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Abstract 23 

Dopamine axons are the only axons known to grow during adolescence. Here, using rodent 24 

models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine 25 

axons towards the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus 26 

musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1 27 

expressing cells – disrupting this gradient reroutes axons away from their target. Using a 28 

seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine 29 

development can be regulated by a natural environmental cue (daylength) in a sexually 30 

dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon 31 

growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, 32 

transitional period; we pinpoint neurodevelopmental markers underlying this period.  33 

Introduction 34 

Adolescence is a critical developmental period involving dramatic changes in behaviour and 35 

brain anatomy. The prefrontal cortex, the brain region responsible for our most complex 36 

cognitive functions, is still establishing connections during this time (Gogtay et al., 2004; 37 

Petanjek et al., 2011; Sowell et al., 2004). The trajectory of prefrontal cortex development in 38 

adolescence determines the vulnerability or resilience of individuals to adolescent-onset 39 

psychiatric diseases (Fuhrmann et al., 2015; Keshavan et al., 2014; Kessler et al., 2007, 2005; 40 

Lee et al., 2014). The age at which this adolescent development occurs therefore represents a 41 

critical window during which the brain is particularly susceptible to environmental influences. 42 

Traditionally, the onset of adolescence is thought to coincide with puberty (Hollenstein and 43 
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Lougheed, 2013). In humans, the age of pubertal onset has been advancing throughout the 44 

19th, 20th and 21st centuries, and environmental influences, such as nutrition, can pathologically 45 

alter the age of puberty (Wolf and Long, 2016). However, it remains entirely unknown whether 46 

the neural and cognitive maturational processes of adolescence can also be plastic. Here we 47 

examine how the timing of certain adolescent developmental processes are programmed, and 48 

whether this timing can be plastic in response to a natural environmental cue, in parallel with 49 

pubertal plasticity. 50 

Dopamine innervation to the prefrontal cortex increases substantially across adolescence, and 51 

psychopathologies of adolescent origin prominently feature dopamine dysfunction. Evidence 52 

continues to emerge that protracted dopamine innervation is a key neural process underlying 53 

the cognitive and behavioural changes that characterize adolescence (Larsen and Luna, 2018). 54 

The mesocorticolimbic dopamine system – which includes the prefrontal cortex – is unique 55 

because not only are connections being formed and lost during adolescence, but there is also 56 

long-distance displacement of dopamine axons between brain regions. At the onset of 57 

adolescence, both mesolimbic and mesocortical dopamine axons innervate the nucleus 58 

accumbens in rodents, but the mesocortical axons leave the accumbens and grow towards the 59 

prefrontal cortex during adolescence and early adulthood (Hoops et al., 2018; Reynolds et al., 60 

2018a). This is the only known case of axons growing from one brain region to another so late 61 

during development (Hoops and Flores, 2017).  62 

The prolonged growth trajectory renders mesocortical dopamine axons particularly vulnerable 63 

to disruption. Environmental insults during adolescence (e.g. drug abuse) alter the extent and 64 

organization of dopamine innervation in the prefrontal cortex, leading to behavioural and 65 
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cognitive changes in mice throughout adulthood (Drzewiecki and Juraska, 2020; Hoops and 66 

Flores, 2017; Reynolds and Flores, 2021). These changes often involve cognitive control, a 67 

prefrontal function that develops in parallel with dopamine innervation to the cortex in 68 

adolescence (Luna et al., 2015). Disruption of dopamine innervation frequently seems to result 69 

in “immature” cognitive control persisting through adulthood (Larsen and Luna, 2018). 70 

Here, we examine the guidance of growing dopamine axons to the prefrontal cortex, and its 71 

timing. The guidance cue molecule Netrin-1, upon interacting with its receptor DCC, determines 72 

which dopamine axons establish connections in the nucleus accumbens and which ones leave 73 

this region to grow to the prefrontal cortex (Hoops and Flores, 2017; Reynolds and Flores, 74 

2021). We hypothesized that the answers to how and when this extraordinary developmental 75 

feat is achieved may also lie in the Netrin-1 signalling system. 76 

Part 1: Netrin-1 “paves the way” for dopamine axons in adolescence 77 

To identify the route by which dopamine axons grow from the nucleus accumbens to the 78 

medial prefrontal cortex, we visualized dopamine axons in the adult mouse forebrain. We 79 

observed that dopamine axons medial to the nucleus accumbens occupy a distinct area and are 80 

oriented dorsally towards the cortex (Figure 1A,B). Individual fibres can be seen crossing the 81 

boundary of the nucleus accumbens shell and joining these dorsally-oriented axons (Figure 1C). 82 

