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Abstract 21 

Shrubs are used for revegetation of degraded dryland ecosystem worldwide and could recruit large 22 

numbers of microbes from the soil; however, the plant-associated microbiome assembly and the effect 23 

of plant introduction on the soil microbiomes are not fully understood. We detected shrub-associated 24 

microbes from five ecological microhabitats, including the leaves, litter, roots, rhizosphere, and root zone, 25 

across four xeric shrub plantations (Artemisia ordosica, Caragana korshinskii, Hedysarum mongolicum, 26 

and Salix psammophila). To detect the patterns of shrub-associated microbiome assembly, 16S and ITS2 27 

rRNA gene sequencing was performed. PERMANOVA and differential abundance analysis demonstrated 28 

that changes in the bacterial and fungal communities were more dependent on the microhabitats rather 29 

than on the plant species, with distinct niche differentiation. Moreover, source tracking and nestedness 30 

analysis showed that shrub-associated bacteria were primarily derived from bulk soils and slightly pruned 31 

in different microhabitats; however, a similar pattern was not found for fungi. Furthermore, the 32 

surrounding zone of roots was a hotpot for microbial recruitments of revegetated shrubs. Null model 33 

analysis indicated that homogeneous selection of determinism dominated the bacterial communities, 34 

whereas dispersal limitation and undominated process of stochasticity drove the assembly of fungal 35 

communities. Our findings indicate that ecological microhabitat of revegetated shrublands was the main 36 

predictor of the bacterial and fungal compositional variances. This study will help advance our 37 

understanding of the mechanism underlying the plant-soil microbiome feedbacks during the initial plant-38 

establishment period in a dryland ecosystem. Further, this work provides theoretical reference for 39 

establishment and sustainable management of shrublands in drylands. 40 

Keywords: dryland ecosystem, plant microbiomes, community assembly, plant-microbe interactions, 41 
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co-occurrence networks 42 

1. Introduction 43 

Shrubs are foundation species in fragile dryland ecosystems and performs diverse ecological 44 

functions, such as maintaining species diversity, controlling soil erosion, and promoting soil formation 45 

(Maestre et al., 2021). Each plant taxon harbours a characteristic mixture of microorganisms, collectively 46 

termed as the ‘plant microbiota’ (Xu et al., 2021; Vandenkoornhuyse et al., 2015). These plant-specific 47 

microbiomes impact the nutrition and water acquisition of xeric plants, suppress diseases, and support 48 

plant health and resistance to harsh environments (i.e., drought, salt, and high temperature) (Cordovez et 49 

al., 2019; Trivedi et al., 2020); thereby, driving plant-soil feedbacks (Delgado-Baquerizo et al., 2020). 50 

Drylands, covering approximately 40% of the Earth’s land surface, are expanding globally due to climate 51 

warming (Berg and McColl, 2021) and contain ubiquitous microbial species (Soussi et al., 2016). Many 52 

studies have focused on certain traits of soil microbes in drylands, such as the diversity, phyletic 53 

classification, and biogeography (Maestre et al., 2015; Soussi et al., 2016; Sun et al., 2020); however, the 54 

interplay between desert plants and soil microbiomes remains largely elusive, which limits the 55 

understanding of plant-soil feedback. Further, an improved understanding of the plant-soil microbiomes 56 

can improve degraded land restoration programs and increase the productivity of desert ecosystems in 57 

the future (Trivedi et al., 2019). 58 

Although the soil microbiome is a common reservoir of microbes, plants (i.e., leaves, stem, and 59 

roots) provide diverse microhabitats for colonization by numerous microorganisms (Beckers et al., 2017). 60 

Plant-associated microbiomes acting as a second genome has received substantial attention in the recent 61 

years (Berg et al., 2014; Turner et al., 2013). Several studies have demonstrated that plant-associated 62 

microbial composition and functions are regulated by plant host genotype (Beckers et al., 2017; Soussi 63 
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et al., 2016; Vandenkoornhuyse et al., 2015), i.e., each plant habitat harbours its own characteristic 64 

microbiome (Cordovez et al., 2019). Moreover, host plants can provide a number of habitats for 65 

microorganisms and then subtly affect microbiomes that confer tolerance to abiotic stress by supplying 66 

photosynthetic carbon (Müller et al., 2016; Xu et al., 2021). For example, root exudate and 67 

rhizodeposition predominantly influence the rhizosphere microbiota (Gupta et al., 2021; Zhalnina et al., 68 

2018). In the phyllosphere, cytokinins drive the assembly and function of microbiomes (Hu et al., 2018). 69 

Recent studies indicate that plant microbiome assembly and function are profoundly affected by different 70 

seasons or plant developmental stages (Xiong et al., 2021a; Aleklett et al., 2022). In drylands, plants 71 

thrive under prolonged environmental stresses, such as high irradiance, drought, and salt accumulation, 72 

through the development of specific physiological and molecular extremophile traits (VanWallendael et 73 

al., 2019; Van Zelm et al., 2020). Previous studies have shown that large plant microbiomes, special root-74 

associated bacteria, and fungi are also beneficial for desert plants in coping with unfavourable conditions 75 

(Soussi et al., 2016; Liu et al., 2021). Nevertheless, the mechanisms underlying the development of 76 

dryland plant microbiome remain very limited, impeding our understanding of desert ecological 77 

functions and processes. 78 

Recently, niche differentiation of plant-associated microbial taxa, mainly at the soil-root interface 79 

