDV/ARG p19 recovered, and mock-exposed control animals uniformly survived (Fig. 1).
- 102 Kaplan–Meier comparison of survival curves and log-rank tests (Mantel–Cox [p-value
- 103 <0.0001, Chi-square 18.47], trend variation with the number of passages [*p*-value 0.0101,
- 104 Chi-square 6.610], and Gehan–Breslow–Wilcoxon [*p*-value 0.0005, Chi-square 15.13])
- 105 demonstrated that these survival differences are statistically significant. ANDV/ARG RNA
- 106 was consistently detected in golden hamster lung samples $(3.8 \times 10^6 \text{ to } 1.7 \times 10^{10} \text{ RNA copies})$
- 107 per 100 mg of perfused tissue) in the ANDV/ARG p9 and p19 cohorts but not in the mock-
- 108 exposed control cohort.

Phylogenetic analysis informs the evolutionary history of Buenos Aires virus and Andes virus strain ARG.

- 111 We performed phylogenetic analysis of ANDV/ARG and Buenos Aires virus (BASV) small
- 112 (S) and medium (M) genomic segments as well as the ANDV/ARG large (L) segment.
- 113 Complete coding nucleic-acid sequences determined in this study were assessed together with
- 114 previously determined sequences of ANDV, ANDV-like viruses Lechiguanas virus (LECV)

115	and Orán virus (ORNV), BASV/BA02-C1S, and several New World orthohantaviruses
116	(Laguna Negra virus [LANV], Sin Nombre virus [SNV], Maporal virus [MAPV], Rio
117	Mamoré virus [RIOMV], and Choclo virus [CHOV]). Four distinct ANDV clades are
118	apparent in the most divergent S segment tree (Fig. 2C; details about the strains are listed
119	in Table S1):
120	1. ANDV/CHI-7913 (Chile; long-tailed colilargo) and ANDV/NRC-4/18 (Argentina;
121	human)
122	2. ANDV/Epilink/96, ANDV/Epuyén/18-19, ANDV/NRC-2/97, and ANDV/NRC-6/18
123	(Argentina; human; all associated with person-to-person transmission);
124	3. ANDV/ARG (Argentina; long-tailed colilargo); and
125	4. ANDV/CHI-9717869 (Chile; long-tailed colilargo).
126	ANDV/ARG is therefore not directly related to the other ANDV strains associated with
127	person-to-person transmission. Interestingly, BASV clusters separately from ANDV sensu
128	stricto together with LECV and ORNV; and ANDV/CHI-9717869 appears to be the ancestral
129	to the ANDV species. Further, the analysis also shows that ANDV/ARG genetic distances to
130	other strains reflect their geographic distribution (Fig. 2D).
131	Sequencing of passaged variants of Andes virus strain ARG reveals sites of adaptation
132	associated with attenuation in the golden hamster model.
133	To identify genotypic differences associated with golden hamster model outcome phenotype,
134	we sequenced the S, M, and L genomic segments of ANDV/ARG p0 (sampled from the long-
135	tailed colilargo). The resulting isolate was seeded in Vero E6 cells for analysis of p3, p9 (<u>14</u>),
136	and p19, as well as lung-tissue homogenate from golden hamsters exposed to ANDV/ARG
137	p9. We also included a human blood sample of Buenos Aires virus (BASV/BA02-C1S) from
138	a hantavirus pulmonary syndrome (HPS) case in La Plata, Provincia de Buenos Aires, in

139 2002. We obtained complete genomic sequences for all segments (>98.3% coverage) for all

	140	ANDV strains, e	except for the L segment	ent from the p0 strain	1 (46.1% coverage). Sequences are
--	-----	-----------------	--------------------------	------------------------	-------------------	------------------

- 141 available in GenBank, under accession numbers OP555720–OPG555735.
- 142 The comparative analysis revealed only a few nucleotide changes over passages
- 143 (Table 1), and p0 and p3 sequences were identical. By p9, three single-nucleotide
- 144 polymorphisms (SNPs) were observed: two in the *S* segment (S46N in the nucleocapsid [*N*]
- open reading frame [ORF] and V20I in the small nonstructural protein [NSs] ORF) and one in
- the L segment (I1295M in the large protein [L] ORF). By p19, three additional SNPs were
- 147 observed: one in the S segment (A21T), one in the M segment (S97P), and one in the L
- 148 segment (P1675S); also, one reversion was observed in the S segment (affecting S46 in the N
- 149 ORF and V20 in the NSs ORF). As expected, the p19 sequence had the highest number of
- 150 non-synonymous substitutions. The changes were predominantly transitions (87.5%). After
- 151 correction by segment length, it is evident that most nucleotide substitutions accumulated in
- the S segment. Surprisingly, very few SNPs were observed in the M segment. Interestingly,
- 153 no reversions were detected in the genomic sequences of ANDV/ARG p9 in the lungs of
- 154 golden hamsters exposed to ANDV/ARG p9. (*Note:* No data was collected from the lungs of
- 155 golden hamsters exposed to ANDV/ARG p19.)

156 Sequencing of Andes virus strain ARG reveals virulence markers when compared with

- 157 pathogenic and non-pathogenic strains of Andes virus utilized in the golden hamster
- 158 model.
- 159 To identify potential genotypic virulence markers in the ANDV/ARG genome, we initially
- 160 focused on 23 specific SNPs that had been described between the golden hamster attenuated
- 161 ANDV/CHI-7913 compared to golden hamster lethal ANDV/CHI-9717869 (<u>17</u>). We also
- 162 mapped 5 additional SNPs between those genomes, as the NSs ORF was not included in the
- 163 original comparison (<u>17</u>). In 23 of those 28 positions, ANDV/ARG p0 shared nucleotide
- 164 bases with attenuated ANDV/CHI-7913. ANDV/CHI-97177869 and ANDV/ARG only

165 shared position 11 of the Gn glycoprotein, positio	ion 958 of the GC giveoprotein, and positions
--	---

- 166 20 and 37 of the NSs ORFs (Table 2). ANDV/ARG differ from both ANDV/CHI-7913 and
- 167 ANDV/CHI-9717869 in genome position 46 of the *N* ORF.
- 168 Next, we focused on comparing the amino-acid changes that arose during
- 169 ANDV/ARG passaging with the differences in virulence observed in the golden hamster
- 170 model. We identified five: A21T in the N ORF, V20I in the NSs ORF, S97P in the Gn
- 171 glycoprotein, and I1295M and P1675S in the *L* ORF.
- 172 T21, which only appeared in ANDV/ARG p19, occurs in a region known to
- 173 participate in orthohantavirus NSs homotypic interactions (20). Additionally, we identified a
- 174 second amino-acid change in the N ORF (S46N), which was only encoded by ANDV/ARG
- 175 p9 (Table 1 and Table 2). Interestingly, in the same N ORF, Simons et al. reported an
- 176 ANDV-specific kinase-recruitable hypervariable domain (HVD) in the N ORF by comparison
- 177 of ANDV/CHI-7913 with other American orthohantaviruses and demonstrated its importance
- 178 in regulating interferon (IFN) signaling (21). The HVD, which consists of 44 residues
- 179 (nucleotides 252 to 296), encodes 6 characteristic amino acids (at positions A253, K262,
- 180 N273, H286, T289, and T296) that are determinants of the phosphorylation of S386 in the N
- 181 ORF, which is posited as a virulence determinant (21). Although we confirmed that S386 and
- 182 five of the six residues are conserved among all ANDV and ANDV-like viruses (Table 2 and
- 183 3) A253 is exclusive for ANDV and has been mutated to P (BASV and LECV) or L (ORNV)
- in ANDV-like viruses.
- 185 The recently discovered ANDV NSs antagonizes the type I IFN response by
- 186 inhibiting mitochondrial antiviral-signaling protein (MAVS) signaling by binding MAV
- 187 without disrupting MAVS-TBK-1 (20). In the presence of ANDV NSs, the ubiquitinylation
- 188 of MAVS is reduced. The V20I SNPs in the NSs ORF was observed arising in the
- 189 ANDV/ARG p9 strain by the same mutation in nucleotide position 179 in the S segment.

