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Abstract

The brain is closely attuned to visceral signals from the body’s internal environment, as
evidenced by the numerous associations between neural and peripheral physiological signals.
This study describes a synchrony in the low-frequency range (0.01 - 0.1 Hz) between global
brain hemodynamics, neural activity, and a host of autonomic signals spanning cardiovascular,
pulmonary, exocrine and smooth muscle systems. We show that this brain-body synchrony can
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be captured by a single spatiotemporal pattern across fMRI, EEG and peripheral physiological
signals in human subjects. These findings are replicated across several independent samples
and data acquisition systems. Furthermore, this spatiotemporal pattern of brain-body synchrony
is elicited by autonomic arousal in deep breathing, spontaneous K-complexes during sleep, and
the delivery of intermittent sensory stimuli, as well as at rest. Further, we show that the spatial
structure of global brain hemodynamics is maintained under experimental suppression of
end-tidal carbon dioxide (PETCO2) variations, suggesting that respiratory-driven fluctuations in
arterial CO2 accompanying arousal cannot explain the origin of these hemodynamic signals in
the brain. These findings suggest that the origin of low-frequency global brain hemodynamics
may be mediated by ascending arousal system projections, which modulate widespread
neuronal activity as well as sympathetic vasoconstrictive effects on the cerebral vasculature.
The prominence of this brain-body synchrony during deep breathing provides a mechanistic
understanding of the positive health benefits of diaphragmatic breathing and may inform
psychological therapeutic techniques for anxiety and stress.

Introduction

The communication of visceral signals from the body’s internal environment to the brain
is essential for adaptive behavior. Central autonomic nuclei are closely connected to ascending
arousal system nuclei that project diffusely to the cortex and subcortex, influencing wakefulness,
affect and interoception (Satpute et al., 2019; Yackle et al., 2017). Pharmacological and
electrical stimulation of central autonomic nuclei (e.g. solitary nucleus) produces widespread
cortical EEG synchronization, suggesting a role for these structures in arousal and wakefulness
fluctuations (Anaclet & Fuller, 2017; Dringenberg & Vanderwolf, 1998). It remains unclear
whether central autonomic nuclei are causally responsible for widespread fluctuations of
cerebral blood flow and oxygenation in the brain that represent the dominant source of variance
in spontaneous low-frequency (~0.01-0.1Hz) fluctuations in blood-oxygen level dependent
(BOLD) signals (Fox & Raichle, 2007; Liu et al., 2017). Global hemodynamic fluctuations
measured by functional magnetic resonance imaging (fMRI) have been associated with
peripheral physiological signals from effector organs of the autonomic nervous system (ANS)
(e.g. heart rate, respiratory volume, pupil diameter) (Birn et al., 2008; Chang et al., 2009; Özbay
et al., 2019; Power et al., 2017; Shams et al., 2021; Yellin et al., 2015). Covariation with multiple
autonomic signals suggests that global brain fluctuations measured with fMRI/EEG may form
one component of a larger, integrated physiological network spanning multiple organ systems
governed by the ANS. Previous studies provide support for this hypothesis, showing that global
hemodynamic and EEG power fluctuations covary closely in time with peripheral physiological
recordings from the respiratory system, cardiovascular and peripheral vasculature (Gu et al.,
2022), and may reflect spontaneous fluctuations in arousal (Raut et al., 2021, 2023).

This study seeks to demonstrate the degree of coordination between low-frequency
(0.01 - 0.1Hz) global brain fluctuations measured with fMRI/EEG and autonomic signaling
across multiple ANS effector organs. Using multiple independent samples of multi-modal fMRI,
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EEG and peripheral physiological recordings acquired during resting state, we demonstrate that
a single, low-dimensional projection captures a major axis of covariation between global brain
fluctuations and widespread peripheral physiological dynamics, including pulmonary (respiratory
variability), cardiovascular (heart rate variability), exocrine (skin conductance) and smooth
muscle (peripheral vascular tone & pupil diameter) systems. The timing of the temporal
dynamics within and between modalities suggest that the ANS may have a direct role in the
origin of spontaneous global brain fluctuations. Spontaneous variations in autonomic arousal
(K-complexes) during sleep, as well as direct manipulation of autonomic activity via deep
breathing and sensory stimulation, induced a similar pattern of co-fluctuations between the brain
and body. Experimental suppression of spontaneous variations in end-tidal carbon dioxide
(PETCO2) accompanying arousal demonstrated that arterial CO2 cannot explain the origin of
these global brain fluctuations. Taken together, these findings provide novel evidence for the
role of the autonomic system in governing spontaneous global fluctuations commonly observed
in fMRI and EEG data.

Results

Global Hemodynamic Fluctuations Are Embedded in a Low-Frequency Physiological Network

Global hemodynamic fluctuations were extracted via the first principal component (PC1)
of whole-brain BOLD fMRI time courses. In a previous report (Bolt et al., 2022), the first PC was
found to account for a variety of previously observed empirical phenomena in spontaneous
BOLD activity, including much of the global spatial structure of whole-brain functional
connectivity. Examination of the spatiotemporal structure of spontaneous global BOLD signals
across cortical and subcortical structures via complex PCA (Bolt et al., 2022) (Figure 1A;
Supplementary Movie 1; Supplementary Figure 1) reveals a characteristic sequence across
datasets: large amplitude BOLD increases in gray and white matter, followed by a propagation
of BOLD signals towards the location of large draining veins and CSF compartments. The
spatial distribution of the first principal component for each dataset is displayed in
Supplementary Figure 2.