(rhizosphere and root endosphere), has received great research attention (Trivedi et al., 2019; Xiong et 80 

al., 2021a; Wang et al., 2022). In fact, each plant tissue (fruits, seeds, flowers, leaves, stems, and roots) 81 

and soil habitat (rhizosphere and litter) provide unique ecological niche that supports a characteristic 82 

microbial community (Gupta et al., 2021; Vandenkoornhuyse et al., 2015; Xu et al., 2021). Potentially, 83 

different microhabitats reflect different biotic (substrate and organic matter) and abiotic (temperature and 84 

water availability) conditions (Müller et al., 2016; Zheng and Gong., 2019). Compared to other humid 85 
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ecosystems, dryland ecosystems have greater differences in biotic and abiotic conditions across 86 

microhabitats (Soussi et al., 2016; Trivedi et al., 2019). However, such interactions in dryland ecosystems 87 

remain to be elucidated. 88 

Furthermore, recent studies suggest that the formation and development of microbial communities 89 

across microhabitats are not only controlled by environmental factors but are also strongly interrelated 90 

with each other (Zheng and Gong, 2019; Bernard et al., 2021; Walsh et al., 2021). Generally, members 91 

of the microbiome are horizontally acquired from the surrounding environments where the initial and 92 

main reservoir is the soil (Cordovez et al., 2019; Xiong et al., 2021a), while others migrate vertically via 93 

parents of the host plants (Vandenkoornhuyse et al., 2015). The belowground plant compartments harbour 94 

more microbes than aboveground plant tissues (Zheng and Gong, 2019), and the rhizosphere, a 1 mm 95 

thin zone of soil that surrounds fine roots, is more enriched with microbes than the bulk soil (Philippot 96 

et al., 2013). Thus, plant-associated microbes are selectively recruited by the plants, and the plant 97 

compartment defines the composition of the microbiomes. Taxonomic and genomic analyses have shown 98 

that there are overlapping microbial communities among different plant compartments (Cordovez et al., 99 

2019; Edwards et al., 2015). For example, although the leaves and roots of Arabidopsis thaliana (L.) 100 

Heynh. have specific microbiota members, they have a part of similar functional diversities (Bai et al., 101 

2015). Whether microbial functional overlap is attributed to the migration of microorganisms among the 102 

different compartments, and whether these compartment microbiome assemblies are mainly influenced 103 

by the soil microbiome, remain to be elucidated (Turner et al., 2013; Xu et al., 2021). Therefore, 104 

clarifying the diversity, abundance, composition, and dynamics of each microhabitat is helpful for 105 

improving the understanding of plant-environment interactions (Bulgarelli et al., 2012). 106 

 In drylands, woody plants are widely revegetated and shrubs, being the frontier species, are 107 
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frequently adopted worldwide to combat desertification and to maintain sand dune stability (Zastrow, 108 

2019). Notably, revegetation not only improve the microenvironment, but also increase plant material 109 

input to soil (Arneth et al., 2021); however, the effect of revegetation on the assembly of plant-associated 110 

and soil microbiome should be explored. In 2011, permanent plots (Artemisia ordosica, Caragana 111 

korshinskii, Hedysarum mongolicum, and Salix psammophila plantations) were established in the study 112 

site. We found that the effect of fine roots on soil organic carbon varied across the shrublands, and soil 113 

microbial diversity and composition were also significantly different (Lai et al., 2016; Liu et al., 2018; 114 

Sun et al., 2020). Therefore, a multi-plant experiment was performed in the same permanent plots. An 115 

adjacent bare sandy land, land before revegetation, served as a control in this study. We aimed to observe: 116 

(1) a drastic microbial community differentiation among the four revegetated shrubs; (2) distinct bacterial 117 

and fungal communities and compositions across different plant species and microhabitats (phylloplane, 118 

detritusphere, root rhizoplane, rhizosphere soil, and root zone soil) and the largest microbial species 119 

reservoir found in bulk soil. Consequently, we tried to identify the mechanisms involved in the assembly 120 

processes of the plant-associated microbiomes. 121 

2. Materials and methods 122 

2.1. Field experiment and sampling 123 

In 2001, four desert shrub populations, which include A. ordosica, C. korshinskii, H. mongolicum, 124 

and S. psammophila, were planted on bare sandy land at the Yanchi Research Station (37° 42' 31'' N/107° 125 

13' 47'' E, 1,530 m above sea level, shrubland details see Lai et al. 2016), located in the Mu Us Desert, 126 

Ningxia, China were used in this study. The study area was fenced to avoiding livestock grazing and 127 

anthropogenic disturbance. The long-term mean annual temperature was 8.1 °C, ranging from -8.4‒128 

22.7 °C, and the mean annual precipitation was 292 mm at this study site (Liu et al., 2018). All selected 129 
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shrubs were synchronously planted in the same field, which was characterised by sandy soil and subjected 130 

to the same management practices (Sun et al., 2020). The field experiments (four shrubland plots and 131 

one bare sandy land) were performed in August 2018 (Table S1), when the shrubs grow vigorously. For 132 

sampling, twelve 10 m × 10 m plots were randomly selected in each shrublands. The distance between 133 

plots was range from 10 m to 100 m. The leaves (matured, 15 g), detritus (twig and leaf litter, 15 g), fine 134 

roots (< 2 mm, 15 g), soil from the rhizosphere (surrounding the fine roots, 50 g) and the root zone (under 135 

the canopy, 50 g) from three healthy shrubs in each plot (samples from three shrubs were mixed and 136 

formed a pooled sample), and bulk soil (50 g) from bare sandy land were carefully collected in a single 137 

day, using disposable gloves to avoid contamination. Root and soil samples were collected from four soil 138 

profiles (40 cm × 40 cm × 40 cm) around the shrub at a distance of 0.2 ‒ 1.0 m. Bulk soils from the same 139 

depth were randomly collected from the bare sandy land plot adjacent to other plots. Twelve samples per 140 

sample type (soil and plant) were collected for two days (10–11 August). All samples were stored 141 

separately in sealed 50-mL centrifuge tube, immediately transported to the Magigene Biotechnology Lab 142 