190	(Note: The NSs ORF is in position +1 compared with the N ORF.) ANDV/CHI-9717869 and
191	ANDV/CHI-7913 differ in the NSs ORF in five amino-acid positions (5, 20, 33, 35, and 37;
192	Table 2 and 3).
193	The S97P Gn mutation, found only in ANDV/ARG p19, could not be associated with
194	any functional change. The site has only been reported as part of an antibody epitope (22).
195	The S residue is conserved in BASV and LANV Gns, whereas other orthohantavirus Gns
196	(LECV, ORNV, MAPV, RIOMV, SNV, and CHOV) have an A in that position (Table 2 and
197	Table 3).
198	M1295 and S1675 in the L ORF were encoded by ANDV/ARG p9 and p19 strains,
199	respectively, but those genomic regions could not be associated with any functionality.
200	M1295 has not been observed previously in nature; other orthohantavirus have I1295
201	(MAPV, RIOMV, LANV, and CHOV) or Y1295 (SNV) (Table 2). S1675 has not been
202	observed in L ORFs of other orthohantaviruses, and P1675 position appears entirely
203	conserved (Table 2).
204	Sequencing of Andes virus strain ARG reveals potential transmissibility markers when
205	comparing Andes virus strains with differences of efficiency in person-to-person
206	potential.
207	The presence of outbreak-related determinants associated with person-to-person transmission
208	was assessed by comparing genomic sequences of ANDV strains from clades clearly
209	associated with person-to-person transmission and ANDV strains and ANDV-like viruses
210	(BASV, LECV, and ORNV) that had not (Table 3). Interestingly, BASV, the most closely
211	related ANDV-like virus (Fig. 2A-C), has also been implicated in secondary transmissions
212	but with limited efficiency ($\underline{23}$, $\underline{24}$).
213	Only one mutation in the M segment (T641I) was unique to person-to-person-
214	associated clade 2 strains. Only one mutation in the S segment (A253N) was exclusively

215 present in ANDV, whereas S386N is conserved among ANDV strains and ANDV-like

216 viruses. Our analysis did not include the L segment of ANDV-like viruses because those 217 sequences remain unavailable.

218

Five M ORF positions were unique to ANDV genomes compared with genomes of 219 ANDV-like viruses (amino-acid positions 97, 569, 570, 641, and 1133; **Table 3**). Three (569, 220 570, and 1133) are shared by all ANDV strains. S97 is encoded by all ANDV strains and 221 BASV, whereas the T6411 change was only encoded by ANDV strains from the clade 222 associated with person-to-person transmission. However, only the latter (T641I) had been 223 mapped in the vicinity of the absolutely conserved pentapeptide WAASA cleavage site, 224 where signal peptidases cleave Gn and Gc (25). Since position 641 maps to a region that 225 provides a signal to cellular peptidases, this mutation might affect the cleavage's efficiency. 226 Signal peptides share several characteristic features determined by their amino-acid 227 composition (26), including a tripartite architecture with a positively charged N-terminus and 228 a hydrophobic segment that determines the strength of the signal. T641 changes from a polar 229 non-charged amino acid (T) to a non-polar (I) amino acid. 230 In comparison with the bulk of described ANDV isolates, the recently discovered 231 ANDV NSs ORF presents seven sites of variation. Three are unique to ANDV/CHI-9717869 232 (Q5, E33, and L35) and two are unique to ANDV/CHI-7913 (I20 and D37). Intriguingly, we 233 identified two SNPs in the NSs ORF at positions 40 (Q40R) and 47 (N47S) that were present 234 only in the clade 2 strains (e.g., ANDV/Epuyén/18-19 and ANDV/Epilink/96) associated 235 with person-to-person transmission. Both NSs ORF changes need to be functionally evaluated 236 for their effect on MAVS signaling.

237 DISCUSSION

238	Passaging in cell culture, especially when involving different hosts, usually results in virus
239	adaptation, often affecting their virulence (<u>19</u> , <u>27</u> , <u>28</u>). However, ANDV/ARG p0 and p3
240	genome sequences were identical, and very few mutations were accumulated in the p9, p19,
241	and hamster strains. The two amino-acid substitutions (A21T and S46N) in the N ORF
242	mapped to the intramolecular coiled coil structure in the N-terminal region ($\alpha 1$ and $\alpha 2$), an
243	exceptionally well-conserved region implicated in antibody recognition, formation of the
244	ribonucleoprotein complex, and genome encapsidation (29-32). Interestingly, one adaptation
245	appears to involve a change in the novel NSs ORF, which has been recently related with IFN
246	regulation. Only a single nucleotide change (T337C) was found in the M segment during late
247	passaging (p19). This is unexpected since the M segment encodes for Gn and Gc, two of the
248	most variable regions of the genome in evolutionary terms.
249	Interestingly, we could also correlate some of the changes with differences in
250	pathogenicity in a small animal model. ANDV/ARG p9 is uniformly lethal in hamsters (14).
251	However, ANDV/ARG p19 was significantly less lethal (66.4%). Compared side-by-side, the
252	ANDV/ARG p9 and p19 only diverged in three encoded residues (A21T in N, S97P in Gn,
253	and P1675S in RNA-dependent RNA polymerase (RdRp) codified in the S, M, and L
254	segments, respectively). Nevertheless, based on previous knowledge of functional domains,
255	only the change in the N had been associated with viral replication. Structural studies of the
256	N-terminal region of SNV and ANDV demonstrated that basic residues interact with the N
257	core to stabilize interprotomer N association and formation of ribonucleoprotein (RNP)
258	complexes (31). The A21T change likely affects that region, which is exceptionally well-
259	conserved among orthohantaviruses. The region is a target of the most cross-reactive
260	antibodies against orthohantavirus, immunodominant, and proposed to have important effects
261	regarding N polymerization, RNP complex formation, and subcellular localization of the

262	assembly sites (29-31). We hypothesize that A21T and other changes in N (Table 2 and
263	Table 3) may affect N oligomerization dynamics. The importance of this area as a potential
264	determinant of pathogenesis might be underscored by the observed differences in the region
265	at positions 31 (A31T) and 38 (D38E) (Table 3) that define ANDV-like viruses (i.e., BASV,
266	LECV, and ORNV). The changes, all located at the bend between the two parallel coiled
267	regions, could potentially affect the structure of the region. On the other hand, these two
268	changes are only encoded by ANDV-like viruses, but not by LANV, MAPV, RIOMV, or
269	SNV (Table 2). Thus, if these markers are associated with pathogenesis, they would act via
270	changes in the structure and not necessarily by SNP differences. Although the T21A mutation
271	observed in late passages of ANDV/ARG is intriguing, A21 is conserved in BASV, LECV,
272	and ORNV, but not SNV (Table 2). Collectively, this could indicate that structural changes
273	in this area could be driving virulence differences, instead of SNPs. Moreover, our analysis
274	confirmed that the amino-acid position S386, previously posited by Simons as a determinant
275	of virulence (21), is conserved by ANDV, ANDV-like viruses (BASV, LECV, and ORNV),
276	and LANV. In the N HVD, all ANDV strains share the described signature six residues,
277	which are not found in any other orthohantavirus N HVD (Table 2). However, only five
278	residues are shared with the three ANDV-like viruses, while A253 seems to be an exclusive
279	ANDV marker (Table 3). We therefore suggest that A253 is an ANDV-exclusive virulence
280	determinant and that the S386 modification and the five remaining HDV residues are
281	pathogenic determinants for all viruses currently classified in species Andes orthohantavirus
282	(i.e., ANDV and ANDV-like viruses). The N ORF has been associated with multiple
283	functions associated with pathogenesis and virulence. The efficiency of orthohantavirus
284	replication is inversely proportional to the ability of infected cells to activate MxA expression
285	(33). The MxA protein is a critical component of the antiviral state induced by type I IFN
286	(34). In turn, MxA protein binds to N, forming an MxA–N protein complex in a yet-to-be-