We hypothesized that these are the fibres that grow to the prefrontal cortex during 83 

adolescence. If this is correct, the number of dopamine axons oriented dorsally towards the 84 

medial prefrontal cortex should continue to increase until adulthood. To test this, we used a 85 

modified unbiased stereological approach (Kim et al., 2011) where axons are counted only if 86 
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they crossed the upper and lower bounds of a counting probe. We also measured the average 87 

width of the area these axons occupy. We found, in both male and female mice, that the 88 

density of dopamine axons does not change between adolescence (21 days old) and adulthood 89 

(75 days old; Figure 1D). However, the width of the area that dopamine axons occupy does 90 

change, increasing between adolescence and adulthood (Figure 1E). These results indicate that 91 

the total number of dopamine axons passing through this area increases over adolescence and 92 

that dopamine axons grow to the medial prefrontal cortex via this route.  93 
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Figure 1. A “pathway” of Netrin-1 expressing cells “paves the way” for dopamine axons growing from the nucleus 95 

accumbens to the medial prefrontal cortex during adolescence. A, The brain regions containing the of dopamine 96 

fibres passing to the medial prefrontal cortex are highlighted in a line drawing of a coronal mouse brain section 97 

derived from Paxinos and Franklin (Paxinos and Franklin, 2013). B, An image of a coronal section through the 98 

forebrain of an adult mouse at low magnification (4x). Green fluorescence indicates immunostaining for tyrosine 99 

hydroxylase (TH), used here as a marker for dopamine. The smaller and larger white squares indicate the regions 100 

enlarged in panel C and panels F & G, respectively. Scale bar = 500 μm. C, The nucleus accumbens (left of the 101 

dotted line) is densely packed with TH+ axons (in green). Some of these TH+ axons can be observed extending from 102 

the nucleus accumbens medially towards TH+ fibres oriented dorsally towards the medial prefrontal cortex (white 103 

arrows). Scale bar = 10 μm. D, Modified stereological quantification revealed no significant difference in TH+ axon 104 

density between adolescence (21 days old) and adulthood (75 days old). Mixed-effects ANOVA, effect of age: 105 

F=1.53, p=0.22; region by age interaction: F=1.44, p=0.49. E, The average width of the area that dopamine axons 106 

occupy increased significantly from adolescence to adulthood, revealing that there is an increase in the total 107 

number of fibres passing to the medial prefrontal cortex during this period. Mixed-effects ANOVA, effect of age: 108 

F=9.45, p=0.0021; region by age interaction: F=5.74, p=0.057. F, In order to quantify the Netrin-1 positive cells 109 

along the TH+ fibre pathway, the pathway was contoured in each region, and a contour of equal area was placed 110 

medial to the dopamine pathway as a negative control. Scale bar = 200 μm. G, Using quantitative stereology, 111 

Netrin-1 positive cell density was determined along and adjacent to the pathway for each region. Red fluorescence 112 

indicates immunostaining for Netrin-1. H, In adolescent mice there are more Netrin-1 positive cells along the fibres 113 

expressing TH (“TH+”) than medial to them (“TH-“). This is what we refer to as the “Netrin-1 pathway”. Along the 114 

pathway, there is a significant increase in Netrin-1 positive cell density in regions closer to the medial prefrontal 115 

cortex, the innervation target. Mixed-effects ANOVA, effect of TH: F=105, p<0.0001. Effect of region: F=9.74, 116 

p=0.021. A post-hoc Tukey Test revealed a difference (p = 0.029) between the densities of the lateral septum and 117 

infralimbic cortex, but only within the dopamine pathway. I, In adult mice the Netrin-1 pathway is maintained, 118 

however there is no longer an increasing density of Netrin-1 positive cells towards the medial prefrontal cortex. 119 

Mixed-effects ANOVA, effect of TH: F=54.56, p<0.0001. Effect of region: F=1.22, p=0.75. J, The virus injection 120 

location within the mouse brain. A Netrin-1 knockdown virus, or a control virus, was injected into the dopamine 121 
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pathway at the level of the dorsal peduncular cortex. K, Our experimental timeline: at the onset of adolescence a 122 

Netrin-1 knockdown virus, or a control virus, was injected in wild-type mice. In adulthood the mice were sacrificed 123 

and stereological measurements taken. L, TH+ varicosity density was quantified in the region below the injection 124 

site, the lateral septum, and in the region above the injection site, the infralimbic cortex. There was a significant 125 

decrease in TH+ varicosity density only in the infralimbic cortex. Mixed-effects ANOVA, virus by region interaction: 126 