(Guangzhou, Guangdong Province) on dry ice within 48 h and store at ‒70 °C until further molecular 143 

analyses. 144 

2.2. DNA extraction and sequencing 145 

All frozen samples were transported on dry ice to maintain a temperature below 4 °C for DNA 146 

extraction and sequencing as soon as possible after field sampling (within a week). Visible soil debris in 147 

plant tissues (leaf, detritus, and root) were washed using distilled water. Then, approximately 1 g of 148 

crushed plant tissue and 0.5 g of soil sample were used to extract DNA using the MoBio PowerSoil® 149 

DNA Isolation Kit (MoBio Laboratories, Inc., Carlsbad, CA, USA) and DNA samples were placed 150 

randomly across plates. The concentration and purity of all extracts were measured using the NanoDrop 151 
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One (Thermo Fisher Scientific, MA, USA) and quantified again prior to polymerase chain reaction (PCR) 152 

(Agler et al., 2016). 153 

A two-step barcoded PCR protocol was used to maximise the phylogenetic coverage of bacteria and 154 

fungi (Bai et al., 2015; Lundberg et al., 2013). Primers for the tagging the bacterial and fungal amplicons 155 

were 515F/806R (515F: 5′-GTGCCAGCMGCCGCGGTAA; 806R: 5′-156 

GGACTACHVGGGTWTCTAAT) and ITS5-1737F/ITS2-2043R (ITS5-1737F: 157 

GGAAGTAAAAGTCGTAACAAGG; ITS2-2043R: GCTGCGTTCTTCATCGATGC), respectively, 158 

and were used in equal concentrations (Ihrmark et al., 2012; Kembel et al., 2014). After PCR 159 

amplification, the length and concentration of amplicons were detected using 1% agarose gel 160 

electrophoresis. The PCR products were purified using the EZNA® Gel Extraction Kit (Omega Bio-Tek, 161 

Doraville, USA). Sequencing libraries were generated using NEBNext® Ultra™ DNA Library Prep Kit 162 

for Illumina® (New England Biolabs, MA, USA). Illumina MiSeq sequencing was carried out on the 163 

IlluminaHiseq2500 platform (Illumina Inc., San Diego, CA, USA) using 2×250 bp. 164 

Quality filtering of paired-end raw reads and assembly of paired-end clean reads were performed 165 

using Trimmomatic v0.33 (http://www.usadellab.org/cms/?page=trimmomatic) and FLASH v1.2.11 166 

(https://ccb.jhu.edu/software/FLASH/), respectively (Durán et al., 2018). Raw tag quality control was 167 

analysed using Mothur V1.35.1 (http://www.mothur.org) (Schloss et al., 2009). Operational taxonomic 168 

unit (OTU) clustering, species annotation, and phylogenetic relationship construction were performed 169 

using a combination of USEARCH v10 (Caporaso et al., 2010), KRONA, GraPhlAn, QIIME v1.9.1, and 170 

R v3.6.3 software. Contaminant sequences (e.g., protista, archaea, chloroplast, mitochondrial, and 171 

viridiplantae sequences) were filtered from the data set (Edgar, 2010). Sequences were assigned to 172 

taxonomy based on a 97% sequence similarity threshold (Gunnigle et al., 2017). In total, 17, 954, 236 173 
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bacterial and 14, 207, 200 fungal high-quality raw reads from 252 samples. A total of 10,000 and 20,000 174 

reproducible and measurable OTUs for bacteria and fungi, respectively, were included in the complete 175 

datasets, and the full dataset was split into phylloplane, detritusphere, root rhizoplane, rhizosphere, root 176 

zone soil, and bulk soil sub-datasets to examine the differences among the shrub species (DeSantis et al., 177 

2006). Samples from the microhabitats (i.e., leaf, detritus, root, and soil) were rarefied separately to 178 

minimise sample loss (bacteria: 34528 reads; fungi: 28374 reads). All analyses conducted had six 179 

replicates. All DNA-sequencing data were uploaded to the NCBI Sequence Read Archive (SRA) with 180 

the accession number SRP348383. 181 

2.3. Statistical analyses 182 

All the data and Figureures were run in the R statistical software v3.6.3 (The R Foundation for 183 

Statistical Computing, Vienna, Austria; http://www.r-project.org). Data normality was examined using 184 

the Shapiro–Wilk rank sum test. PROC UNIVARIATE was used to test normality of distribution and 185 

homogeneity of variance for residuals. To satisfy the homoscedasticity assumption, OTUs were 186 

normalised using variance-stabilizing transformation. Statistical significance was determined at α = 0.05, 187 

and when necessary, P values for multiple comparisons were corrected using sequential Bonferroni 188 

correction.  The differential abundance, richness, and α-diversity across species and microhabitats 189 

were identified using two-way ANOVA models (the aov R function). For each ANOVA model, multiple 190 

comparisons were FDR-corrected. Significant differences between shrub species or microhabitats were 191 

evaluated with the Kruskal-Willis rank sum test (kruskal.test with dunn.test in R; FDR-corrected p < 192 

0.05). Normality of the diversity data was checked with the Shapiro-Wilk test. If the data was skewed, 193 

log10-transformed data were used to statistical analysis. Differential abundances for bacteria and fungi in 194 

each shrubland and microhabitat compared with bare sandy land were determined using DESeq2 (Love 195 
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et al., 2014), with FDR-corrected p < 0.05 considered significant.  196 

To determine the differences in the microbial community, Bray-Curtis dissimilarity matrices were 197 

calculated and then visualised with non-metric dimensional scaling (NMDS) ordinations. Permutational 198 

multivariate analysis of variance (PERMANOVA) pairwise comparisons were conducted using the 199 

adonis function in the R package vegan with 999 permutations for bacteria and fungi for statistically 200 

supporting the visual clustering results of the NMDS analyses (Oksanen et al., 2019). The co-occurrence 201 

network was constructed using the IGRAPH package in R, based on Spearman’s rank correlations of all 202 