Analysis of six separate resting-state fMRI datasets (ME-REST, ME-REST-SUPP,
HCP-REST, NATVIEW-REST, NKI-REST, and YALE-REST) shows that global BOLD
fluctuations covary with a multitude of peripheral physiological signals (Figure 1B), including
respiratory volume, heart rate, peripheral vascular tone (measured via the low-frequency
component - 0.01-0.1 Hz, and the pulse amplitude of the pulse oximeter signal), skin
conductance, and pupil diameter. Analysis of the relationship between surface EEG power
fluctuations and global BOLD signal in two simultaneous EEG-fMRI datasets (ME-REST,
NATVIEW-REST) reveals co-synchrony between global BOLD signals and neuronal oscillations
across a wide band of frequencies (2 - 20Hz). Most cross-correlation plots exhibit two distinct
peaks for all signals, indicating synchrony between physiological signals and the global BOLD
signal at two distinct time lags: 1) a negative or zero time lag (0 to ~5 secs) of the global BOLD
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signal, indicating that the physiological signal follows, or is simultaneous with the global BOLD
signal, respectively, and 2) a positive lag (0 to ~10s) of the global BOLD signal, indicating that
the physiological signal precedes the global BOLD signal. To summarize the temporal lags
between all recorded physiological signals, we estimated impulse response functions (see
Methods and Materials) (Chang et al., 2009) of each physiological signal to an impulse of the
global BOLD signal from three separate datasets: ME-REST (PPG signals, Alpha EEG power,
and respiratory volume), NATVIEW-REST (pupil), and NKI-REST datasets (skin conductance)
(Figure 1C).

These cross-correlations establish pairwise relationships between global BOLD signals
and physiological signals, but do not provide definitive evidence of a global co-synchrony
between all pairs of signals across time. To establish the latter, we performed a
cross-decomposition between all pairs of signals and their lags via multi-set canonical
correlation analysis (MCCA; see Methods and Materials). Our aim was to examine whether the
joint co-fluctuations between all signals (and their time-lags) can be extracted in a single latent
dimension. Note, though the relationship between global BOLD and EEG power is broadband
(see panel B), we included alpha (8-12Hz) EEG power as a single signal from the EEG due to
previous reports of a relationship between alpha power and global BOLD signals (Yuan et al.,
2013). Application of MCCA to five resting-state fMRI datasets demonstrates that the first
canonical component (Figure 1D), representing the latent component with the maximal average
pairwise correlation between all pairs of signals, captures moderate pairwise correlations
between all signals, including peripheral physiology, neuronal (alpha EEG power) and global
BOLD (PC1) signals (e.g ME-REST: = 0.31, p = 0.001). Further, the global BOLD signal𝑟
exhibits the strongest pairwise correlations among all signals within the first canonical
component across datasets. Time lags between signals in the first canonical component are
presented in Supplementary Figure 9.
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Figure 1. Global Hemodynamic Fluctuations Are Embedded in a Low-Frequency Physiological
Network. The cross-correlation between the time courses of the global BOLD signal (first principal
component; PC1) and multiple physiological signals. A) The spatial weights of the first principal
component (PC1; top), and the phase delay map of the first complex principal component (CPC1; bottom)
from the ME-REST dataset. The phase delay map of the first complex principal component encodes the
time-delay (in radians) between voxels within the component. Because phase delay is measured in
radians (0 to 2pi) they are displayed with a circular color map. B) Cross-correlation plots of each
physiological signal with the global BOLD time course (PC1). The cross-correlation is defined as the
correlation coefficient between and where t is the time index, i is 30 secs (i.e. the index along the𝑥

𝑡+𝑖
𝑦
𝑡

±

x-axis of the plots), and is the global BOLD signal and is the physiological signal. Strong correlation at𝑥 𝑦
a positive time lag (i.e. positive i index) indicates that the global BOLD signal lags or follows the
physiological signal, while strong correlation at a negative time lag (i.e. negative i index) indicates that the
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global BOLD signal leads the physiological signal. Within a dataset, all subject-level cross-correlations are
displayed in lighter, more transparent color, while the mean signal across subjects is displayed in a darker
color. Each dataset is displayed in a separate shade of the same color. Cross-correlations between global
BOLD signals and wavelet filtered EEG power signals (Morlet wavelet; number of cycles = 15) for the
ME-REST and NATVIEW-REST datasets are displayed as a heat map in the top panel. C) Estimated
impulse response functions for each physiological signal in response to an impulse of the global BOLD
signal. D) The pairwise correlations between all physiological signals (including the global BOLD signal;
PC1) in the first canonical component of the MCCA analysis. The average pairwise correlation is
displayed beside the title of each correlation matrix. The pairwise correlations of the first canonical
component indicate a strong, joint co-fluctuation between all physiological signals and the global BOLD
signal across all datasets.

Autonomic Stimuli Elicit Co-Fluctuations of the Brain-Body Physiological Network

If the ANS is the source of this global synchrony across brain and body, arousal-related
stimuli should produce a similar pattern of global synchrony as that observed at rest (Figure 1).
To provide empirical support for this hypothesis, we performed event-related averaging on fMRI,
EEG and physiological signals from 1) a cued deep inhalation task (ME-TASK), 2) a cued
reaction time task (ME-TASK-CUE), and 3) K-complex onsets for participants who fell asleep
during the resting-state session of the ME-REST dataset. The cued deep inhalation task
(ME-TASK) was a sparse event-related design with individual cues separated by one to two
minutes, allowing for an estimation of the physiological impulse response to isolated inhalations
without overlapping responses. The cued reaction time task was a sparse event-related design
similar to the deep inhalation task, but a button response was performed in response to the cue.
Consistent with a previous study (Özbay et al., 2019), we also chose to examine physiological
responses in and around K-complex onsets during stage II sleep, which was found in a subset
of participants of the ME-REST dataset. The K-complex is a characteristic high-amplitude EEG
event that occurs predominantly in stage II sleep, and reflects phasic arousal events from
internal (interoceptive) or external stimuli (Cash et al., 2009; Halász et al., 2004). K-complex
annotations were performed in a semi-automated fashion on the EEG time courses of the
ME-REST dataset (see Methods and Materials) and manually reviewed for accuracy.