287 defined manner (35). Moreover, the N protein also has a role in regulating the antiviral state. 288 For instance, ANDV N hinders autophosphorylation of TBK1, resulting in the inhibition of 289 IRF3 phosphorylation and RIG-I/MDA5-directed type I IFN induction (36). Additionally, N 290 can affect protein kinase R (PKR) dimerization (37), thereby preventing PKR 291 phosphorylation, which is essential for its enzymatic activity. PKR inhibits virus replication 292 (38). 293 Bunyaviral NSs are nonessential for virus replication, but they are pathogenesis 294 determinants by acting as IFN antagonists (<u>39</u>). As a case in point, ANDV/CHI-9717869 NSs 295 antagonize the type I IFN induction pathway (20). We therefore hypothesize that the two 296 changes observed in NSs of ANDV strains associated with person-to-person transmission 297 might enhance IFN antagonist potential. Moreover, the number of changes in ANDV/CHI-298 9717869 compared with ANDV/CHI-7913 and ANDV/ARG might explain the differences in 299 lethality in the golden hamster animal model. 300 In the M segment, the amino-acid change T641I is also shared among ANDV strains 301 associated with person-to-person-transmission but not among ANDV-like viruses. However, 302 the change is also found in ANDV/NRC-6/18, which has not been associated with person-to-303 person transmission and it is absent in ANDV/NRC-3/18, which has been involved in an 304 event of secondary transmission (Table 3). T641 is located in the signal peptide of Gc, in the 305 region preceding the hyperconserved cleavage site WAASA. Because host protease landing 306 sites are guided by the signal from this region (20), we hypothesize that this mutation might 307 affect the dynamics and speed of ANDV glycoprotein retention and trafficking. Signal 308 peptides share several characteristic features determined by their amino-acid composition 309 (40), including a tripartite architecture with a positively charged N-terminus and a 310 hydrophobic segment that determines the strength of the signal.

311	The phylogenetic analysis showed that ANDV/ARG is closely related to variants
312	causing disease in humans and groups according to their geographic origin. ANDV/CHI-7913
313	is most closely related to ANDV/ARG, more than sequences obtained from patients reported
314	in the endemic region. ANDV/CHI-9717869, on the other hand, is the most genetically
315	divergent and remote geographically. Indeed, ANDV/ARG and ANDV/CHI-7913 share the
316	most positions compared to ANDV/CHI-9717869. Thus, the decision to use ANDV/CHI-
317	9717869 as the accepted challenge stock for medical countermeasure assessment needs to be
318	revised, as this strain is a clear outlier that might not be representative of wild-type
319	circulating strains.
320	Taken together, the results of our study indicate that determination and subsequent
321	comparison of wild-type, cell-culture-passaged, and animal model-derived ANDV—and
322	likely other orthohantavirus genome sequences-may allow predictions regarding their
323	overall virulence and transmissibility, possibly informing countermeasure approaches. To
324	strengthen such predictions, additional sequence information from yet-to-be-characterized
325	ANDV strains and completion of genomic sequences of ANDV-like viruses is warranted.

326 MATERIALS AND METHODS

327 Viruses and cells.

- 328 Andes virus strain ARG (ANDV/ARG) was isolated from a long-tailed colilargo
- 329 (Oligoryzomys longicaudatus (Bennett, 1832)) in grivet (Chlorocebus aethiops (Linnaeus,
- 330 1758)) kidney epithelial Vero E6 cells (CRL-1586; ATCC, Manassas, VA, USA) (<u>41</u>).
- 331 Continuous ANDV infection of cells was monitored by immunofluorescence performed with
- a rabbit polyclonal serum generated against ANDV nucleocapsid protein (N) open reading
- 333 frame (ORF) and real-time reverse transcription PCR (RT-qPCR), and cultures were
- passaged blindly. Serial passaging (p9–p19) was performed at a multiplicity of infection of
- **335** 0.1.

336 Pathogenicity assessment.

- 337 An established lethal animal model of ANDV infection, using golden hamsters (Mesocricetus
- 338 *auratus* (Waterhouse, 1839)) (<u>12</u>), was leveraged to compare the previously established
- 339 pathogenicity of the ANDV strain ARG (ANDV/ARG p9) (<u>17</u>) and to assess the
- 340 pathogenicity of ANDV/ARG p19. Eight 12-week-old golden hamsters (four males and four
- 341 females, obtained from the Instituto Nacional de Producción de Biológicos in Buenos Aires)
- 342 were exposed intramuscularly to 100 µL of mock inoculum (phosphate-buffered saline
- 343 [PBS]). Nine 12-week-old golden hamsters (four males and five females) were exposed
- intramuscularly to 100 μ L of PBS containing 10⁵ focus-forming units of ANDV/ARG p19.
- 345 Exposed golden hamsters were placed individually in ventilated cages and monitored daily up
- to 33 d post-exposure. Food and water were available *ad libitum*. All animal experiments
- 347 were performed in an accredited animal biological safety level 3 (ABSL-3) biocontainment
- 348 laboratory in compliance with institutional guidelines and Argentinian national law no.
- 349 14,346, which regulates experiments involving animals and adheres to principles stated in the
- 350 Guide for the Care and Use of Laboratory Animals, National Research Council.

351 RT-qPCR.

352 Lung specimens were obtained from all golden hamsters following standard necropsy

- 353 protocols. Total RNA was extracted from lung specimens using Trizol, as described
- 354 previously (<u>42</u>). Quantitative RT-qPCR using ANDV genomic small (S) segment primers
- 355 was performed following published procedures (<u>43</u>). Two microliters of each RNA sample
- 356 were amplified in duplicate assays with a CFX detection system (Bio-Rad, Hercules, CA,
- 357 USA) using TaqMan RT-PCR master mix (Quanta Biosciences, Gaithersburg, MD, USA),
- according to the manufacturers' instructions. A primer set designed to detect the human
- 359 RNaseP gene was used to ensure that samples were free of PCR inhibitors and that RNA
- 360 extractions were homogeneous.

361 Genomic and phylogenetic analyses.

- 362 Virus genome sequencing was performed using three ANDV cell-culture passages (early
- 363 [p3], intermediate [p9], and late [p19]; cryopreserved lung tissue from a naturally ANDV-
- 364 infected long-tailed colilargo (p0); and lung tissues obtained from a golden hamsters exposed
- to ANDV/ARG p9. Also included in the analysis was a blood clot sample from a hantavirus
- 366 pulmonary syndrome (HPS) patient (case C1-s, survivor, 14 yr) associated with secondary

367 transmission of Buenos Aires virus (BASV) in Central Argentina (24).

- 368 Total RNA was extracted from cell-culture supernatants, lung tissues, and clinical
- 369 samples utilizing Trizol. Virus genome sequencing was performed as previously described
- 370 (<u>11</u>, <u>44</u>). Briefly, a targeted bait-enrichment approach was used to enrich RNA-seq libraries
- 371 for sequencing on the MiSeq platform (Illumina, San Diego, CA, USA). Hantavirus
- 372 sequences from each genomic segment (S, M, and L) were collected (Table S1) and aligned
- 373 using MAFFT v.7.397, implemented in Clustal W version 2.0 (45). The initial dataset
- 374 consisted of coding-complete sequences obtained in this work and listed in Table S1. Other
- 375 American orthohantavirus sequences from GenBank were also included. The resulting

- alignments were visually inspected to identify synonymous and nonsynonymous changes.
- 377 Phylogenetic trees were reconstructed using IQ-TREE v. 1.6.12 (<u>46</u>) with automatic model
- 378 selection ($\frac{47}{1}$). Branch supports were assessed by 1,000 ultrafast bootstraps ($\frac{46}{1}$).