OTUs, accompanied by the calculations of the descriptive and topological network properties (Hartman 203 

et al., 2018), and visualised the significant correlations (Spearman’s r > 0.6 or r < ‒0.6, p < 0.01) in 204 

GEPHI v.0.9.2 (https://gephi.org/). The average degree (the number of direct correlations to a node) is 205 

defined as the network complexity. 206 

SourceTracker, based on Bayesian approach, was performed to evaluate the source of the plant 207 

microbial communities in each habitat (Knights et al., 2011; Xiong et al., 2021b). To further support the 208 

microbial source analysis, nestedness analysis was performed. The temperature statistics (T, smaller the 209 

T value, perfect the nestedness), based on pairwise compositional difference, and the nestedness metric, 210 

based on overlap and decreasing fill, were calculated using the R packages vegan and bipartite (Bernard 211 

et al., 2021).  212 

Null model and βNTI (β-nearest taxon index metrics) analyses were calculated using the picante R 213 

package for distinguishing different community ecological processes, including deterministic (|βNTI| > 214 

2) and stochastic process (|βNTI| > 2) (Kembel et al., 2010). Specifically, based on the βNTI and the 215 

Bray-Curtis-based Raup-Crick (RCbray), the two ecological processes were divided into five processes: 216 

heterogeneous selection (βNTI < − 2), homogeneous selection (βNTI > +2), dispersal limitation (|βNTI|< 217 
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2 and RCBray > 0.95), homogenizing dispersal (|βNTI|< 2 and RCBray < –0.95), and undominated 218 

(|βNTI|< 2 and |RCBray|< 0.95) (Tripathi et al., 2018). 219 

3. Results 220 

3.1. Effects of revegetated shrubs on microbial communities 221 

A total of 48 bacterial phyla were observed in both shrub-associated and bulk soil samples. The 222 

bacterial communities were dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, 223 

Chloroflexi, and Planctomycetes (Figure. 1a). Notably, Cyanobacteria and Tenericutes were highly 224 

abundant in the S. psammophila samples. In the bare sandy land plot, Gemmatimonadetes and 225 

Planctomycetes also were the dominant bacterial phyla. Specifically, the shrub microhabitats recruited 226 

Fusobacteria, which were not detected in the bulk soil samples. At the family level, Burkholderiaceae, 227 

Chitinophagaceae, and Sphingomonadaceae were the top three families in the bacterial assemblage in 228 

shrub samples, while the following taxonomic ranks were dramatically different. In the fungal family, 229 

the taxonomic ranks varied markedly across shrub and bare sandy land samples. Moreover, nine fungal 230 

phyla were found in all the samples (Figure. 1b). Ascomycota was the most abundant phylum in all the 231 

samples, whereas Basidiomycota, Chytridiomycota and unclassified taxa were highly abundant in bulk 232 

soil samples. Additionally, Blastocladiomycota only was found in C. korshinskii and S. psammophila 233 

samples. 234 

The α-diversity of bacteria and fungi (Observed species, Chao1 index, Shannon diversity index, and 235 

Goods coverage) were not significantly different across shrub plantations (p > 0.05; Figure. S1). However, 236 

bacterial Goods coverage in A. ordosica samples was lower than that in S. psammophila (p < 0.01; Figure. 237 

S1a). Beta-diversity based on average Bray-Curtis distances was markedly different across four shrub 238 

plantations and shrub species explained far greater variation in fungal community composition (Adonis: 239 
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degree of freedom (d.f.) = 3; coefficient of determination (R2) = 0.087; p < 0.001) than in bacterial 240 

community composition (Adonis: d.f. = 3; R2 = 0.033; p < 0.001; Figures. 2a and b; Table 1). 241 

 242 

Figure 1. Relative sequence abundance of bacterial (a) and fungal (b) phyla associated with six 243 

microhabitats (bulk soil, root zone soil, rhizosphere soil, root rhizoplane, detritusphere, and phylloplane) 244 

across four shrublands (A. ordosica, C. korshinskii, H. mongolicum, and S. psammophila; n = 12) and 245 

bare sandy land (n = 12). Operational taxonomic unit with relative abundance < 0.1% were discarded. 246 

 247 

Table 1 PERMANOVA (Bray-Curtis distance) analysis showing the ability of variables to explain 248 

compositional variance. 249 

Domain Variable df R2 P Residual 

Bacteria 

 

 

Fungi 

 

Host 

Microhabitat 

Host × Microhabitat 

Host 

Microhabitat 

Host × Microhabitat 

3 

5 

19 

3 

5 

19 

0.033 

0.304 

0.427 

0.087 

0.222 

0.530 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

236 

246 

220 

236 

246 

220 

df: degree of freedom. R2: coefficient of determination. Significant p-values (p < 0.05) are indicated in 250 

bold texts. 251 
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 252 

 253 

Figure 2. Factors shaping the composition of microbial community of xeric shrubs. (a) and (b) Non-254 

metric multidimensional scaling plots of bacterial and fungal community dissimilarity with shapes by 255 

four shrub species (A. ordosica, C. korshinskii, H. mongolicum, and S. psammophila) and bare sandy 256 

land. (c) and (d) Non-metric multidimensional scaling plots of bacterial and fungal community 257 

dissimilarity with shapes by six microhabitats (bulk soil, root zone soil, rhizosphere soil, root rhizoplane, 258 

detritusphere, and phylloplane). 259 

 260 

The DESeq2 differential abundance analysis showed that approximate 5.1% of bacterial OTUs and 261 

4.5% of fungal OTUs, mainly belonged to the bacterial families Sphingomonadaceae and 262 