Global BOLD signals (PC1) exhibit large amplitude fluctuations to isolated deep
inhalations (ME-TASK) (Figure 2A). Consistent with the shape of the respiration response
function described by Birn et al. (2008), global BOLD signals exhibit a bimodal response to
inhalation, with an early positive increase (~4s) followed by a prolonged undershoot reaching its
trough around ~14s. In response to isolated deep inhalations, physiological signals exhibit
temporal dynamics consistent with increased ANS activity (Figure 2A), and lead-lag timing that
is similar to that observed at rest (Figure 1). An increase in heart rate, broadband EEG power
(Figure 2B), and peripheral vasoconstriction is observed around the same time as the early
positive peak (~4s) of the global BOLD signal. Shortly after the global BOLD peak, a decline in
heart rate is observed around the time of exhalation (~6s). Later peaks of physiological signals
occur around the time of the undershoot of the global BOLD signal (~14s), including peripheral
vasodilation and a rebound in heart rate.
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The physiological response to a paced inhalation/breath hold task was also examined
(NKI-TASK). As opposed to the sparse-event design of the inhalation task, this task was
organized in sequential blocks with deep inhalations/exhalations followed by a prolonged breath
hold (18s). This task structure was found to also elicit strong amplitude fluctuations in peripheral
physiology and global BOLD signals with peak/trough timings largely consistent with the deep
inhalation task (Supplementary Figure 3).

To demonstrate this spatiotemporal pattern of physiological dynamics is not specific to
breathing, but to arousal-inducing stimuli more broadly, we examined physiological dynamics
during a simple reaction time task, where button presses were performed in response to
intermittent auditory cues. While smaller in magnitude, a similar spatiotemporal pattern was
observed in button responses (Figure 2A), though the undershoot of the global BOLD signal
occurred several seconds earlier in the button response compared to the deep inhalations. To
further probe whether this brain-body physiological response may arise from stimulus-induced
autonomic responses, we used the pulse wave amplitude measured from a
photoplethysmograph (PPG) signal to select those trials where a peripheral vascular response
at the fingertip was observed (i.e. a PPG amplitude < -1 z-score within the first ten seconds of
the trial). Forty-five percent of button response trials met the criteria for a peripheral vascular
response, and averaging over these trials revealed a similar but strongly amplified version of the
same spatiotemporal pattern across the full set of brain and physiological signals compared to
the average across all events (Figure 2C).

We also examined whether spontaneous autonomic arousals produced similar
physiological responses as that observed in resting-state, external stimuli, and deep breathing.
Event-related averages of physiological and global BOLD signals around K-complex onsets
revealed the same pattern of physiological response as that observed in deep breathing, as well
as that observed spontaneously during rest (Figure 2A-).
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Figure 2. Arousal Changes Generate Joint BOLD-Physiological Co-Fluctuations. A) Event-related
averages of physiological signals and global BOLD signals in response to inhalation with an auditory cue
(left), an auditory cue with button response (middle) and K-complexes during sleep (right). Averages are
displayed in z-score units. Standard error bars for the physiological time courses are constructed via
cluster bootstrapping (i.e. resampling at the subject level; number of samples = 100). The strongest
amplitude responses were observed in inhalation trials. A similar pattern of responses were observed in
response to auditory cues with button responses and around spontaneous K-complexes during sleep, but
with smaller magnitude. B) Evoked EEG power averages to inhalation with an auditory cue (left), an
auditory cue with button response (middle) and K-complexes during sleep (right) were constructed
through trial-averaging of Morlet wavelet filtered power signals within subjects (see Methods), followed by
group-averaging across subject-trial averages. C) Event-related average of physiological signals and
global BOLD in response to an auditory cue with a button response where a vascular response (PPG
amplitude < -1 z score) was present. D) The spatial weights of the first principal component (PC1; global
BOLD signal) estimated from a free breathing and ‘clamped’ CO2 condition.

Global BOLD Signals Under Clamped CO2 Conditions

One potential source of global BOLD fluctuations in response to arousal related stimuli is
changes in cerebral blood flow due to levels of arterial CO2, a vasodilator (Battisti-Charbonney
et al., 2011; Wise et al., 2004). As has been shown in the current study and others (e.g., Gu et
al., 2022), changes in respiratory volume (respiratory rate and depth) can induce, as well as
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accompany, arousal state changes. Sustained changes in respiratory volume modulate the level
of arterial CO2, thereby potentially increasing cerebral blood flow (Birn et al., 2006; Wise et al.,
2004). We sought to eliminate spontaneous fluctuations in arterial CO2 as the sole explanation
for the global BOLD fluctuations observed in this study. To do so, we examined the existence
and spatial structure of global BOLD signals under both free breathing and under a ‘clamped’
CO2 condition, where end-tidal CO2 (PETCO2) was ‘clamped’ to the average level of each
participant (Golestani & Chen, 2020).

The spatial structure of the global BOLD signal was estimated with the spatial weights of
the first principal component and compared across free breathing and ‘clamped’ CO2 conditions
(Figure 2C). The spatial structure of global BOLD signals is nearly identical between free
breathing and clamped CO2 conditions (correlation r = 0.95 of the spatial weights between the
two conditions). Further, global BOLD signals are similarly present in both conditions, as
reflected in the explained variance estimates of the first principal component between the two
conditions (PC1free r2 = 0.28; PC1clamped r2 = 0.25; Supplementary Figure 10). Consistent with a
previous report comparing overall time-lag structure of BOLD signals between clamped and free
breathing conditions (Kish et al., 2023), we found that the spatiotemporal structure of global
BOLD signals was similarity maintained in clamped CO2 conditions (Supplementary Figure 4).

Discussion

This study characterizes a large-scale, ubiquitous pattern of synchrony between global
brain signals and the ANS in humans. Across multiple independent samples of multi-modal
fMRI, EEG and peripheral physiology resting-state recordings, our findings provide evidence of
a low-frequency (0.01-0.1Hz), low-dimensional synchrony spanning the brain and body. These
fluctuations are widespread across the body and entire nervous system, involving the brain,
heart, lungs, exocrine and smooth muscle systems. These co-fluctuations were linked to
changes in arousal state induced via deep breathing and sensory stimulation, as well as
spontaneous fluctuations in arousal observed during sleep. Further, the global hemodynamic
component of these co-fluctuations is not fully explained by accompanying respiratory-driven
fluctuations in arterial CO2.