379 Data availability.

- 380 Sequencing data are publicly available through GenBank under accession numbers
- **381** OP555720 to OPG555735.

382 ACKNOWLEDGMENTS

383	We gratefully acknowledge Silvia A. Girard for her excellent technical assistance, M.
384	Amoroso for veterinary medical care, and Alexis Edelstein for access to the animal biological
385	safety level 3 facilities. The authors also thank Anya Crane (Integrated Research Facility at
386	Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of
387	Health, Fort Detrick, Frederick, MD, USA) for critically editing the manuscript and Jiro
388	Wada (Integrated Research Facility at Fort Detrick, National Institute of Allergy and
389	Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA) for
390	preparing figures.
391	This work was supported in part through Laulima Government Solutions, LLC, prime
392	contract with the National Institutes of Health (NIH) National Institute of Allergy and
393	Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed
394	this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima
395	Government Solutions, LLC, under Contract No. HHSN272201800013C. The views and
396	conclusions contained in this document are those of the authors and should not be interpreted
397	as necessarily representing the official policies, either expressed or implied, of the U.S.
398	Department of Health and Human Services, the U.S. Army, or of the institutions and
399	companies affiliated with the authors, nor does mention of trade names, commercial products,
400	or organizations imply endorsement by the U.S. Government.
401	We declare no conflict of interest.

402 **REFERENCES**

403	1.	Kuhn JH, Charrel RN. 2018. Arthropod-borne and rodent-borne virus infections, p
404		1489-1509. In Jameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J
405		(ed), Harrison's Principles of Internal Medicine, 20th ed, vol 2. McGraw-Hill
406		Education, Columbus, USA.
407	2.	Alonso DO, Iglesias A, Coelho R, Periolo N, Bruno A, Córdoba MT, Filomarino N,
408		Quipildor M, Biondo E, Fortunato E, Bellomo C, Martínez VP. 2019.
409		Epidemiological description, case-fatality rate, and trends of hantavirus pulmonary
410		syndrome: 9 years of surveillance in Argentina. J Med Virol 91:1173-1181.
411	3.	Martinez VP, Bellomo CM, Cacace ML, Suárez P, Bogni L, Padula PJ. 2010.
412		Hantavirus pulmonary syndrome in Argentina, 1995-2008. Emerg Infect Dis 16:1853-
413		60.
414	4.	Wells RM, Sosa Estani S, Yadon ZE, Enria D, Padula P, Pini N, Mills JN, Peters CJ,
415		Segura EL, Hantavirus Pulmonary Syndrome Study Group for Patagaonia. 1997. An
416		unusual hantavirus outbreak in southern Argentina: person-to-person transmission?
417		Emerg Infect Dis 3:171-4.
418	5.	Tortosa F, Carrasco G, Gallardo D, Prandi D, Parodi V, Santamaría G, Ragusa M,
419		Volij C, Izcovich A. 2022. Factores pronósticos de síndrome cardiopulmonar y
420		muerte por hantavirus Andes Sur: estudio de cohorte en San Carlos de Bariloche y su
421		zona de influencia sanitaria. Medicina (B Aires) 82:351-360.
422	6.	Levis S, Morzunov SP, Rowe JE, Enria D, Pini N, Calderon G, Sabattini M, St Jeor
423		SC. 1998. Genetic diversity and epidemiology of hantaviruses in Argentina. J Infect
424		Dis 177:529-38.
425	7.	Jonsson CB, Schmaljohn CS. 2001. Replication of hantaviruses. Curr Top Microbiol
426		Immunol 256:15-32.

427	8.	Padula PJ, Edelstein A, Miguel SDL, López NM, Rossi CM, Rabinovich RD. 1998.
428		Brote epidémico del síndrome pulmonar por hantavirus en la Argentina. Evidencia
429		molecular de la transmisión persona a persona del virus Andes. Medicina (B Aires) 58
430		Suppl 1:27-36.
431	9.	Enria D, Padula P, Segura EL, Pini N, Edelstein A, Posse CR, Weissenbacher MC.
432		1996. Hantavirus pulmonary syndrome in Argentina. Possibility of person to person
433		transmission. Medicina (B Aires) 56:709-11.
434	10.	Riquelme R, Rioseco ML, Bastidas L, Trincado D, Riquelme M, Loyola H,
435		Valdivieso F. 2015. Hantavirus pulmonary syndrome, Southern Chile, 1995-2012.
436		Emerg Infect Dis 21:562-8.
437	11.	Martínez VP, Di Paola N, Alonso DO, Pérez-Sautu U, Bellomo CM, Iglesias AA,
438		Coelho RM, López B, Periolo N, Larson PA, Nagle ER, Chitty JA, Pratt CB, Díaz J,
439		Cisterna D, Campos J, Sharma H, Dighero-Kemp B, Biondo E, Lewis L, Anselmo C,
440		Olivera CP, Pontoriero F, Lavarra E, Kuhn JH, Strella T, Edelstein A, Burgos MI,
441		Kaler M, Rubinstein A, Kugelman JR, Sanchez-Lockhart M, Perandones C, Palacios
442		G. 2020. "Super-spreaders" and person-to-person transmission of Andes virus in
443		Argentina. N Engl J Med 383:2230-2241.
444	12.	Hooper JW, Larsen T, Custer DM, Schmaljohn CS. 2001. A lethal disease model for
445		hantavirus pulmonary syndrome. Virology 289:6-14.
446	13.	Milazzo ML, Eyzaguirre EJ, Molina CP, Fulhorst CF. 2002. Maporal viral infection
447		in the Syrian golden hamster: a model of hantavirus pulmonary syndrome. J Infect Dis
448		186:1390-5.
449	14.	Martinez VP, Padula PJ. 2012. Induction of protective immunity in a Syrian hamster
450		model against a cytopathogenic strain of Andes virus. J Med Virol 84:87-95.

451	15.	Toro J, Vega JD, Khan AS, Mills JN, Padula P, Terry W, Yadón Z, Valderrama R,
452		Ellis BA, Pavletic C, Cerda R, Zaki S, Shieh W-J, Meyer R, Tapia M, Mansilla C,
453		Baro M, Vergara JA, Concha M, Calderon G, Enria D, Peters CJ, Ksiazek TG. 1998.
454		An outbreak of hantavirus pulmonary syndrome, Chile, 1997. Emerg Infect Dis
455		4:687-94.
456	16.	Galeno H, Mora J, Villagra E, Fernandez J, Hernandez J, Mertz GJ, Ramirez E. 2002.
457		First human isolate of hantavirus (Andes virus) in the Americas. Emerg Infect Dis
458		8:657-61.
459	17.	Warner BM, Sloan A, Deschambault Y, Dowhanik S, Tierney K, Audet J, Liu G,
460		Stein DR, Lung O, Buchanan C, Sroga P, Griffin BD, Siragam V, Frost KL, Booth S,
461		Banadyga L, Saturday G, Scott D, Kobasa D, Safronetz D. 2021. Differential
462		pathogenesis between Andes virus strains CHI-7913 and Chile-9717869 in Syrian
463		Hamsters. J Virol 95:e00108-21.
464	18.	Safronetz D, Prescott J, Feldmann F, Haddock E, Rosenke R, Okumura A, Brining D,
465		Dahlstrom E, Porcella SF, Ebihara H, Scott DP, Hjelle B, Feldmann H. 2014.
466		Pathophysiology of hantavirus pulmonary syndrome in rhesus macaques. Proc Natl
467		Acad Sci U S A 111:7114-9.
468	19.	Nemirov K, Lundkvist Å, Vaheri A, Plyusnin A. 2003. Adaptation of Puumala
469		hantavirus to cell culture is associated with point mutations in the coding region of the
470		L segment and in the noncoding regions of the S segment. J Virol 77:8793-800.
471	20.	Vera-Otarola J, Solis L, Lowy F, Olguín V, Angulo J, Pino K, Tischler ND, Otth C,
472		Padula P, López-Lastra M. 2020. The Andes orthohantavirus NSs protein antagonizes
473		the type I interferon response by inhibiting MAVS signaling. J Virol 94:e00454-20.