Chitinophagaceae, and the fungal families Pezizomycotina_fam_Incertae_sedis and Trichocomaceae, 263 

respectively, were significantly enriched in four revegetated shrublands (Figure. 3; Table S2). We also 264 

found that approximate 8.2% of bacterial OTUs and 4.5% of fungal OTUs significantly depleted in four 265 

revegetated shrublands, these OTUs were mainly from the bacterial families Gemmataceae and 266 

Gemmatimonadaceae, and the fungal family Pezizomycotina_fam_Incertae_sedis (Figure. 3; Table S2). 267 

Specially, S. psammophila possessed the lowest numbers of enriched OTUs for bacteria, while A. 268 
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ordosica possessed the greatest numbers of enriched OTUs for fungi. 269 

 270 

Figure 3. The volcano plot illustrating the enrichment and depletion patterns of the shrub-associated 271 

bacterial (a) and fungal (b) communities in different revegetated shrublands (A. ordosica, C. korshinskii, 272 

H. mongolicum, and S. psammophila) compared with bare sandy land. 273 

 274 

3.2. Niche differentiation of shrub-associated microbiota across different microhabitats 275 

The dominant bacterial and fungal phyla dramatically differed across the microhabitats (phylloplane, 276 

detritusphere, root rhizoplane, rhizosphere soil, root zone soil, and bulk soil; p < 0.01; Figure. 1). 277 

Proteobacteria and Bacteroidetes had higher abundance in plant tissue samples than soil samples, but the 278 

abundance of Acidobacteria and Planctomycetes were lower in plant tissue samples (p < 0.001). 279 

Specifically, Proteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria, and Planctomycetes (average 280 

across shrub species; n = 12) were abundant in all microhabitats, whereas Cyanobacteria, FBP, 281 

Tenericutes, and Chloroflexi were more abundant in leaves, detritus, roots, and soils, respectively, 282 

compared to other microhabitats (Tukey’s honestly significant difference test: p < 0.01). Ascomycota and 283 

Basidiomycota were the most dominant, accounting for approximately 85% of the sequences. 284 

Interestingly, more fungal phyla were detected in the leaf samples than in the other samples. 285 
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Blastocladiomycota was only detected in leaf samples of C. korshinskii and S. psammophila.  286 

The Observed species, Chao1 index, Shannon index, and Goods coverage values showed a similar 287 

trend for bacterial α-diversity among microhabitats, with a significant difference between the soil 288 

microhabitats (rhizosphere, root zone, and bulk soil) and the plant tissue microhabitats (root rhizoplane, 289 

detritusphere, and phylloplane) (Kruskal–Wallis test and Dunn’s post-hoc test, p < 0.001; Figure. S2). 290 

Specially, in the plant tissue microhabitats, the Observed species and Shannon index of the detritusphere 291 

were significantly higher than other microhabitats (p < 0.05). In the soil microhabitats, the root-associated 292 

soil had greater Chao1 index than bulk soil did (p < 0.01). For fungi, the α-diversity index had a 293 

dramatical difference between detritusphere and other microhabitats, with a slight difference in Observed 294 

species and Shannon index (Figure. S2b). 295 

 296 

Figure 4. The volcano plot illustrating the enrichment and depletion patterns of the shrub-associated 297 

bacterial (a) and fungal (b) communities in six microhabitats (phylloplane, detritusphere, root rhizoplane, 298 

rhizosphere soil, and root zone soil) compared with bulk soil. 299 

The differential abundance analysis demonstrated that root rhizoplane possessed the greatest 300 

numbers of enriched OTUs, mainly from the bacterial family Gemmataceae and the fungal family 301 
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Pezizomycotina_fam_Incertae_sedis (Figure. 4; Table S3). Meanwhile, the lowest numbers of depleted 302 

OTUs, mainly belonged to the bacterial family Chitinophagaceae and the fungal family Thelephoraceae 303 

was also observed in root rhizoplane (Figure. 4; Table S3). In soil microhabitats (rhizosphere and root 304 

zone soil), the enriched OUTs for bacteria and fungi were mainly assigned to the families 305 

Gemmatimonadaceae and Gemmataceae, and Spizellomycetaceae and Lasiosphaeriaceae, respectively. 306 

Compared to soil microhabitats, the aboveground microhabitats (detritusphere and phylloplane) had the 307 

greater numbers of the enriched OTUs, mainly from the bacterial families Gemmatimonadaceae and 308 

Pirellulaceae, and the fungal families Pezizomycotina_fam_Incertae_sedis and Trichocomaceae (Table 309 

S3). 310 

Microhabitat was the primary factor explaining the variation in shrub-associated microbial 311 

community composition (Adonis: d.f. = 5; bacteria: R2 = 0.30; P < 0.001; fungi: R2 = 0.22, p < 0.001; 312 

Table 1). PERMANOVA, conducted separately for shrubs, indicated that the microbial community 313 

composition significantly varied among different microhabitats (Table S4; p < 0.01). Community 314 

similarity analysis showed that rhizosphere, root zone, and bulk soil samples were closely related to each 315 

other and detritus samples were the most similar to leaf samples. In addition, root rhizoplane samples 316 

were dissimilar to the other samples. 317 

The network analysis showed that microbial co-occurrence patterns differed distinctly across six 318 

microhabitats, particularly for the bulk soil and root rhizoplane (Figures. 5a and b, Tables S5 and S6). 319 

Bacterial network in bulk soils was the most complex, followed by phylloplane and root-associated 320 

microhabitats (root zone soils, root rhizoplane, and rhizosphere soils), with the lowest bacterial network 321 

complexity in the detritusphere. For fungi, the highest and lowest network complexity was found in the 322 

root rhizoplane and rhizosphere soils, respectively. The network complexity in bulk soils was greater 323 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.19.524707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.19.524707