The co-fluctuations between global brain activity and peripheral physiology exhibit a
stereotypical sequence. The initial positive increase in global BOLD and broadband EEG power
is accompanied by roughly simultaneous increases in heart rate, peripheral vascular tone and
broadband EEG power. The increase in heart rate and the subsequent decrease is consistent
with gating of parasympathetic outflow (via the vagus nerve) during inspiration and its relaxation
during exhalation, known as respiratory sinus arrhythmia (Yasuma & Hayano, 2004). The
increase in peripheral vascular tone, as reflected by the drop in PPG amplitude and
low-frequency PPG (0.01-0.1 Hz) signal, is indicative of vasoconstriction of peripheral blood
vessels by sympathetic outflow (Khoo & Chalacheva, 2019). While pupil diameter and tonic skin
conductance signals were only recorded in resting-state conditions, impulse response analyses
(Figure 1) provides potential insights into their dynamics during evoked conditions. For
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example, a small positive increase in pupil dilation occurs shortly before the overshoot of the
global BOLD signal, consistent with inhibition of parasympathetic-mediated outflow to the iris
constrictor muscles and excitation of sympathetic-mediated outflow to the iris dilator muscle
(Marumo & Nakano, 2021), followed by a larger decrease in pupil dilation several seconds later,
consistent with decreased sympathetic outflow. Tonic skin conductance peaks around the same
time as the overshoot of the global BOLD signal, consistent with sympathetic-mediated
increases in sudomotor activity.

We observed that experimentally-induced or spontaneous variance in ANS activity
reproduces the same sequence of physiological and global hemodynamic activity observed at
rest. Here, experimental manipulation of ANS activity was performed through cued deep
breathing and sensory stimulation, but other autonomic challenges may produce a similar effect.
For example, performance of the Valsalva maneuver in an MRI scanner produced a similar
magnitude change of global BOLD signal change as that observed with breath holding (Wu et
al., 2015). While smaller in magnitude, intermittent auditory-cued button responses reproduced
the same sequence of physiological and global hemodynamic activity observed during deep
breathing. The same spatiotemporal sequence was also observed around K-complex onsets
during sleep, consistent with a previous report (Özbay et al., 2019) that found increased global
BOLD-physiological coupling around K-complex onsets during the NREM2 sleep stage. This
finding is also largely consistent with findings that the amplitude of global BOLD signals is
increased during states of low vigilance (drowsiness, early sleep stages) (Falahpour et al.,
2018; Wong et al., 2013). Together, these observations suggest that 1) this phenomena is not
restricted to respiratory-specific mechanisms and 2) the link between deep breathing and global
BOLD dynamics is mediated by the ANS (sympathetic) and its projections to central autonomic
nuclei in the brainstem or cerebral vasculature.

These findings shed light on the ongoing debate over the origin of global BOLD
fluctuations in the fMRI community (Liu et al., 2017; Murphy & Fox, 2017). An often-cited causal
mechanism for the origin of global BOLD signals is respiratory-driven changes in arterial CO2
concentration (Wise et al., 2004). Changes in breathing depth and rate and respiratory reflexes
occur frequently in resting-state fMRI scanning sessions. Power and colleagues (Lynch et al.,
2020; Power et al., 2017, 2019) have demonstrated that subjects in resting-state fMRI recording
conditions exhibit frequent breathing changes and reflexes (e.g. ‘yawns’ and ‘sighs’). These
behaviors likely induce variation in arterial CO2 concentration in the cerebral vasculature,
thereby increasing/decreasing cerebral blood flow. Our findings that the topography and
spatiotemporal structure of global BOLD fluctuations is maintained under experimental
suppression of PETCO2 fluctuations suggest that the origin of global BOLD fluctuations are
unlikely to arise primarily from arterial CO2 fluctuations.

Another possibility is an increase in systemic oxygenation levels of the cerebral
vasculature via an increase in respiratory rate and depth (Zhang et al., 2019). While this
possibility cannot be excluded, the observation of the same physiological dynamics in response
to spontaneous changes in ANS activity suggests this is not the sole driver of our findings.
However, the global BOLD response to deep breathing was much stronger in amplitude
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compared with K-complex onsets and sensory stimulation, suggesting that systemic
oxygenation fluctuations could act as a gain modulator of the response.

Our findings of a tight coupling between global BOLD and ANS-mediated physiological
dynamics, and their reproduction by experimental or spontaneous variation in autonomic
outflow, provide evidence that the ANS (primarily the sympathetic nervous system) is the key
driver of global BOLD signals. Our results leave open the proximal causal mechanism by which
ANS activity and global BOLD signals are linked. Such a link may be direct, via
sympathetic-innervation of the cerebral vasculature. Cerebral blood vessels are profusely
innervated by α-adrenergic receptors and may play a role in cerebral autoregulation (Koep et
al., 2022), but the extent of their vasoconstrictive effect on cerebral blood vessels, and thereby
BOLD signals in the brain, is controversial (van Lieshout & Secher, 2008). The autoregulatory
contribution of the sympathetic nervous system to cerebral blood flow may be most prominent
during abrupt or rapid changes in blood pressure (Claassen et al., 2021) as would be the case
in a sudden increase in global cerebral blood flow. Further, some evidence suggests that
sympathetic regulation of cerebral blood flow may be most prominent at frequencies higher than
0.05Hz (Hamner et al., 2010), around the frequency range of fluctuations in global BOLD
observed in this study. However, a potential vasoconstrictive effect on cerebral blood flow would
only explain the decrease in global BOLD signal following the overshoot phase (~4s post onset).
In such a scenario, the transient increase in cerebral blood flow in the early overshoot phase
would activate a protective attenuation via sympathetic vasoconstriction to increased perfusion
pressure.