- 474 21. Simons MJ, Gorbunova EE, Mackow ER. 2019. Unique interferon pathway regulation
- by the Andes virus nucleocapsid protein Is conferred by phosphorylation of serine386. J Virol 93:e00338-19.
- 477 22. Duehr J, McMahon M, Williamson B, Amanat F, Durbin A, Hawman DW, Noack D,
- 478 Uhl S, Tan GS, Feldmann H, Krammer F. 2020. Neutralizing monoclonal antibodies
- against the Gn and the Gc of the Andes virus glycoprotein spike complex protect from
- 480 virus challenge in a preclinical hamster model. mBio 11:e00028-20.
- 481 23. Iglesias AA, Bellomo CM, Martínez VP. 2016. Síndrome pulmonar por hantavirus en
 482 Buenos Aires, 2009-2014. Medicina (B Aires) 76:1-9.
- 483 24. Martinez VP, Bellomo C, San Juan J, Pinna D, Forlenza R, Elder M, Padula PJ. 2005.
 484 Person-to-person transmission of Andes virus. Emerg Infect Dis 11:1848-53.
- 485 25. Löber C, Anheier B, Lindow S, Klenk H-D, Feldmann H. 2001. The Hantaan virus
- 486 glycoprotein precursor is cleaved at the conserved pentapeptide WAASA. Virology487 289:224-9.
- 488 26. von Heijne G. 1990. The signal peptide. J Membr Biol 115:195-201.
- 489 27. Koehler A, Kolesnikova L, Becker S. 2016. An active site mutation increases the
 490 polymerase activity of the guinea pig-lethal Marburg virus. J Gen Virol 97:2494491 2500.
- 492 28. Trefry JC, Wollen SE, Nasar F, Shamblin JD, Kern SJ, Bearss JJ, Jefferson MA,
- 493 Chance TB, Kugelman JR, Ladner JT, Honko AN, Kobs DJ, Wending MQS,
- 494 Sabourin CL, Pratt WD, Palacios GF, Pitt MLM. 2015. Ebola virus infections in
- 495 nonhuman primates are temporally influenced by glycoprotein poly-U editing site
 496 populations in the exposure material. Viruses 7:6739-54.
- 497 29. Boudko SP, Kuhn RJ, Rossmann MG. 2007. The coiled-coil domain structure of the
 498 Sin Nombre virus nucleocapsid protein. J Mol Biol 366:1538-44.

- 499 30. Wang Y, Boudreaux DM, Estrada DF, Egan CW, St Jeor SC, De Guzman RN. 2008.
- 500 NMR structure of the N-terminal coiled coil domain of the Andes hantavirus
- 501 nucleocapsid protein. J Biol Chem 283:28297-304.
- 502 31. Guo Y, Wang W, Sun Y, Ma C, Wang X, Wang X, Liu P, Shen S, Li B, Lin J, Deng
- 503 F, Wang H, Lou Z. 2016. Crystal structure of the core region of hantavirus
- 504 nucleocapsid protein reveals the mechanism for ribonucleoprotein complex formation.
- 505 J Virol 90:1048-61.
- 506 32. Yoshimatsu K, Arikawa J. 2014. Antigenic properties of N protein of hantavirus.
- 507 Viruses 6:3097-109.
- 508 33. Kanerva M, Melén K, Vaheri A, Julkunen I. 1996. Inhibition of Puumala and Tula
 509 hantaviruses in Vero cells by MxA protein. Virology 224:55-62.
- 510 34. Pavlovic J, Schröder A, Blank A, Pitossi F, Staeheli P. 1993. Mx proteins: GTPases
 511 involved in the interferon-induced antiviral state. Ciba Found Symp 176:233-43;
- **512** discussion 243-7.
- 513 35. Khaiboullina SF, Rizvanov AA, Lombardi VC, Morzunov SP, Reis HJ, Palotás A, St
- 514 Jeor S. 2013. Andes-virus-induced cytokine storm is partially suppressed by ribavirin.
 515 Antivir Ther 18:575-84.
- 516 36. Cimica V, Dalrymple NA, Roth E, Nasonov A, Mackow ER. 2014. An innate
- 517 immunity-regulating virulence determinant is uniquely encoded by the Andes virus518 nucleocapsid protein. mBio 5:e01088-13.
- 519 37. Wang Z, Mir MA. 2015. Andes virus nucleocapsid protein interrupts protein kinase R
 520 dimerization to counteract host interference in viral protein synthesis. J Virol
 521 89:1628-39.
- 522 38. Goodbourn S, Didcock L, Randall RE. 2000. Interferons: cell signalling, immune
 523 modulation, antiviral response and virus countermeasures. J Gen Virol 81:2341-2364.

- 524 39. Ly HJ, Ikegami T. 2016. Rift Valley fever virus NSs protein functions and the
- similarity to other bunyavirus NSs proteins. Virol J 13:118.
- 526 40. von Heijne G. 1999. Recent advances in the understanding of membrane protein
 527 assembly and structure. Q Rev Biophys 32:285-307.
- 528 41. Padula PJ, Sanchez AJ, Edelstein A, Nichol ST. 2002. Complete nucleotide sequence
- 529 of the M RNA segment of Andes virus and analysis of the variability of the termini of

the virus S, M and L RNA segments. J Gen Virol 83:2117-2122.

- 42. Padula P, Figueroa R, Navarrete M, Pizarro E, Cadiz R, Bellomo C, Jofre C, Zaror L,
- 532 Rodriguez E, Murúa R. 2004. Transmission study of Andes hantavirus infection in
 533 wild sigmodontine rodents. J Virol 78:11972-9.
- 43. Bellomo CM, Pires-Marczeski FC, Padula PJ. 2015. Viral load of patients with

hantavirus pulmonary syndrome in Argentina. J Med Virol 87:1823-30.

- 536 44. Alonso DO, Pérez-Sautu U, Bellomo CM, Prieto K, Iglesias A, Coelho R, Periolo N,
- 537 Domenech I, Talmon G, Hansen R, Palacios G, Martinez VP. 2020. Person-to-person
- transmission of Andes virus in hantavirus pulmonary syndrome, Argentina, 2014.
- 539 Emerg Infect Dis 26:756-759.
- 540 45. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version
 541 7: improvements in performance and usability. Mol Biol Evol 30:772-80.
- 542 46. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A,
- 543 Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic
- 544 inference in the genomic era. Mol Biol Evol 37:1530-1534.
- 545 47. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017.
- 546 ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods547 14:587-589.

549 FIGURE LEGENDS

550 Fig 1 Cell-culture passaging of Andes virus results in virulence attenuation *in vivo*.

551 Shown are Kaplan–Meier survival curves of golden hamsters inoculated intramuscularly with

- three different preparations until the study endpoint. ANDV/ARG, Andes virus strain ARG;
- 553 p, passage.

554 Fig 2 Phylogenetic analysis informs the evolutionary history of Buenos Aires virus

555 (BASV) and Andes virus strain ARG (ANDV/ARG).

556 (A) Small (S) segment analysis; large (L) segment and medium (M) segment analysis are

557 included in Figure S1. All variants are listed with the strain name, region of origin, year of

- the isolation and accession number. Different colors are used for identification (brown for
- 559 non-ANDV South American orthohantaviruses; green for ANDV-like viruses; light blue for

560 ANDV strains in clades 1, 2, 4, and some in 3; and dark blue for passaged strains in clade 3).

- 561 Detailed information of epidemiological history of the strains is listed in Table S1. (B)
- 562 Geographic distribution of American orthohantaviruses strains analyzed in A. Mulchén and
- 563 Coyhaique are in Chile, the other locations are in Argentina. The inset shows the endemic
- area of ANDV in Argentina and Chile.