17 
 

than that in other microhabitats (phylloplane > detritusphere > root zone soils), and the highest 324 

modularity and the lowest average path distance were observed in the bulk soil. We defined the “network 325 

hubs” (degree > 50; closeness centrality > 0.3) in the network, and found 1038 network hubs (bacteria: 326 

697, fungi: 341) at bulk soil, and 157 network hubs (bacteria: 0, fungi: 157) at root rhizoplane, and 51 327 

network hubs (bacteria: 0, fungi: 51) at detritusphere (Figure. 5c, Table S5). In the bacterial network, a 328 

half of nodes were assigned to the top 3 phyla (Proteobacteria, Planctomycetes, Actinobacteria) in soil 329 

microhabitats (bulk soil, root zone soil, rhizosphere soil), whereas in plant microhabitats (root rhizoplane, 330 

detritusphere, phylloplane) the top-three phyla were Proteobacteria, Bacteroidetes, and Actinobacteria 331 

(Figure. 5b, Table S6). For fungi, two phyla (Ascomycota and Basidiomycota) were identified in nodes, 332 

accounting for approximate 80% of all nodes. Remarkably, Zygomycota and Glomeromycota were not 333 

detected in network nodes of detritusphere (Figure. 5b, Table S6). 334 
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 335 

Figure 5. Spatial dynamics of xeric shrub-associated microbiomes. (a) Bacterial and fungal co-336 

occurrence networks along the soil-plant continuum (n = 48). AD: average degree. Different colours 337 

represent microbial phyla. (b) Distribution patterns of the hub nodes (degree > 50; closeness centrality > 338 

0.3) of bacterial and fungal network in different microhabitats. (c) Source model analysis based on the 339 

SourceTracker showing the potential sources of xeric shrub-associated microbiota (n = 48). 340 

 341 

3.3. Potential sources of shrub-associated microbiota 342 

The SourceTracker analyses suggested that root-associated bacterial communities were mainly 343 

derived from bulk soils and gradually transmitted to different belowground microhabitats (Figure. 5c). 344 

Nevertheless, similar source patterns were not observed in root-associated fungal communities. Plant 345 
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tissue niches accounted for a smaller proportion of derivation of fungal communities than of bacterial 346 

communities. Phylloplane, the main potential source of detritusphere, acquired a minority of taxa from 347 

the belowground species pool (bacteria: 19.64%, fungi: 1.63%). Conversely, the aboveground species 348 

pool was also a potential source of soil microhabitats, specifically, the detritusphere contributed 5−15% 349 

of sources to the subterranean microbiotas (Figure. S5). Nestedness analysis also showed that bacterial 350 

communities were more perfectly nested by habitats than fungal communities (bacteria: T = 9.74°, P = 351 

0.01, NODF = 19.28%; fungi: T = 31.38°, P = 0.01, NODF = 57.61%), with rhizosphere soils having the 352 

highest microbial diversity. Specifically, fungal communities in the phylloplane were an important 353 

species subset. 354 

3.4. Assembly processes of shrub-associated microbiomes 355 

Null model analyses revealed that the relative importance of determinism vs. stochasticity in shrub-356 

associated bacterial and fungal communities varied across six microhabitats (Figure. 6). After quantifying 357 

the deviation in βNTI values, we observed that deterministic assembly processes, especially 358 

homogeneous selection, represented a predominantly higher percentage than stochastic assembly 359 

processes in bacterial communities, while the stochastic assembly processes (dispersal limitation and 360 

undominated processes) were dominant in fungal communities (Figure. 6). Notably, for belowground 361 

habitats, the relative contribution of determinism and stochasticity showed a slightly increasing tendency 362 

from bulk soil to root rhizoplane in bacterial and fungal communities, respectively (Figure. 6a). 363 

 364 
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 365 

Figure 6. Bacterial and fungal community assembly processes in six microhabitats. (a) The values of the 366 

β-Nearest Taxon Index value (βNTI) for shrub-associated microbial communities. Dashed lines represent 367 

upper and lower significant thresholds at βNTI = −2 and +2, respectively. (b) The fraction of shrub-368 

associated microbial community assembly governed principally by deterministic processes 369 

(heterogeneous selection and homogeneous selection) or stochastic processes (dispersal limitation, 370 

homogenizing dispersal, and undominated processes). 371 

4. Discussion 372 

4.1. Shrubs harbour different microbial communities across different microhabitats 373 

Although the α-diversity analysis indicated that there were no dramatic differences across four 374 

shrublands, results of PERMANOVA and differential abundance analysis supported the first two 375 

hypotheses that the four revegetated shrub species recruit markedly distinct bacterial and fungal 376 

communities after colonisation on bare sandy land, with a great difference in microbial compositions 377 

across microhabitats (phylloplane, detritusphere, root rhizoplane, rhizosphere soil, and root zone soil; 378 
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Figures. 1‒4, S1‒S4). In addition, niche differentiation, rather than plant species, shaped the diversity 379 

and structure of microbiomes (Table 1). Previous studies have shown that the introduction of shrubs on 380 

bare sandy land changed the abundance, diversity, and composition of soil bacterial and fungal 381 

communities in the degraded dryland ecosystem (Cregger et al., 2018; Sun et al., 2019), whereas our 382 

results provide a more precise case assessment of the promotion of biodiversity in revegetated drylands. 383 

In the results, the pattern of niche driving to microbial was supported by some studies on crops 384 

(Xiong et al., 2021a, b) and wild plants (Cregger et al., 2018; Zheng and Gong, 2019; Wang et al., 2022) 385 

from local to regional areas. However, recent studies have shown that fungal compositional variance is 386 

better predicted by sampled sites than by microhabitats in regional areas (Bernard et al., 2021; Thiergart 387 

et al., 2020). This phenomenon was confirmed in the present study site where the four shrubs encountered 388 

similar growth conditions (soil and climate) but the numerous microenvironment properties (e.g., 389 

nutrients, temperature, humidity, and plant immunity) varied remarkably across the soils and plant tissues. 390 