F=16.41, p<0.0001. M, The experimental set-up of the final (test) stage of the Go/No-Go experiment. A mouse that 127 

has previously learned to nose-poke for a reward in response to a visual cue (illuminated nose-poke hole) must 128 

now inhibit this behaviour when the visual cue is paired with an auditory cue (acoustic tone). N, Mice injected with 129 

the Netrin-1 knockdown virus show improved action impulsivity compared to controls; they incur significantly 130 

fewer commission errors across the Go/No-Go task. Mixed-effects ANOVA, effect of day: F=68.32, p<0.0001. Day 131 

by virus interaction: F=9.00, p=0.0027. A sigmoidal curve is fit to each group of mice to determine how the two 132 

groups differ. Points indicate group means and error bars show standard error means. O, During the first days of 133 

Go/No-Go testing, both groups incur commission errors with high frequency, but the Netrin-1 knockdown group 134 

has fewer errors than the control group (T-test, t=5.18, p<0.0001). P, The ED50 – the inflection point in each 135 

sigmoidal curve – does not differ between groups, indicating that all mice improve their ability to inhibit their 136 

behavior at around the same time (T-test, t=0.97, p=0.35). Q, Mice microinfused with the Netrin-1 knockdown 137 

virus incur substantially fewer commission errors in the last days of the Go/No-Go task compared to mice injected 138 

with the control virus (T-test, t=12.38, p<0.0001). For all barplots, bars indicate group means and error bars show 139 

standard error means. 140 

 141 

Next, we focussed on Netrin-1, a secreted protein that acts as a guidance cue to growing axons 142 

and is important for dopamine axon targeting in the nucleus accumbens in adolescence (Cuesta 143 

et al., 2020). Using unbiased stereology, we quantified the number of Netrin-1 expressing cell 144 

bodies along the dopamine axon route, and in an adjacent medial region as a control (Figure 1 145 

F, G). We found that in adolescence there are more Netrin-1 positive neurons within the 146 
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dopamine axon route than adjacent to it. Furthermore, along the axon route the density of 147 

Netrin-1 positive cells increases towards the medial prefrontal cortex, forming a dorsoventral 148 

gradient (Figure 1H). In adulthood, there remains a higher density of Netrin-1 positive cells 149 

along the dopamine route compared to the adjacent region, however the dorsoventral gradient 150 

is no longer present (Figure 1I). 151 

To determine if Netrin-1 along the dopamine axon route is necessary for axon navigation, we 152 

silenced Netrin-1 expression in the dorsal peduncular cortex, the transition region between the 153 

septum and the medial prefrontal cortex, at the onset of adolescence (Figure 1J,K). In 154 

adulthood, we quantified the number of dopamine axon terminals in the regions below and 155 

above the injection site. Silencing Netrin-1 did not alter dopamine terminal density below the 156 

injection, in the lateral septum (Figure 1L). In the infralimbic cortex, which is the first prefrontal 157 

cortical region the axons reach after the injection site, terminal density was reduced in the 158 

Netrin-1 knock-down group compared to controls (Figure 1L). The knock-down appears to erase 159 

the Netrin-1 path to the prefrontal cortex, resulting in dopamine axons failing to reach their 160 

correct innervation target. It remains unknown whether these axons are misrouted to a 161 

different target. We conclude that Netrin-1 expressing cells “pave the way” for dopamine axons 162 

growing to the medial prefrontal cortex. 163 

We next examined how the Netrin-1 pathway may be important for behaviour. Dopamine input 164 

to the prefrontal cortex is a key factor in the transition from juvenile to adult behaviours that 165 

occurs in adolescence. We hypothesized that cognitive processes involving mesocortical 166 

dopamine function would be altered when these axons are misrouted in adolescence. To test 167 

our hypothesis, we used the Go/No-Go behavioural paradigm.  This test quantifies inhibitory 168 
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control, which matures in parallel with the innervation of dopamine axons to the prefrontal 169 

cortex in adolescence (Casey et al., 2008; Klune et al., 2021; Luna et al., 2015; Paus, 2005; 170 

Reynolds and Flores, 2021; Spear, 2000), and it is impaired in adolescent-onset disorders like 171 

depression and schizophrenia (Catts et al., 2013; Clementz et al., 2016; McTeague et al., 2016; 172 

Millan et al., 2012).  173 

At the onset of adolescence, we injected the Netrin-1 silencing, or a scrambled control virus, 174 

bilaterally into the dorsal peduncular cortex; in adulthood we tested the mice in the Go/No-Go 175 

task. This paradigm first involves discrimination learning and reaction time training 176 

(Supplementary Figure 1a), followed by a Go/No-Go test consisting of “Go” trials where mice 177 

respond to a cue as previously trained and “No-Go” trials where mice must abstain from 178 

responding to the cue (Figure 1M). Correct responses to both trial types are reinforced with a 179 

food reward. We quantified the percent of “No-Go” trials where the mice incorrectly responded 180 

to the cue (“Commission Errors”) and the percent of “Go” trials where the mice correctly 181 

responded (“Rewards” or “Hits”; Supplementary Figure 1b). The ability of mice to respond 182 

correctly overall to both trial types is quantified as the Correct Response Rate (Supplementary 183 