The early peak or overshoot phase (~4s) of the physiological response may be mediated
by an indirect, neurogenic ANS pathway. The timing of the global BOLD peak is within the range
of the time to peak (~4 - 6s) of the canonical hemodynamic response to a brief stimulus impulse
(Buxton et al., 2004). Consistent with local field potential and surface EEG studies in animal and
human subjects (Ito et al., 2014; Kluger & Gross, 2021; Shams et al., 2021; Zelano et al., 2016),
our study found an increase in broadband EEG power peaking at a ~4s time lag (Figure 2),
though others have found distinctive dynamics in the alpha band (Shams et al., 2021). However,
the simultaneous timing of the early overshoot of the hemodynamic response with peaks of
broadband EEG power suggests that these fluctuations are not a causal source of the early
overshoot, given the conventional delay in neurovascular coupling (~4-6s). Nevertheless, the
alignment of the early overshoot of the hemodynamic response to the canonical hemodynamic
response and modulation of broadband EEG power suggests that a neurogenic mechanism is
one potential candidate for the early overshoot. A potential neurogenic mechanism may be
mediated by noradrenergic brainstem nuclei (e.g. locus coeruleus) that project diffusely to the
cortex (Samuels & Szabadi, 2008).

The finding that this brain-body physiological response was most effectively induced by
an experimentally-cued deep inhalation underscores the therapeutic significance of slow, deep
breathing for stress and anxiety (Ashhad et al., 2022; Zaccaro et al., 2018). Our findings
suggest that respiratory-driven changes in affect and mood may arise from two pathways - a
direct, neurogenic pathway reflected by global hemodynamic and EEG fluctuations, and an
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indirect pathway via ANS afferent activity from peripheral organs (e.g. exocrine, cardiovascular
systems). The former could be partially mediated by direct projections between breathing
pattern generators in the brainstem and ascending arousal system nuclei (Yackle et al., 2017).
The latter would constitute a visceral sensory feedback mechanism from organs involved in the
stress response. While the pathways that sustain this low-frequency brain-body synchrony
remain under experimental investigation, the widespread nature of this synchrony suggests that
its promotion or suppression could have significant therapeutic applications.
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Supplementary Movie 1. Temporal Reconstruction of CPC1 in ME-REST Dataset.

Supplementary Tables

Dataset Sample Physio
Signals
Used

Source Sampl
e Size

Number
of
Sessions

Age
Range

Sex
(F)

ME-REST Full EEG,
Respiration,
PPG

Goodale et al.
(2021). ELife.
https://doi.org
/10.7554/eLif
e.62376

11 15 21-35 6

ME-TASK Full EEG,
Respiration,
PPG

Unpublished
dataset;
https://www.c
changlab.net/

6 9 22-57 4

ME-TASK-CUE Full EEG,
Respiration,
PPG

Goodale et al.
(2021). ELife.
https://doi.org
/10.7554/eLif
e.62376

12 12 21-33 6

ME-REST-SUPP Subset Respiration,
PPG

https://openn
euro.org/data
sets/ds00359
2/versions/1.0
.11
OpenNeuro
Accession
Number:
ds003592
Version:

87 165 18 - 34 58
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1.0.11

HCP-REST Subset Respiration,
PPG

https://www.h
umanconnect
ome.org/

30 30 22-37 17

NKI-TASK Subset Respiration,
PPG, Skin
Conductance

http://fcon_10
00.projects.nit
rc.org/indi/en
hanced/

50 50 15-45 30

NKI-REST Subset Respiration,
PPG, Skin
Conductance

http://fcon_10
00.projects.nit
rc.org/indi/en
hanced/

50 50 18-45 33

NATVIEW-REST Full EEG,
Pupillometry

(Telesford et
al., 2023)

21 33 22-51 10

YALE-REST Full Pupillometry https://openn
euro.org/data
sets/ds00367
3/versions/2.0
.1

OpenNeuro
Accession
Number:
ds003673
Version:
2.0.1

27 54 21-37 16

Clamped CO2 Full N/A (Golestani &
Chen, 2020)

13 13 18-32 9

Supplementary Table 1. Dataset Details and Demographics. Details (manuscript label, signals
recorded, reference) and demographics (sample size, age range, sex) for datasets used in this
study. Note, demographics are based on the dataset sample after the quality control stage.

Supplementary Figures
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Supplementary Figure 1. Spatiotemporal Dynamics of Global BOLD Signals. Temporal reconstruction
of the first complex principal component (CPC1) of three resting-state fMRI datasets (ME-REST,
NKI-REST, ME-REST-SUPP). Complex PCA (CPCA) on other resting-state datasets (HCP-REST,
NATVIEW-REST, YALE-REST) yielded similar results, and are not included here for space. As shown in
previous work, the first principal component from PCA and complex principal component from CPCA
extract the global BOLD signal, with CPCA yielding a spatiotemporal representation of the global BOLD
signal (Bolt et al., 2022). The time course of a complex principal component is represented in complex
numbers, and its phase can be extracted (measured in radians). A temporal reconstruction of the complex
principal component can be constructed via averaging of the original BOLD signals (in voxel space) at
similar phase values. We selected six equally spaced phase values to display the spatiotemporal
dynamics of the global BOLD signal. Time moves in the positive direction, such that increasing phase
values move forward in time. A consistent spatiotemporal pattern is observed across datasets: a global
increase in BOLD signals in the gray and white matter followed by a propagation of BOLD signals to large
draining veins and ventricles, and then a global decrease in BOLD signals.
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Supplementary Figure 2. First Principal Component and Complex Principal Component Across
Datasets. Spatial weights of the first principal component (PC1; left) and phase delay maps of the first
complex principal component (CPC1; right) across all datasets used in this study. Explained variance
plots (Scree plots) are displayed to the right of each brain map displaying the explained variance by the
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first and subsequent principal components. The phase delay map of the first complex principal component
encodes the time-delay (in radians) between voxels within the component. Because phase delay is
measured in radians (0 to 2pi), they are displayed with a circular color map.