566 Supplementary Figure 1. Phylogenetic analysis of the M and L segments informs the

567 evolutionary history of Buenos Aires virus (BASV) and Andes virus strain ARG

568 (ANDV/ARG).

- 569 All variants are listed with the strain name, region of origin, year of the isolation and
- 570 accession number. Different colors are used for identification (brown for non-ANDV South
- 571 American orthohantaviruses; green for ANDV-like viruses; light blue for ANDV strains; and
- 572 dark blue for passaged strains in clade 3). Detailed information of epidemiological history of
- 573 the strains is listed in **Table S1**.

574 TABLES

575 Table 1 Sequencing of passaged variants of ANDV/ARG reveals sites of adaptation associated with attenuation in the golden hamster

576 model.

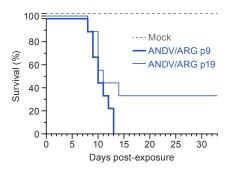
				AN	DV /ARG pas	ssages		577					
			ARG (p0)	ARG-p3	ARG-p9	ARG-p19	ARG-Hamster-p9						
Source			Rodent tissue	Cell culture	Cell culture	Cell culture	Lung infected syrian golden hamster						
Genomic Region	Nucleotide position	Amino-acid position		GenBank N°									
S Segment		Genbank	OP555723	OP555720	OP555721	OP555722	OP555728	Туре					
N ORF													
	57		CAG (Q)	CAG (Q)	CAG (Q)	CAA (Q)	CAG (Q)	Syn					
	103	21	GCT (A)	GCT (A)	GCT (A)	ACT (T)	GCT (A)	Non-syn					
	179	46	AGT (S)	AGT (S)	AAT (N)	AGT (S)	AAT (N)	Non-syn					
	1488	Not coding	G	G	G	Т	G						
NSs ORF (+1)						-	-	-					
	179	20	GTA (V)	GTA (V)	ATA (I)	GTA (V)	ATA (I)	Non-syn					
M Segment		Genbank	OP555724	OP555725	OP555726	OP555727	OP555729						
	337	97	TCC (S)	TCC (S)	TCC (S)	CCC (P)	TCC (S)	Non-syn					
L Segment		Genbank	NA	OP555732	OP555733	OP555734	OP555735	Functional regi					
	3557	1175	NA	ACC (T)	ACT (T)	ACT (T)	ACT (T)	Syn					
	3919	1295	NA	ATA (I)	AT <mark>G</mark> (M)	AT <mark>G</mark> (M)	ATG (M)	Non-syn					
	5057	1675	NA	CCT (P)	CCT (P)	TCT (S)	CCT (P)	Non-syn					

578 Table 2 Sequencing of ANDV/ARG reveals virulence markers when compared with pathogenic and non-pathogenic strains of ANDV

579 utilized in the golden hamster model

						ANDV					Other o	rthohant	avirus				
Strain/Virus Geographic origin		CHI-9717869	ARG p0	ARG p3	ARG p9	ARG p19	CHI-7913	Epuyén/18-19	Epilink/96	MAPV	RIOMV	LANV	SNV	CHOV			
		Coyhaique, Chile	SMA, Neuquén	SMA, Neuquén	SMA, Neuquén	SMA, Neuquén	Mulchén Biobío	Epuyén, Chubut	El Bolsón, Río Negro	Western Venezuela	Peru	Chaco, Paraguay	United States	Panama			
ethality in gold	den hamsters	High	High	High	High	Moderate	No	NA	NA	Moderate	No	NA	No	No			
Genomic Region	Amino-acid position			-			Gen	Bank accessio	n number								
S Segment	GenBank	MT956622	OP555723	OP555720	OP555721	OP555722	MT956618	MN258239	MN258223	FJ008979	FJ532244	NC_038505	KT885046	KT983771	Functional region	Note	Reference
ORF						-							т				÷
ŀ	21 31	A	A	A	A	A	A	A	A	A	A	A	A	A	Homotypic interaction	ANDV attenuation	Taylor et al / this wo This work
	38	D	D	D	D	D	D	D	D	D	D	D	D	E	coiled-coil region coiled-coil region		This work
ŀ	46	N	s	8	N	5	N	s	s	N	N	s	s	G	coiled-coil region	No	Taylor et al / this w
-	253	A	A	A	A	A	A	A	A	0	0	q	P	P	HPV	ANDV exclusive	Simons et al
Ē	262	ĸ	ĸ	к	ĸ	к	ĸ	ĸ	к	R	R	R	R	R	HPV	ANDV exclusive	Simons et al
ľ	273	N	N	N	N	N	N	N	N	R	D	D	D	R	HPV	ANDV exclusive	Simons et al
	286	н	н	н	н	н	н	н	н	Т	A	Α	D	Т	HPV	ANDV exclusive	Simons et al
Ē	289	т	т	т	т	т	т	т	т	A	S	Α	Α	S	HPV	ANDV exclusive	Simons et al
ſ	296	т	т	т	т	т	т	т	т	н	N	N	Α	к	HPV	ANDV exclusive	Simons et al
	386	S	S	s	S	s	s	S	S	Н	F	s	Н	н	Serin-Kinasa substrate	ANDV exclusive	Simons et al
Ss ORF (+1)																	
	5	0	R	R	R	R	R	R	R	Q	Q	Q	R	Q	Unknown		This work
ľ	20	v	v	V	1	V	1	v	V	T	T	A	A	G	Unknown		This work
ľ	33	E	G	G	G	G	G	G	G	G	Q	Q	E	E	Unknown		This work
	35	L	s	S	S	S	S	S	S	S	S	S	L	S	Unknown		This work
Ē	37	G	G	G	G	G	D	G	G	G	D	G	G	G	Unknown	ANDV attenuation	This work
	40	Q	Q	Q	Q	Q	Q	R	R	Q	Q	Q	L	Q	Unknown	PTP outbreak related	This work
	47	N	N	N	N	N	N	S	S	N	S	N	N	N	Unknown	PTP outbreak related	This work
M Segment	GenBank	MT956623	OP555724	OP555725			MT956619	MN258205	MN258194	AY363179	FJ608550	NC038506	L25783	KT983772	Functional region	Note	Reference
	8	v	A	A	A	A	A	A	A	1	1		F	F	Signal sequence Gn	No	Warner et al
	11	V	V	V	V	V		V	V	V	V	V	V	V	Signal sequence Gn	ANDV attenuation	Warner et al
	97	S	S	S	S	P	S	S	S	A	A	S	A	A	Antibody epitope?	ANDV attenuation	This work
	294 346	H V	Y	Y	Y	Y	Y	Y	Y	S	V	V	L	1		No	Warner et al Warner et al
	346	T	v	v	v	v	v			к	H	v	V	Q	conserved Cys conserved Cys and	No	Warner et al
	499	v	v	v	v	v	v		1	L	L	Ľ	L	L	glycosilation sites	PTP outbreak related	This work
	537	1	v	v	v	v	v	v	v	v	v	v	v	1	RNP-BS	No	Warner et al
	569	1	1	1	1	I.	1	I	1	Р	Α	V	Р	С	ZF	ANDV exclusive	This work
	570	N	N	N	N	N	N	N	N	E	E	E	E	D	ZF	ANDV exclusive	This work
	641	T	T	Т	T	T	Т	1	-	T	T	T	T	Т	motif	PTP outbreak related	This work
	938	Т	T	T	T	T	Α	A	A	T	T	S	S	Α	Glycosilation site	No	Warner et al
	1023	T V	A	A	A	A	A	A	A	T	A	A	T	V	transmembrane doman Gc	No	Warner et al
	1115 1133	G	G	G	G	G	G	G	G	V S	v s	V S	I S	V	? BS	PTP outbreak related ANDV exclusive	This work This work
L Segment	1133 GenBank	MT956621	NA	OP555732	OP555733		MT956620	G MN258188	MN258156		5 FJ809772	JX443696	L37901	V EF397003	ES Functional region	Note	Reference
2 oognon	141		NA	01000102	01 000/00	01 000/04	111000020	V	1/	1	10000772	1	0	Q	Endonuclease domain	No	Warner et al
	141		NA	v	v	v	v	v	v	v	v	v	v	v	Unknown	INU	Warner et al
	277		NA	s	s	s	s	s	s	F	E	E	v	v I	Unknown	No	Warner et al
	338	S	NA	A	A	A	A	A	A	A	A	A	Ă	A	Unknown	No	Warner et al
	346	R	NA	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	R	Ē	ĸ	R	R	Unknown	No	Warner et al
	402		NA	v	v	v	v		1	Т	М		Р		Unknown	No	Warner et al
	780	D	NA	N	N	N	N	N	N	E	К	V	Q	Q	Unknown	No	Warner et al
	1033	N	NA	D	D	D	D	D	D	D	D	Е	E	N	Unknown	No	Warner et al
	1252	T	NA	T	T	T	т	T	T	1	T	T	V	Т	Unknown		Warner et al
	1295		NA NA	-	M	M				1	1		Y		Unknown	No	This work
	1303 1665	D	NA NA	E	E	E	E	E	E	D	D	D	D	D	Unknown	No	Warner et al Warner et al
-	1665	P	NA	P	P	s	P	P	P	P	P	P	P	P	Unknown	ANDV atenuation	This work
	1750	ĸ	NA	R	R	R	R	R	R	F K	F K	R	F K	R	Unknown	No No	Warner et al
	1828	T	NA	P	P	P	P	P	P	P	P	P	A	P	Unknown	110	Warner et al
	2109	1	NA	v	v	v	v	v	v	R	R	R	N	Ť	Unknown	No	Warner et al
	2113	Т	NA	А	Α	Α	Α	Т	Т	К	т	Т	R	А	Unknown	No	Warner et al
V: Kinase rec																	
A: Not available		-t- ANDA//CT	7042 48.00	CI II 047000	where At the	//ADC	at a suite a tree	V/CI II 7042									
en color, SNF	Ps that different	ate ANDV/CHI-	7913 and ANDV/ 13 and ANDV/CH	CHI-917869	where AND	//ARG segreg	ate with AND	V/CHI-7913 CHI-9177860									