Figure 1c) (Cuesta et al., 2019; Reynolds et al., 2018a, 2018b; Vassilev et al., 2021).  184 

Mice injected with the Netrin-1 silencing virus differed from controls in their performance 185 

during “No-Go” trials. As the mice learn to withhold their responses over the course of the test, 186 

the number of commission errors they made in No-Go trials decreased in a sigmoidal fashion 187 

(Figure 1N). The upper and lower asymptotes of the sigmoidal curve quantify the number of 188 

commission errors committed during early and late test days, respectively, while the inflection 189 

point (ED50) indicates when mice start improving their ability to inhibit their behavior. At the 190 
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start of the Go/No part of the task, the Netrin-1 silencing group make slightly fewer commission 191 

errors (Figure 1O) than control groups, although both groups begin to improve in the No-Go 192 

task at around the same time. However, the Netrin-1 silencing group achieved a substantially 193 

higher level of behavioural inhibition, quantified as a lower percentage of commission errors in 194 

the last test days (Figure 1Q), indicating an improved ability to withhold their behaviour on cue. 195 

These behavioural results demonstrate that the maturation of action impulsivity is sensitive to 196 

the organization of the ventro-dorsal Netrin-1 path that guides mesocortical dopamine axon 197 

growth.  Deviations in this route associate with striking changes in the cognitive development 198 

that is characteristic of adolescence. In this case, the deviation leads to improved action 199 

impulsivity, suggesting that these dopamine axons may end up ectopically innervating a 200 

forebrain region other than the medial prefrontal cortex, enhancing cognitive control. 201 

 202 

Part 2: UNC5C expression coincides with the onset of adolescence 203 

When axons leave the nucleus accumbens during adolescence, they follow a Netrin-1 “path” 204 

through intermediate brain regions to reach their intended innervation target. However, only a 205 

small subset of the dopamine axons that have reached the nucleus accumbens by early 206 

adolescence leave; the vast majority stay and form connections in the accumbens throughout 207 

life (Reynolds et al., 2018a). The “decision making” process of whether to “stay” (in the 208 

accumbens) or “go” (to the cortex via the Netrin-1 path) happens during a narrow 209 

developmental window at the onset of adolescence  (Reynolds et al., 2018b). It remains 210 

unknown how the timing of this process is determined. 211 
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 212 

Figure 2 The age of onset of UNC5C expression by dopamine axons in the nucleus accumbens of mice is sexually 213 

dimorphic. Images are representative of observed immunofluorescence patterns in the nucleus accumbens 214 

(approx. location highlighted as a white square in the coronal mouse brain section Plate 19, modified from Paxinos 215 

& Franklin, 2013). No qualitative differences were noted between the shell and core of the nucleus accumbens. For 216 

each row, six individuals were sampled. In males (A-B), UNC5C expression on dopamine fibres (here identified by 217 

immunofluorescent staining for tyrosine hydroxylase, TH) in the nucleus accumbens appears during adolescence. 218 

A, At the onset of adolescence (21 days old) dopamine fibres do not express UNC5C. Scale bar = 10 μm. B, By 219 
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adulthood (90 days old), dopamine fibres express UNC5C. In females (C-E), UNC5C expression on dopamine fibres 220 

in the nucleus accumbens appears prior to adolescence. C, In juvenile (15 day old) mice, there is no UNC5C 221 

expression on dopamine fibres. D, By adolescence, dopamine fibres express UNC5C. E, In adulthood, dopamine 222 

fibres continue to express UNC5C. 223 

 224 

In adolescence, dopamine neurons begin to express the repulsive Netrin-1 receptor UNC5C, 225 

particularly when mesolimbic and mesocortical dopamine projections segregate in the nucleus 226 

accumbens (Manitt et al., 2010; Reynolds et al., 2018a). In contrast, dopamine axons in the 227 

prefrontal cortex do not express UNC5c, except in very rare cases (Supplementary Figure 2a). In 228 

adult male mice with Unc5c haploinsufficiency, there appears to be ectopic growth of 229 

mesolimbic dopamine axons to the prefrontal cortex (Auger et al., 2013). This miswiring is 230 

associated with alterations in prefrontal cortex-dependent behaviours (Auger et al., 2013). 231 