Supplementary Figure 3. NKI-Breath Hold Task. Physiological trial averages for a full block of the paced
inhalation/breath hold task (NKI-TASK). The paced breathing/breath-hold task was a block design
consisting of a fixed sequence of rest (10s), a cue (2s) followed by two deep inhalations (6s), and a
breath-hold (18s), immediately followed by another sequence. Time points in separate blocks are shaded
to distinguish activity in each block: rest (10s duration; blue), ‘get ready’ cue (2s; dark blue), inhalation
(2s; light green), exhalation (2s; medium green), deep inhalation (2s; dark green) and breath hold (18s;
red).The physiological dynamics of the paced breathing/breath hold task (NKI-TASK) are more complex
than those observed in response to isolated deep inhalations (Figure 2A). For example, large increases
in respiratory volume are observed during the paced inhalation exercise before the breath hold and the
‘rest’ blocks that precede the paced inhalation exercise, due to their placement immediately after the
breath hold. The timing of the large amplitude peak of global BOLD signals in the rest period (~10s) and
following the deep inhalation block (19s) are consistent with the timing of the respiration response peak
observed to isolated deep inhalations (Figure 2A). Consistent with the response to isolated deep
inhalations, an increase in heart rate is observed around the time of the global BOLD peak, shortly
followed by peripheral vasoconstriction. In addition, a large amplitude response in skin conductance is
observed around the same time as peripheral vasoconstriction. The trough of the global BOLD response,
along with peripheral vasodilation, occurs in the latter half of the breath hold block, consistent with the
peak-to-trough timing observed in deep inhalations.
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Supplementary Figure 4. First Complex Principal Component Phase Delay in Free Breathing and
Clamped CO2 Conditions. Phase delay maps of the first complex principal component (CPC1)
computed from BOLD time courses in free breathing and clamped CO2 conditions. The phase delay map
of the first complex principal component encodes the time-delay (in radians) between voxels within the
component. Because phase delay is measured in radians (0 to 2pi), they are displayed with a circular
color map. As can be observed from the brain maps, the distribution of phase delay values across the
brain is highly similar across free breathing conditions and clamped conditions.
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Supplementary Figure 5. Power Spectral Density of Pulse Oximeter Time Courses Across Datasets.
Power spectral density estimates (0 to 2Hz) from pulse oximeter (PPG) signals displayed for all datasets
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that acquired PPG signals. The power spectral density estimates are log-transformed on the y-axis. All
PPG signals were resampled to a 5Hz sampling rate before power spectral density estimation. The power
spectral density estimates were estimated using Welch’s method (window length = 500 time points,
window overlap= 50 time points).

Supplementary Figure 6. Physiological Time Series from Example Subjects.
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Supplementary Figure 7. Electrophysiological Signal Preprocessing Pipeline.
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Supplementary Figure 8. Illustration of Multiset Canonical Correlation Analysis.

Supplementary Figure 9. MCCA of Resting-State Datasets and Cross-Correlations. Top panel: The
pairwise correlations (top) between all physiological signals (including the global BOLD signal; PC1) in the
first canonical component of the MCCA analysis and their time lags (bottom) for five resting-state
datasets, as displayed in Figure 1. The average pairwise correlation is displayed beside the title of each
correlation matrix. Bottom panel: To extract timing information between the signals in this
low-dimensional space, we cross-correlated each physiological signal with its projection onto the first
canonical component. The cross-correlations between each physiological signal and its projection onto
the first canonical component are displayed in the bottom panel, where each signal is displayed in a
different color. Comparison of the relative timing between peaks of the cross-correlation curves across
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physiological signals provides the lead-lag relationships between signals within the first canonical
component of MCCA.

Supplementary Figure 10. Scree Plot of Eigenvalues for Clamped CO2 and Free Breathing
Conditions. A scree plot of eigenvalues of the first ten components from PCA estimated from the free
breathing (green) and ‘clamped’ CO2 (blue) condition. As can be observed, the spatial distribution of the
global BOLD signal is maintained when variations of CO2 are experimentally suppressed. More generally,
the low-dimensional spatial structure of BOLD time courses between the two conditions, as reflected in
the scree plot, is similar between the two conditions.
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Methods and Materials

Participants and Data Acquisition

Ten datasets were analyzed in this study: 1) a simultaneous EEG/multi-echo
resting-state fMRI dataset (ME-REST), 2) a simultaneous EEG/multi-echo respiration task fMRI
dataset (ME-TASK), 3) a simultaneous EEG/multi-echo reaction time task fMRI dataset
(ME-TASK-CUE) 4) a multiband accelerated single-echo resting-state fMRI dataset from the
Human Connectome Project (Van Essen et al., 2013) (HCP-REST) , 5) a multiband accelerated
single-echo fMRI dataset from the enhanced Nathan Kline Institute (NKI) - Rockland Sample
(Nooner et al., 2012), including a resting-state (NKI-REST) and 6) respiration task (NKI-TASK) ,
7) a supplementary multi-echo fMRI resting-state dataset (Spreng et al., 2022)
(ME-REST-SUPP), 8) a multiband accelerated single-echo resting-state fMRI dataset with
simultaneous pupillometry from Yale University (Lee et al., 2022) (YALE-REST), 9) a
simultaneous EEG/single-echo resting-state fMRI dataset from NKI (Telesford et al., 2023)
(NATVIEW-REST), 10) a multiband accelerated single-echo resting-state fMRI dataset recorded
under a free breathing condition and a PETCO2 condition clamped to the average PETCO2 for
each participant. Dataset details and demographics are presented in Supplementary Table 1.