580 Table 3 Sequencing of ANDV/ARG reveals potential transmissibility markers when comparing ANDV strains with differences of


581 efficiency in person-to-person potential

VIRUS						ANDV					BASV	BASV	LECV	ORNV
Strain	CH-9717869	Andes/ARG	ARG-Epuyen	ARG-Epilink	AREB14	NRC-6/18	NRC-3/18	NRC-2/97	NRC-4/97	CH-7913	BA02-C1S	Hu39694	22819	AND Nort
Country	Chile	Argentina	Argentina	Argentina	Argentina	Argentina	Argentina	Argentina	Argentina	Chile	Argentina	Argentina	Argentina	Argentina
Geographic origin	Coyhaique	SMA, Neuquén	Epuyen, Chubut	El Bolson, Río Negro	El Bolson, Río Negro	El Hoyo, Chubut	Villa Meliquina, Neuquén	Bariloche, Río Negro	Villa Meliquina, Neuquén	Mulchen, Bio Bio	La Plata, BsAs	Pergamino, BsAs	BsAs	Oran, Salta
Source	Rodent	Rodent	Human	Human	Human	Human	Human	Human	Human	Human	Human	Human	Rodent	Rodent
Clade	4	3	2	2	2	2	1	1	1	1	ANDV-like	ANDV-like	ANDV-like	ANDV-like
Person-to-Person transmission	No	-	Outbreak (n=34)	Outbreak (n=16)	Outbreak (n=3)	No	Event	No	No	No	Event	No	No	No
Genomic Region														
S Segment							Gen	Bank N°						
N (amino-acid position)	MT956622	OP555720	MN258239	MN258223	MN850084	MN258228	MN258225	MN258224	MN258226	MT956618	OP555730	AF482711	AF482714	AF325966
31	А	A	A	A	A	A	A	A	A	A^	Т	Т	Т	Т
38	D	D	D	D	D	D	D	D	D	D^	E	E	E	E
253	Α	Α	A	Α	Α	Α	Α	Α	A	Α	Р	Р	Р	L
262	к	К	К	К	К	К	К	К	К	к	К	К	К	к
273	N	N	N	N	N	N	N	N	N	N	N	N	N	N
286	н	н	н	н	н	н	Н	н	н	н	н	н	н	н
289	Т	т	т	т	Т	Т	Т	Т	т	T^	Т	Т	т	1
296	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
386*	S	S	S	S	S	S	S	S	S	S	Т	Т	Т	т
NSs (amino-acid position)														
5	Q	R	R	R	R	R	R	R	R	R	R	R	R	R
20	V	V	V	V	V	V	V	V	V	I	v	v	v	v
33	E	G	G	G	G	G	G	G	G	G	E	E	G	E
35	L	S	S	S	S	S	S	S	S	S	S	S	S	L
37	G	G	G	G	G	G	G	G	G	D	G	G	D	G
40	Q	Q	R	R	R	R	Q	Q	Q	Q	P	Р	Q	R
47	N	N	S	S	S	S	N	N	N	N	N	N	N	N
M Segment:							Gen	Bank N°		•			-	-
M (amino-acid position)	MT956623	OP555725	MN258205	MN258189	MN850089.	MN258194	MN258191	MN258190	MN258192	MT956619	OP555731	AF028023	AF028022	AF028024
97*	S	S	S	S	S	S	S	S	S	S	S	S	A	А
569	I	1	I	I	I	I	1	1	1	1	1	I	1	1
570	N	N	N	N	N	N	N	N	N	N	N	N	N	N
641	Т	т	1	1	1	1	Т	т	т	Т	т	Т	т	Т
1133	G	G	G	G	G	G	G	G	G	G	G	G	G	G
*also present in LANV														
^SNPs (likely sequencing errors) in green color, SNPs that differentiate		abd ANDV/CHI-91	7869 where ANDV/	ARG segregate with	ANDV/CHI-7913									
red color, SNPs that differentiate Al	NDV/CHI-7913 at													
orange color, SNPs that characteriz	e PTP isolates													
has a show ONIDs that differentiate A														