Using immunohistochemistry, we assessed the expression of UNC5C on nucleus accumbens 232 

dopamine axons across development. In male mice, we found little expression of UNC5C on 233 

dopamine axons at the onset of adolescence (Figure 2A), while we did find UNC5C expression 234 

on dopamine axons in adults (Figure 2B). Remarkably, when we assessed this in females, we 235 

found dopamine axons already expressing UNC5C in the nucleus accumbens at the onset of 236 

adolescence (Figure 2D), similar to adult females (figure 2E), indicating that the onset of UNC5C 237 

expression on dopamine axons in the nucleus accumbens is sexually dimorphic, with an earlier 238 

emergence in females. We examined the nucleus accumbens in pre-adolescent female mice 239 

and indeed found little UNC5C expression on dopamine axons (Figure 2C).  The onset of UNC5C 240 

expression in mesocorticolimbic dopamine axons is therefore peri-adolescent but occurs earlier 241 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 12, 2023. ; https://doi.org/10.1101/2023.01.19.521267doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.19.521267


in females than in males, consistent with the earlier emergence of adolescence in female 242 

rodents and the earlier onset of adolescence and puberty in humans (Wolf and Long, 2016). 243 

Part 3: Environmental control of the timing of adolescence  244 

We hypothesize that at the emergence of adolescence, UNC5C expression by dopamine axons 245 

in the nucleus accumbens signals the initiation of the growth of dopamine axons to the 246 

prefrontal cortex. We therefore examined whether the developmental timings of UNC5C 247 

expression and dopamine innervation of the prefrontal cortex are similarly affected by an 248 

environmental cue known to delay pubertal development in seasonal species.  249 

Siberian hamsters (Phodopus sungorus) regulate many aspects of their behavior and physiology 250 

to meet the changing environmental demands of seasonality (Paul et al., 2008; Stevenson et al., 251 

2017). In winter, they increase the thickness of their fur, exchange their brown summer coats 252 

for white winter ones, and undergo a daily torpor to conserve energy (Scherbarth and 253 

Steinlechner, 2010). In addition, adults suppress reproduction and juveniles delay puberty 254 

(Pevet, 1988; Yellon and Goldman, 1984), including developmental changes in gonadotropin 255 

releasing hormone neurons in the hypothalamus (Buchanan and Yellon, 1991; Heywood and 256 

Yellon, 1997). Reproductive organ development is delayed as part of pubertal postponement 257 

(Darrow et al., 1980; Ebling, 1994; Timonin et al., 2006). This seasonal plasticity is regulated by 258 

long or short periods of daylight (Heldmaier and Steinlechner, 1981; Hoffmann, 1978) and 259 

raises the possibility that aspects of adolescent development are sensitive to these 260 

environmental cues. To our knowledge, adaptive variation in the timing of adolescent neural 261 

development has never been recorded in any animal.   262 
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Here, we tested whether day length regulates when dopamine axons grow to the cortex, and 263 

whether the timing of UNC5C expression in the nucleus accumbens and adolescent changes in 264 

behavior are similarly affected.  265 

 266 

3.i The seasonality of adolescence 267 

Male hamsters were examined at three ages: 15 days old (±1), 80 days old (±10), and 215 days 268 

old (±20). We compared the density of the dopamine innervation to the medial prefrontal 269 

cortex in male hamsters housed under lighting conditions that replicate summer daylengths 270 

(long days, short nights) or winter daylengths (short days, long nights) (Figure 3A,B). We will 271 

refer to these two groups as “summer hamsters” and “winter hamsters” to emphasize the 272 

natural stimulus we are replicating in the laboratory environment. We confirmed that puberty 273 

is delayed in male winter hamsters compared to summer hamsters in the present experiment 274 

by measuring their gonadal weights across ages (Supplementary Figure 3a). 275 

In male summer hamsters, dopamine input density to the prefrontal cortex increases during 276 

adolescence, after 15 days old and before 80 days old (Figure 3C), consistent with dopamine 277 

axon growth in mice (Manitt et al., 2013, 2011; Reynolds et al., 2018a). Prefrontal cortex 278 

dopamine innervation in summer hamsters continues to increase after 80 days old (Figure 3C).  279 

In male winter hamsters, dopamine innervation to the prefrontal cortex is delayed until after 80 280 

days, which coincides with their delayed pubertal onset (Figure 3D, Supplementary Figure 3a). 281 

This demonstrates that an environmental cue can determine the timing of adolescent brain 282 

development. 283 
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 284 

Figure 3 Plasticity of adolescent development in male Siberian hamsters according to seasonal phenotype. All 285 

results illustrated in this figure refer to results in male hamsters. A, Dopamine innervation was quantified in three 286 

subregions of the medial prefrontal cortex, highlighted in blue. UNC5C expression was examined in the nucleus 287 

accumbens, highlighted in red. Line drawing of a coronal section of the mouse brain was derived from Plate 19 of 288 

Paxinos and Franklin (Paxinos and Franklin, 2013). B, Hamsters were housed under either summer-mimicking long 289 

days and short nights (“summer hamsters”) or winter-mimicking short days and long nights (“winter hamsters”). C, 290 