ME-REST, ME-TASK, ME-TASK-CUE Data

Simultaneous multi-echo fMRI-EEG eyes-closed resting-state scans (ME-REST) were
acquired from 11 healthy, right-handed participants (6 females, mean age = 25.9 years). All
subjects provided written informed consent, and human subjects protocols were approved by
the Institutional Review Boards of the National Institutes of Health and Vanderbilt University.
Two resting-state sessions were recorded for four of the subjects, creating a total of 15 scans.
Simultaneous multi-echo fMRI-EEG respiration task scans (ME-TASK) were acquired under the
same acquisition protocol for six healthy, right-handed participants (4 females, mean age =
30.5). Two task sessions were recorded for three of the subjects, creating a total of 9 scans.
The respiration task experimental design consisted of a sparse event-related design with
instructions to the participants to take a deep breath in response to an auditory cue (a constant
tone). The interstimulus interval (ISI) between auditory cues was randomly jittered between the
range of 60.55 and 131.25 sec. Auditory cue timing was consistent across scans. One
participant overlapped between the resting-state and respiration task sessions. Simultaneous
multi-echo fMRI-EEG reaction time task scans (ME-TASK-CUE) were acquired under the same
acquisition protocol for twelve healthy, right-handed participants (6 females, mean age = 25.6
years). The reaction time task experimental design consisted of a sparse event-related design
with instructions to the participants to press a button in response to an auditory cue. For some
subjects (N=5), the ISI between auditory cues was set to 35s±6s, and for the rest (N=7) the ISI
was randomly jittered between 8 and 89 secs. Nine participants overlapped between the
resting-state and reaction time task sessions.
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Detailed MRI/EEG acquisition parameters are provided in Goodale et al. (2021). Briefly,
anatomical T1-weighted structural and multi-echo EPI BOLD scans were collected on a 3T
Siemens Prisma scanner with a Siemens 64-channel head/neck coil. The multi-echo EPI
sequence was acquired with TR = 2100 ms, echo times = 13.0, 29.4, and 45.7 ms, flip angle =
75 degrees, and voxel size = 3mm isotropic. The duration of the resting-state scan was 24.5
minutes, corresponding to a total of 700 volumes. The duration of the respiration task scan was
slightly variable (14-15 minutes across subjects), corresponding to a total of 400-435 volumes,
depending on the subject. Simultaneous scalp EEG (sampling rate = 5 kHz) was acquired
during the resting-state and respiration task using a 32-channel MR-compatible system.
Photoplethysmography (PPG) and respiration belt signals (sampling rate: 2 kHz) were acquired
during both the resting-state and respiration task sessions. The PPG transducer was placed on
the left index finger. MRI scan triggers were recorded along with EEG and physiological signals
for data synchronization.

HCP-REST Data

We analyzed eyes-open resting-state fMRI EPI scans from the HCP S1200 release. We
randomly selected 30 unrelated, healthy young adults (ages 22–37; 17 females) for our study
with high quality physiological recordings (confirmed through visual inspection; see note below
on quality control procedure). We chose 30 subjects for two reasons: 1) analyses were found to
be replicable at small sample sizes (< 15 subjects) for the HCP dataset, and 2) the length of the
scans (length of scan: 1200 time points) imposed significant computational challenges. Detailed
MRI/Physio acquisition parameters are provided in Smith et al. (2013). Briefly, resting-state fMRI
scans were collected on Siemens 3T Tim Trio scanners with a multiband (factor of 8)
accelerated EPI sequence with the following parameters: TR: 720ms, TE = 33.1ms, flip angle =
52 degrees, and voxel size= 2mm isotropic. Resting-state fMRI data was collected over two
consecutive days for each subject and two sessions, each consisting of two 15-minute runs,
amounting to four resting-state sessions per subject. Within a session, the two runs were
acquired with opposite phase encoding directions: L/R encoding and R/L encoding. A single 15
min scan from each participant on the first day of scanning was selected. We balanced the
number of L/R and R/L phase encoding scans across our participants (n=15 for L/R direction) to
ensure results were not biased by acquisition from any given phase encoding direction.
Photoplethysmography (PPG) and respiration belt signals (sampling rate = 400 Hz) were
simultaneously acquired with resting-state EPI scans along with MRI scan triggers for data
synchronization.

NKI-REST and NKI-TASK Data

We analyzed resting-state and task-fMRI breath-hold EPI scans, and high-resolution
anatomical T1w images from the enhanced Nathan Kline Institute (NKI) Rockland sample. We
randomly selected 50 adult subjects with high-quality physiological recordings (confirmed
through visual inspection; see note below on quality control procedure) independently for each
dataset (NKI-REST: ages 18-45, 33 females; NKI-TASK: ages 15-45, 30 females). Twenty
subjects overlapped between the two datasets. A single respiration task session was recorded
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per participant with a 1400ms TR. Two multi-band accelerated resting-state sessions (TR:
1400ms and TR: 650ms) were collected per participant. We selected the 1400ms (TR)
acquisition for consistency with the respiration task. Detailed acquisition parameters are
provided on the Enhanced NKI-Rockland webpage
(http://fcon_1000.projects.nitrc.org/indi/enhanced/index.html). Briefly, resting-state and breath
hold fMRI scans were collected on a Siemens 3T Tim Trio scanner with a multiband (factor of 4)
accelerated EPI sequence with the following parameters: TR = 1400ms, TE = 30ms, flip angle =
65 degrees, voxel size = 2mm isotropic. The duration of the resting-state scan was 10 minutes.
The respiration task was a block design with the following sequence: 1) a 10-sec rest, 2) a 2-sec
visual stimulus indicating the start of the trial (text: ‘Get Ready’), 3) a 2-sec inhalation, 4) a 2-sec
expiration, 5) a 2-sec deep inhalation, and 5) a breath hold for 18 secs. This sequence was
repeated seven times, for a total duration of 4.5 minutes. PPG signals (recorded from the tip of
the index finger), skin conductance (galvanic skin response; recorded from the hand), and
respiration belt signals were simultaneously acquired with EPI scans along with MRI scan
triggers for data synchronization.