582	Table S1 List of sequences and strains utilized in the	e comparative genomics study of American orthohantaviruses
	1	

								Genbank accession number					
Orthohantavirus	Source (human, rodent species)	Strain name	Clade (based on S segment)	Site/Source	Adminsitrative region	Country	Year	S	м	L	Reference	PMID	Denomination in manuscript
Andes virus	Human	NRC-4/18	1	Villa Meliquina	Neuquén	Argentina	2018	MN258226	MN258192	MN258159	Martinez VP et al.	33264545	ANDV/NRC-4/18
Andes virus	ong-tailed colilargo (Oligoryzomys longicaudatus)	ARG	3	San Martín de los Andes	Neuquén	Argentina	1999	OP555728	OP555724	NA	This work		ANDV/ARG
Andes virus	Cell culture passage 3; Vero E6	ARG/p3	3	San Martín de los Andes	Neuquén	Argentina	1999	OP555720	OP555725	OP555732	This work		ANDV/ARG p3
Andes virus	Cell culture passage 9; Vero E6	ARG/p9	3	San Martín de los Andes	Neuquén	Argentina	1999	OP555721	OP555726	OP555733	This work		ANDV/ARG p9
Andes virus	Cell culture passage 19; Vero E6	ARG/p19	3	San Martín de los Andes	Neuquén	Argentina	1999	OP555722	OP555727	OP555734	This work		ANDV/ARG p19
Andes virus	ANDV/Arg p9-infected golden hamsters	Mau /ARG/p19	3	San Martín de los Andes	Neuquén	Argentina	1999	OP555723	OP555729	OP555735	This work		ANDV/Mau /ARG/p19
Andes virus	Human	ARG-Epuyen	2	Epuyén	Chubut	Argentina	2018	MN258239	MN258205	MN258172	Martinez VP et al.	33264545	ANDV/Epuyén/18-19
Andes virus	Human	NRC-6/18	2	El Hoyo	Chubut	Argentina	2018	MN258228	MN258194	MN258161	Martinez VP et al.	33264545	ANDV/NRC-6/18
Andes virus	Human	ARG-Epilink	2	El Bolsón	Río Negro	Argentina	1996	MN258223	MN258189	MN258156	Martinez VP et al.	33264545	ANDV/Epilink/96
Andes virus	Human	NRC-2/97	2	Bariloche	Río Negro	Argentina	1997	MN258224	MN258190	MN258157	Martinez VP et al.	33264545	ANDV/NRC-2/18
Andes virus	Human	AREB14/P2	2	El Bolsón	Río Negro	Argentina	2014	MN850084	MN850089	MN850094	Martinez VP et al.	33264545	ANDV/AREB14-P2/Hum/RioNegro-ARG/2014
Andes virus	ong-tailed colilargo (Oligoryzomys longicaudatus)	CHI-9717869	4	Coyhaique	Aysén	Chile	1997	AF291702	AF291703	AF291704	Meissner et al .	12367756	ANDV/CHI-9717869
Andes virus	ong-tailed colilargo (Oligoryzomys longicaudatus)	CHI-9717869	4	Coyhaigue	Aysén	Chile	1997	MT956622	MT956623	MT956621	Warner et al .	33627395	ANDV/CHI-9717869
Andes virus	Human	CHI-7913	1	Mulchén	Biobío	Chile	1999	MT956618	MT956619	MT956620	Warner et al .	33627395	ANDV/CHI-7913
Andes virus	Human	CHI-7913	1	Mulchén	Biobío	Chile	1999	AY228237	AY228238	AY228239	Tischler et al .	14513715	ANDV/CHI-7913
Buenos Aires virus	Human	Hu39694	ANDV-like	Pergamino	Buenos Aires	Argentina	2002	AF482711	NA	NA	Bohlman et al .	11907216	BASV/Hu39694
Buenos Aires virus	Human	Hu39694	ANDV-like	Pergamino	Buenos Aires	Argentina	2002	NA	AF028023	NA	Levis et al .	9498428	BASV/Hu39694
Buenos Aires virus	Human	BA02-C1S	ANDV-like	La Plata	Buenos Aires	Argentina	2002	OP555730	OP555731	NA	This work		BASV/BA02-C15
Orán virus	ong-tailed colilargo (Oligoryzomys longicaudatus)	OI22996	ANDV-like	Orán	Salta	Argentina	2002	AF482715	AF028024	NA	Levis et al.	9498428	ORNV/0122996
Orán virus	Chacoan colilargo (Oligoryzomys chacoensis)	AND Nort	ANDV-like	Orán	Salta	Argentina	2002	AF325966	NA	NA	Gonzalez Della Valle et al .	12224579	ORNV/AND Nort
Lechiguanas virus	Flavescent colilargo (Oligoryzomys flavescens)	22819	ANDV-like	Lechiguanas islands	Entre Ríos	Argentina	2002	AF482714	AF028022	NA	Bohlman et al & Levis et al.	11907216/9100632	LECV/22819
Maporal virus	Fulvous colilargo (Oligoryzomys fulvescens)	HV-97021050	AH	Western Venezuela	Western Venezuela	Venezuela	2004	AY267347	AY363179	EU788002	Fulhorst et al .	15246651	MAPV/HV-97021050
Rio Mamoré virus	Small-eared colilargo (Oligoryzomys microtis)	HTN-007	AH	Iquitos	Maynas	Peru	2010	FJ532244	FJ608550	FJ809772	Richter et al .	20687859	RIOMV/HTN-007
Laguna Negra virus	Little laucha (Calomys laucha)	510B	AH	Chaco	Chaco	Paraguay	1997	AF005727	AF005728	NA	Johnson et al .	9375015	LANV/510B
Laguna Negra virus	Little laucha (Calomys laucha)	H731172/BRA259	AH	Nova Olímpia	Paraná	Brazil	2007	NA	NA	JX443696	Firth et al .	23055565	LANV/H731172/BRA259
Sin Nombre virus	Human	NM H10	AH	Four Corners Area	New Mexico	USA	1994	L25784	L25783	L37901	Spiropoulou et al.	8178455/7494336	SNV/NM H10
Choclo virus	Fulvous colilargo (Oligoryzomys fulvescens)	588	AH	Panama	Panamá	Panama	2015	KT983771	KT983772	EF397003	Cajimat/Kho et al .	Unpublished	CHOV/588
n-ANDV American orthohant	avirus												
is reported, but there are no	reports of long-tailed colilargos in northern Argentin	а											

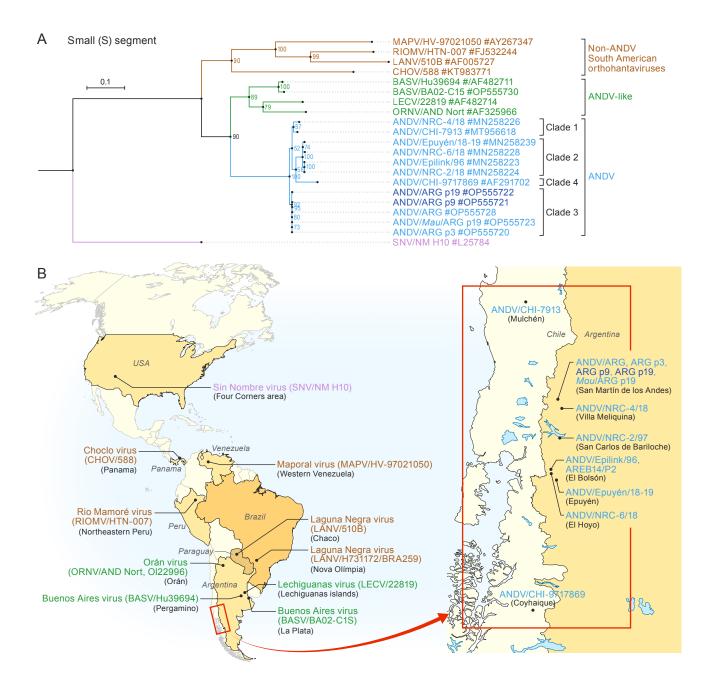

Figure 1

Fig 1. Cell-culture passaging of Andes virus results in virulence attenuation *in vivo*.

Shown are Kaplan–Meier survival curves of golden hamsters inoculated intramuscularly with three different preparations until the study endpoint. ANDV/ARG, Andes virus strain ARG; p, passage.

Figure 2

Fig 2. Phylogenetic analysis informs the evolutionary history of Buenos Aires virus (BASV) and Andes virus strain ARG (ANDV/ARG).

(A) Small (S) segment analysis; large (L) segment and medium (M) segment analysis are included in **Figure S1**. All variants are listed with the strain name, region of origin, year of the isolation and accession number. Different colors are used for identification (brown for non-ANDV South American orthohantaviruses; green for ANDV-like viruses; light blue for ANDV strains in clades 1, 2, 4, and some in 3; and dark blue for passaged strains in clade 3). Detailed information of epidemiological history of the strains is listed in **Table S1**. (B) Geographic distribution of American orthohantaviruses strains analyzed in A. Mulchén and Coyhaique are in Chile, the other locations are in Argentina. The inset shows the endemic area of ANDV in Argentina and Chile.