In male hamsters housed under a summer-mimicking daylength there is an increase in dopamine varicosity density 291 

in the medial prefrontal cortex between 15 and 80 days old. Mixed-effects ANOVA, effect of age: F=9.6, 292 

p=0.000255. Tukey Test, 15-80 days old (do): p=0.026; 80-215do: p<0.0001; 15-215do: p<0.0001. D, In male 293 
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hamsters housed under a winter-mimicking daylength there is no increase in dopamine varicosity density until 294 

hamsters have reached 215 days of age. Mixed-effects ANOVA, effect of age: F=4.17, p=0.0205. Tukey Test, 15-295 

80do: p=0.54; 80-215do: p=0.0006; 15-215do: p=0.0085. E, At 15 days old, dopamine axons (here identified by 296 

immunofluorescent staining for tyrosine hydroxylase, TH) in the nucleus accumbens of male summer-daylength 297 

hamsters largely do not express UNC5C. Scale bar = 20um (bottom right). F-G, At 80 (F) and 215 (G) days old, 298 

dopamine axons in the nucleus accumbens express UNC5C. H-I, At 15 (H) and 80 (I) days old, dopamine axons in 299 

the nucleus accumbens of male winter hamsters largely do not express UNC5C. J, By 215 days old there is UNC5C 300 

expression in dopamine axons in the nucleus accumbens of male winter hamsters. E-J, Representative images of 301 

the nucleus accumbens shell, 6 individuals were examined per group. K, Male hamsters house under a summer-302 

mimicking daylength show an adolescent peak in risk taking in the light/dark box apparatus. Those raised under a 303 

winter-mimicking photoperiod show a steady increase in risk taking over the same age range. Arrows indicate the 304 

ages at which risk taking peaks in summer (orange) and winter (blue) hamsters. Polynomial regression, effect of 305 

season: F=3.551, p=0.00056.  L, In male hamsters, at 215 days of age, there is no difference in risk taking between 306 

hamsters raised under summer and winter photoperiods. T-test, effect of season: t=0.975, p=0.341. For all 307 

barplots, bars indicate group means and error bars show standard error means. 308 

 309 

We then examined UNC5C expression by dopamine axons in the nucleus accumbens in male 310 

summer and winter hamsters across age classes. UNC5C expression was apparent only after the 311 

onset of adolescence in summer hamsters (Figure 3E,F,G), as observed in male mice. However, 312 

UNC5C expression was delayed in male winter hamsters – this group did not show UNC5C 313 

expression in dopamine axons in the nucleus accumbens until after 80 days old (Figure 3H,I,J). 314 

This aligns with the delayed timing of mesocortical dopamine axon growth and pubertal onset 315 

in male winter hamsters and demonstrates that the emergence of UNC5C is a marker of 316 

adolescent onset in male mice.  317 
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A behavioural characteristic of adolescence is increased willingness to enter a novel 318 

environment, a behaviour that assumes an increased amount of risk (Arrant et al., 2013; Lynn 319 

and Brown, 2009). To measure this, we used the light/dark test (Bourin and Hascoët, 2003). 320 

Time spent in the light compartment is dopamine-dependent (Bahi and Dreyer, 2019; Gao and 321 

Cutler, 1993) and peaks in adolescence (Arrant et al., 2013). We will refer to this behaviour as 322 

“risk taking”. We assessed the developmental profile of risk taking in the light/dark box test in 323 

summer and winter hamsters across adolescence.  In male summer hamsters, the risk taking 324 

increases across adolescence, peaks around 50 days, then subsequently declines (Figure 3K). 325 

However, the adolescent increase in risk taking is protracted in winter hamsters: across the age 326 

range examined we observe a gradual, consistent increase in risk taking rather than a peak and 327 

decline. 328 

We next assessed a cohort of 215-day old hamsters, for which both summer and winter male 329 

hamsters have undergone puberty and exhibit high levels of dopamine innervation of the 330 

prefrontal cortex (Figure 3C,D,G,J, Supplementary Figure 3a). In these hamsters, we find no 331 

difference in risk taking between the male summer and winter groups (Figure 3L), 332 

demonstrating that, after 80 days, risk taking begins to decline in male winter hamsters and 333 

that by 215 days it has declined to the same level as in summer hamsters. Male hamsters raised 334 

under summer-mimicking long days and winter-mimicking short days both ultimately make the 335 

transition to the adult behavioral phenotype. 336 

3.ii An extraordinary case of decoupling puberty and adolescence 337 
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In parallel with males, we conducted equivalent experiments in female hamsters (Figure 4A,B). 338 