Moreover, the microbial co-occurrence network analysis indicated that the different topological 391 

structures (i.e., network complexity, modularity, clustering coefficient, and hub node) between soils and 392 

plant habitats influenced the bacterial communities more than the fungal communities (Figures. 1 and 5; 393 

Tables S5 and S6). Another explanation may be that fungi are more easily affected by environmental 394 

conditions due to the existence of some fungal communities not directly associated with a plant (Gao et 395 

al., 2020). Additionally, in desert soil with low nutrients, plants supply most of the soil organic matter 396 

for microbiomes, consequently resulting in a strong relationship between plants and microbes (Hu et al., 397 

2021). All these evidences suggested that, after revegetation in drylands, the recruitment and 398 

domestication to soil microbiome could depend on host selection and microhabitat differentiation caused 399 

by different plant species. 400 
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Notably, revegetated shrubs had significantly different strategies for microbiomes colonisation 401 

(Figures. 1−3, S1, and S3), implying that this process majorly influences the soil health and 402 

multifunctionality. Plants create several microhabitats (phylloplane, detritusphere, root rhizoplane, 403 

rhizosphere) with drastic environmental conditions for colonisation of the surrounding microbiome 404 

(Cordovez et al., 2019; Trivedi et al., 2020). In addition, plants also supply different litters and secretions 405 

to attract microbiomes and adapt secretion components according to the environmental changes 406 

(Zhalnina et al., 2018). For example, in phosphorus-limited soils, legume roots mainly secrete citric acid, 407 

fumaric, malonic, succinic, and malic acids, which are favourable for Proteobacteria growth, whereas in 408 

phosphorus-rich soils, there are high levels of exudates of citrate, malate, and oxalate, stimulating growth 409 

of Acidobacteria (Dai et al., 2020). Volatile oil from A. ordosica influences the growth of desert soil 410 

microalgae Palmellococcus miniatus, thereby, affecting the surrounding microbiomes (Yang et al., 2012). 411 

Thus, the role of plant natural accessions (i.e., root exudate, root litter, leaf litter) on the microbiome 412 

assembly should be intensively studied. 413 

The co-occurrence network in the plantations had a lower complexity and clustering coefficient and 414 

a higher average path distance than those in bare sandy land, indicating a less compact microbial 415 

association in the plant compartments than in bare sandy land (Figures. 5a, b, Tables S5 and S6). Plant 416 

inputs (litter and exudates) change the cross-feeding relationships of microbes (Malik et al., 2020), which 417 

reduces belowground competition for organic matter (Hu et al., 2021). The encroachment of plants results 418 

in changes in the microenvironment (i.e., air temperature, soil erosion, and edaphic properties), which 419 

indirectly affects the microbial community and their associations (Hu et al., 2021). In contrast, in bare 420 

sandy land with limited nutrition, metabolic exchange likely promotes microbial survival and assembly 421 

(Leff et al., 2017). These results imply that the microbial compositions of non-plant and plant land are 422 
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largely shaped by metabolic interactions and resource competition, respectively. Although our study 423 

provides some insights into the mechanisms underlying the plant microbiomes, longitudinal experiments 424 

should be conducted (Bai et al., 2020). 425 

In this study, the highest network complexities were found in the phylloplane and root rhizoplane, 426 

respectively for bacteria and fungi in shrublands (Figures. 5a, b; Table S5). This could be explained by 427 

intense competition for nutrition at the interface (roots and leaves) between the plant and the environment 428 

(Mommer et al., 2016; Remus-Emsermann and Schlechter, 2018). Broad ecological differences in 429 

substrate preferences, growth rates, and stress tolerance lead to distinct trajectories in bacteria and fungi 430 

during plant recovery (Sun et al., 2017). For example, fungi are generally considered as the major 431 

decomposers of recalcitrant organic matter because of their ability to produce specific enzymes (Bani et 432 

al., 2018). Additionally, mycorrhizal fungi can directly clone living plant tissues (Tedersoo et al., 2014). 433 

Hyphae filamentous fungi also provide ecological opportunities for bacteria, leading to novel host-434 

symbiont interactions (Emmett et al., 2021; Pawlowska et al., 2018; Yuan et al., 2021). In addition, 435 

microbial spores can diffuse via attachment to motile soil bacteria (Muok et al., 2021). In summary, under 436 

harsh conditions in drylands, soil microbiomes were extraordinarily sensitive to organic matter input and 437 

microenvironment changes via revegetation. However, the response of interspecific and intraspecific 438 

interactions between microbiomes (i.e., bacteria and fungi) should have an in-depth exploration. 439 

4.2. Source and sink of shrub-associated microbiota 440 

Source-tracking and nestedness analysis showed that a legacy effect of the original land use on 441 

shrub-associated microbial assembly and revealed that the legacy effect of bare sandy soil on shrub -442 

associated bacterial communities was stronger than that on shrub-associated fungal communities (Figure. 443 

5c). However, the results partially support the source-sink hypothesis. In concordance with previous 444 
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studies (Amend et al., 2019; Bernard et al., 2021), rhizospheric soil, not the root zone soil or bulk soil, 445 

was identified as the main species reservoir of plant-associated microbial taxa (Figure. S5), further 446 

indicating that the rhizosphere act as a hotspot of plant-microbe-soil interactions. However, another study 447 

found that plant bacterial communities are gradually filtered and enriched from bulk soils to plant niches 448 