Under a summer-mimicking daylength, dopamine innervation to the medial prefrontal cortex 339 

increases between 15 and 80 days old, similar to male summer hamsters (Figure 4C). There is 340 

no further increase in innervation density after 80 days old, consistent with earlier adolescent 341 

development in females observed in other rodent species (Juraska and Willing, 2017; Kopec et 342 

al., 2018; Reynolds and Flores, 2021; Spear, 2000; Westbrook et al., 2018).  We confirmed that 343 

puberty is delayed in female winter hamsters compared to summer hamsters by measuring 344 

their uterine weights (Supplementary Figure 4a) and vaginal opening (Supplementary Figure 4b) 345 

across ages.  346 

 347 

Figure 4 Plasticity of adolescent development in female Siberian hamsters according to seasonal phenotype. All 348 

results illustrated in this figure refer to results in female hamsters. A, Dopamine innervation was quantified in 349 

three subregions of the medial prefrontal cortex, highlighted here in blue. UNC5C expression was examined in the 350 

nucleus accumbens, highlighted in red. Line drawing of a coronal section of the mouse brain was derived from 351 
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Paxinos and Franklin (Paxinos and Franklin, 2013). B, Hamsters were housed under either a summer-mimicking or 352 

winter-mimicking daylength. C, In female hamsters housed under a summer daylength dopamine varicosity density 353 

in the medial prefrontal cortex increases between 15 and 80 days of age. Mixed-effects ANOVA, effect of age: 354 

F=16.72, p<0.0001 D, In female hamsters housed under a winter daylength there is no increase in dopamine 355 

varicosity density post-adolescence. Instead, there is a steep decline in density between 80 and 215 days of age. 356 

Mixed-effects ANOVA, effect of age: F=12.33, p=0.000043. E, As our results in panel D were unexpected, we 357 

replicated them with a second cohort of hamsters and found qualitatively identical results. Mixed-effects ANOVA, 358 

effect of age: F=34.871, p<0.0001. F, To try and determine when dopamine varicosities innervate the medial 359 

prefrontal cortex, we examined a cohort of 10- and 15-day-old hamsters. We found that varicosity density 360 

increases in the medial prefrontal cortex during this time, indicating that dopamine innervation to the medial 361 

prefrontal cortex is accelerated in female winter hamsters. Mixed-effects ANOVA, effect of age: F=5.05, p=0.03. G-362 

H, In 10- and 15-day-old female summer hamsters there is little UNC5C expression in nucleus accumbens 363 

dopamine axons (here identified by immunofluorescent staining for tyrosine hydroxylase, TH). Sample size: 4 364 

(panel G) or 6 (panel H). I-J, By 80 days old (panel I), and continuing at 215 days old (panel J), dopamine axons in 365 

the nucleus accumbens express UNC5C in female summer hamsters. Sample sizes: 6. Scale bar = 20um (panel G 366 

bottom right). K-N, At all ages which winter female hamsters were examined, dopamine axons in the nucleus 367 

accumbens express UNC5C in winter female hamsters. Sample sizes: 4 (panel K) or 6 (panels L-N). O, In female 368 

hamsters, those raised under summer and winter daylengths both show an increase in risk taking over time. The 369 

winter hamsters peak later compared to the summer daylength hamsters. Arrows indicate the ages at which risk 370 

taking peaks in summer (orange) and winter (blue) hamsters. Polynomial regression, effect of season: F=3.305, 371 

p=0.00126. P, In female hamsters, at 215 days of age, there is no difference in risk taking between hamsters raised 372 

under summer and winter photoperiods. T-test, effect of season: t=0.309, p=0.76. For all barplots, bars indicate 373 

group means and error bars show standard error means. 374 

 375 
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When housed under a winter-mimicking daylength, dopamine input density in the prefrontal 376 

cortex of female hamsters is not delayed as in males, but rather reaches adult levels prior to 15 377 

days old (Figure 4D). We replicated this unexpected finding in a separate, independent cohort 378 

of female winter hamsters (Figure 4E). This surprising result shows an intervention that 379 

accelerates adolescent cortical development.  380 

We then measured dopamine axon density in female winter hamsters at two earlier ages: 10 381 

and 15 days old. Dopamine innervation increases during this period (figure 4F), well before 382 

normal adolescence and long before pubertal development. This is an extraordinary 383 

phenomenon: a key marker of adolescent neurodevelopment is accelerated and dissociated 384 

from puberty in female hamsters raised under winter-mimicking short days (Supplementary 385 

Figure 4a,4b).  386 

The early increase in prefrontal cortex dopamine terminals in winter females is followed by a 387 

dramatic reduction between 80 and 215 days old (Figure 4D,E). This overlaps with the delayed 388 

timing of puberty in these females (Butler et al., 2007; Supplementary Figure 4a,4b). Synaptic 389 

pruning in the cortex is a well-known component of adolescent neural development across 390 

species (Huttenlocher, 1984; Koss et al., 2013; Petanjek et al., 2011). Under normal conditions, 391 

the effect of pruning on dopamine synapses is likely masked by the growth of new dopamine 392 

axons to the prefrontal cortex (Manitt et al., 2013, 2011; Reynolds et al., 2018a). In the case of 393 

female winter hamsters, we hypothesize that the growth of dopamine axons to the prefrontal 394 

cortex occurs early while synaptic pruning, including of dopamine synapses, appears to occur 395 

later. This leads to a remarkable dissociation between two cortical developmental processes 396 

that are normally simultaneous, the behavioural implications of which are unclear. 397 
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If the developmental onset of UNC5C expression determines the timing of dopamine 398 

innervation of the prefrontal cortex, then onset of UNC5C expression should also be advanced 399 

in female winter hamsters. Hence, we examined UNC5C expression at the same ages as we 400 

examined dopamine axon growth in female hamsters.  At 10 and 15 days old, UNC5C 401 

expression is present only in the winter hamsters (Figure 4G,H,K,L), but at 80 and 215 days old, 402 

UNC5C expression is apparent in both summer and winter hamsters (Figure 4I,J,M,N).  403 

We used the light/dark box test to examine potential risk taking implications of the 404 

extraordinary developmental trajectory we observed in the prefrontal cortex of female 405 

hamsters. In female summer and winter hamsters, the adolescent increase and peak in risk 406 

taking occurs between the ages of 15 and 80 days, as it does in summer daylength males 407 

(Figure 4O). However, contrary to what we would expect, the peak in winter females is delayed 408 

compared to summer females. When we assessed an independent cohort of 215-day-old 409 

female hamsters, we found no difference in risk taking between groups (Figure 4R), indicating 410 

that, like males, female summer and winter hamsters both eventually reach the same adult 411 

level of risk taking.  412 

In both sexes, hamsters housed under a summer-mimicking daylength showed an adolescent 413 

peak in risk taking at an age that we would predict based on results from other rodents (Arrant 414 

et al., 2013; Pietropaolo et al., 2004; Tanaka, 2015). When raised under a winter-mimicking 415 

daylength, hamsters of either sex show a protracted peak in risk taking. In males, it is delayed 416 

beyond 80 days old, but the delay is substantially less in females. This is a counterintuitive 417 

finding considering that dopamine development in winter females appears to be accelerated. 418 

Our interpretation of this finding is that the timing of the risk taking peak in females may reflect 419 
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a balance between different adolescent developmental processes. The fact that dopamine axon 420 

growth is accelerated does not imply that all adolescent maturational processes are 421 

accelerated. Some may be delayed, for example those that induce axon pruning in the cortex. 422 

The timing of the risk taking peak in winter female hamsters may therefore reflect the 423 

amalgamation of developmental processes that are advanced with those that are delayed – 424 

producing a behavioural effect that is timed somewhere in the middle. Disentangling the effects 425 

of different developmental processes on behaviour will require further experiments in 426 

hamsters, including the direct manipulation of dopamine activity in the nucleus accumbens and 427 

prefrontal cortex. 428 

Conclusion 429 

Here we describe how the gradual growth of mesocortical dopamine axons marks adolescent 430 

development, and how this process uses guidance cues and is sensitive to sex and environment. 431 

Netrin-1 signalling provides the “stay-or-go” “decision making” conducted by dopamine axons 432 

that innervate the nucleus accumbens at the onset of adolescence (Cuesta et al., 2020). UNC5C 433 

expression by these dopamine axons marks the timing at which this decision is made. In mice, 434 

UNC5C expression coincides with sex differences in both adolescent and pubertal development. 435 

Females, which develop earlier, show earlier UNC5C expression in dopamine axons compared 436 

to males.  437 

In hamsters, behavioural and developmental shifts in response to environmental cues occur in 438 

parallel with alterations in the timing of dopamine axon growth. As we show here, male 439 

hamsters raised under a winter-mimicking daylength delay not only puberty, but also 440 
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adolescent dopamine and behavioural maturation. In contrast, female hamsters under identical 441 

conditions delay puberty but accelerate dopamine axon growth, a key marker of adolescent 442 

brain development. Behavioural shifts during adolescence appear to be delayed in these 443 

females, but less substantially than in male hamsters. Notably, under all conditions, the 444 

developmental timing of UNC5C expression corresponds to the timing of dopamine innervation 445 

of the prefrontal cortex. 446 

In both mice and hamsters, the emergence of UNC5C expression coincides with the onset of 447 

dopamine axon growth to the prefrontal cortex, a key characteristic of the adolescent transition 448 

period. While previously we have shown that the Netrin-1 signalling in the nucleus accumbens 449 

is responsible for coordinating whether dopamine axons grow in adolescence (Reynolds and 450 

Flores, 2021), here we propose that Netrin-1 signalling is also key to determining how and when 451 

this marker of adolescence occurs. 452 
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