(Xiong et al., 2021b). This could be primarily attributed to the harsher soil conditions (low nutrients and 449 

soil moisture) in the root zone and bulk soil than in the rhizosphere in the desert ecosystem. In nutrient-450 

poor soils, the rhizosphere, being a hotspot for intense plant-soil-microbe interactions, provides a more 451 

pleasant habitat for different microbiomes than that of other soil zones (Mommer et al., 2016), since roots 452 

can change the microhabitat environments via dead litter and bioactive exudates (Hu et al., 2018). Thus, 453 

our current results, consistent with the previous investigations, show that soil microbial communities 454 

under shrub canopies and between shrub canopies have no significant difference (Sun et al., 2019). These 455 

results indicate that revegetated plants could prune the original soil microbial communities and modify 456 

soil microbiota composition in the whole shrubland. However, future research should focus on the role 457 

of shrub root traits (i.e., elongation and turnover) and soil animals (i.e., ants and nematodes) in this 458 

process. 459 

Interestingly, in the present study, aboveground plant species pools also contributed to the 460 

belowground microbial communities, although microbial diversity of soils was higher than that of plant 461 

tissue. In particular, for fungal communities, phylloplane was the second largest species pool (Figure. 462 

S5b). These vertically stratified microbiota assembly patterns have also been determined in previous 463 

studies in other plant species (Amend et al., 2019). Plants specifically recruit and elaborately prune a 464 

small group of beneficial microbes from the soil pool during their lifetime (van der Heijden and Schlaeppi, 465 

2015). A considerable part of plant microbiome diversity, which affects germination and seedling 466 
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development, may be inherited from the seed (Walsh et al., 2021). Furthermore, experimental evidence 467 

indicates that root and phyllosphere microbes are partially inherited via vertical seed transmission 468 

(Abdelfattah et al., 2021). In clonal plants, vertical transmission between plant generations occurs in a 469 

significant proportion of symbiotic bacteria and fungi (Vannier et al., 2018). Additionally, the air 470 

microbiome contributes to phyllosphere microbiota assembly (Archer et al., 2019), which further affects 471 

the soil microbiome through rainfall and eluviation. Several fungal spores can disperse onto leaves of 472 

neighbouring plants via rain splash, even when wind flow is very low (Mukherjee et al., 2021). An 473 

alternative explanation may be that exotic herbivorous insects alter the leaf microbiome through eating 474 

leaves and carrying microorganisms, thereby, affecting the soil microbial community via litter input 475 

(Humphrey and Whiteman, 2020). Overall, the horizontal and vertical transmission pathways mostly 476 

explain the origin and dispersion of microbiomes in plants. However, other mechanisms, such as the 477 

effects of leaf-derived microbiomes on the soil microbial community and the contributions of deep soil 478 

microbiomes to plant microbiota, warrant further validation. 479 

4.3. Ecological assembly processes of shrub-associated microbiota 480 

 Disentangling the assembly mechanisms of plant-associated microbiomes is imperative for better 481 

understanding the role of plant in generating and maintaining microbial diversity (Trivedi et al., 2020). 482 

In this present study, quantitative analysis of assembly processes showed that bacterial and fungal 483 

communities across different microhabitats were mainly drove by determinism and stochasticity, 484 

respectively (Figure. 6a), partially in contrast to the finding of Cao et al. (2022), who detected that the 485 

stochastic processes were dominant in bacterial communities of shrublands in eastern of the Mu Us 486 

Desert. This discrepancy can be credited to the difference in precipitations. In drylands, previous studies 487 

have proven that precipitation primarily regulated microbial assembly processes, especially bacterial 488 
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communities (Jiao et al., 2021; Naidoo et al., 2022; Yang et al., 2022), because wetter habitats promote 489 

dispersal (Cermeño and Falkowski, 2009). In the current study, bacterial community assembly was 490 

dominantly governed by homogeneous selection of deterministic processes (Figure. 6b), indicating that 491 

bacteria across six microhabitats had more similar composition (Hanson et al., 2012; Su et al., 2020). 492 

Compared to bacterial communities, fungi communities at multiple microhabitats are predominantly 493 

govern by dispersal limitation (Bonito et al. 2014; Richter-Heitmann et al., 2020; Xu et al., 2021). Our 494 

results supported this view, the proportion of dispersal limitation in fungi at all microhabitats was higher 495 

than that in bacteria (Figure. 6b), suggesting that fungi are more limited by resource availability and are 496 

more sensitive to environmental changes than bacteria do. 497 

5. Conclusions 498 

Our results demonstrate that plant introduction has a much stronger influence on microbial α-499 

diversity and networks in soil microhabitats than plant microhabitats, but the effect on microbial 500 

community structure was stronger in plant tissue microhabitats than in soil microhabitats. The changes 501 

due to host effect on shrub-associated microbiome composition was stronger at the niche differentiation 502 

level rather than at the plant species level in revegetated desert shrubland. We further found that plant 503 

microbiome assembly was mainly influenced by plant select and niche filter, meanwhile, revegetated 504 

plant via microenvironment changes and microbial seedbank from parent affect soil microbial 505 

composition. Furthermore, the surrounding zone of roots is a hotpot for microbial recruitments of 506 

revegetated shrubs. Determinism played a dramatically greater role in bacterial communities than fungal 507 

communities. Of the four shrubs, A. ordosica exhibited the highest performance in plasticity or 508 

responsiveness of microbial communities after revegetation; thus, this shrub species is the optimal choice 509 

for increasing ecosystem biodiversity in future dryland restoration. Together these results suggest that 510 
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the host selection (plant niches and host genetics) and soil domestication (organic matter and microbial 511 

species seed input) drive microbial community composition and functions in revegetated ecosystems. 512 

Collectively, these findings significantly promote our fundamental understanding of the interactions 513 

between revegetated plants and microbiomes in drylands during plant introduction. In future studies, the 514 

role of plant-associated microbiomes in improving soil nutrient cycle and soil-forming processes of 515 

restoring ecosystems should be investigated in depth. 516 
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