ME-REST-SUPP Data

As a supplementary multi-echo fMRI dataset to confirm findings from the ME-REST and
HCP-REST datasets, we analyzed eyes-open resting-state data from the neurocognitive aging
data release (Spreng et al., 2022). We selected 87 young adults with high quality physiological
recordings (confirmed through visual inspection; see note below on quality control procedure)
(ages 20 - 34, 20 females). Each participant performed two resting state fMRI sessions during
the study visit. Detailed MRI acquisition parameters are provided in Spreng et al. (2022). Briefly,
anatomical T1-weighted structural and multi-echo EPI BOLD-fMRI scans were collected on a 3T
GE Discovery MR750 scanner with a 32-channel head coil. The multi-echo EPI sequence was
acquired with TR = 3000 ms, echo times = 13.7, 30, and 47 ms, flip angle = 83 degrees, and
voxel size = 3mm isotropic. The duration of the resting-state scan was 10 minutes,
corresponding to a total of 204 volumes. Photoplethysmography (PPG) and respiration belt
signals (sampling rate: 40 or 50 Hz) were acquired during the session.

YALE-REST Data

For analysis of pupillometry signals, we analyzed eyes-open resting-state fMRI data from
the Yale Resting-State Pupillometry/fMRI dataset (Lee et al., 2022) via OpenNeuro (Markiewicz
et al., 2021; OpenNeuro Accession Number: ds003673). 24 of the 27 participants were selected
for analysis based on quality control of the pupil recordings (ages 21 - 37, 16 females). Both
resting-state fMRI sessions collected during the study visit were used. Detailed MRI acquisition
parameters are provided in Markiewicz et al. (2021). Briefly, anatomical T1-weighted structural
and single-echo, multiband EPI BOLD-fMRI scans were collected on a MAGNETOM Prisma
MRI scanner. The single-echo, multiband EPI sequence was acquired with TR = 1000ms, TE =
30ms, multiband acceleration factor = 5, flip angle = 55 degrees and voxel size = 2mm. The
duration of each resting-state scan was 6 minutes and 50s. Simultaneous eye-tracking and pupil
dilation was recorded using a MR-compatible infrared EyeLink 1000 Plus eye-tracking system
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with a 1000Hz sampling rate. We used minimally preprocessed pupil data provided by the
authors for analysis (see details below).

NATVIEW-REST Data

To replicate EEG and pupillometry associations, we analyzed eyes-open resting-state
data with simultaneous EEG-fMRI-pupillometry recordings from NKI (Telesford et al., 2023). We
selected 21 of 22 total subjects based on visual inspection of the minimally processed pupil
diameter recordings (ages 22-51, 10 females). The resting-state scans were approximately 10
minutes in duration (288 volumes) and were collected as part of a larger naturalistic viewing
experiment with several visual and movie watching scans. For some subjects (N=12), two
resting-state sessions were collected, and both were used in our analysis. Detailed MRI/EEG
acquisition parameters are provided in Telesford et al. (2023). Briefly, anatomical T1-weighted
structural and single-echo EPI BOLD scans were collected on a 3T Siemens TIM Trio scanner
with a 12-channel head coil. Resting-state EPI sequences were acquired with TR=2100ms,
TE=2500ms, flip angle = 60 degrees, voxel size= ~3.5mm isotropic.

Simultaneous scalp EEG (sampling rate = 5 kHz) was collected using a customized
61-channel MR-compatible cap, including two electrooculogram (EOG) channels (above and
below the left eye) and one ​​electrocardiography (ECG) channel placed on the back. As with the
YALE-REST dataset, simultaneous eye-tracking and pupil dilation was recorded using an
MR-compatible infrared EyeLink 1000 Plus eye-tracking system with a 1000Hz sampling rate.
We used minimally preprocessed pupil data provided by the authors for analysis (see details
below). Respiratory time courses were also collected with a respiratory belt, but due to data
quality issues were not included in our analysis.

Free Breathing and ‘Clamped’ CO2 Data

To determine the effect of spontaneous variation in arterial CO2 produced by changes in
respiratory depth/rate on global BOLD dynamics, we analyzed resting-state fMRI data from 13
participants (ages 18 - 32, 9 females) collected during free breathing and clamped CO2
conditions (Golestani & Chen, 2020). In the ‘clamped’ condition, participant’s end-tidal CO2
(PETCO2) levels were clamped to their average PETCO2 level using the RespirAct™ breathing
circuit (Thornhill Research, Toronto, Canada). For the free-breathing condition, participants were
allowed to breathe freely over the course of the scan. Detailed MRI acquisition parameters are
provided in Golestani & Chen (2020). Briefly, anatomical T1-weighted structural and
single-echo, multiband EPI BOLD-fMRI scans were collected on a Siemens TIM Trio 3T MRI
scanner with a 32-channel head coil. Free-breathing and clamped CO2 fMRI recordings were
acquired with TR = 380ms, TE = 30ms, multiband acceleration factor = 3, flip angle = 40
degrees and voxel size = 4x4x5 mm3.

Quality Control of Physiological Recordings
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Peripheral physiological recordings tend to be noisy, with relative noise levels dependent
on their placement location, subject compliance and movement. To ensure our analysis was not
affected by acquisition artifacts of the physiological recordings, raw signals from all subjects in
each dataset were visually inspected before inclusion. Several qualitative criteria for each signal
type were employed to determine physiological signals for inclusion in the analysis. PPG signals
were inspected for 1) clearly visible pulsatile waveforms across the entire recording session and
2) the infrequent occurrence of high amplitude noise artifacts. Respiratory belt signals were
inspected for 1) clearly visible respiratory time courses reflecting the peak and trough of the
abdomen during the respiratory cycle and 2) the absence of prominent ceiling or floor
effects/cut-offs at peaks of the respiratory waveform. The primary criteria for the minimally
preprocessed pupil diameter time courses were the absence of multiple, long duration
(subjectively determined) eye closures or blinks. Skin conductance time courses for the
NKI-REST and NKI-TASK dataset were inspected for 1) prominent low-frequency fluctuations
visible from background noise, and 2) the absence of extreme, sudden jumps/drops in baseline
signal.

MRI Data Preprocessing

Excluding the ME-REST, ME-TASK, ME-TASK-CUE and HCP-REST datasets, datasets
were received in raw (unprocessed) NIFTI formats. Depending on the nature of the EPI-BOLD
acquisition, the nine datasets were processed with slightly different preprocessing pipelines. We
first describe dataset-specific preprocessing, and then describe the common preprocessing
steps that were applied to all datasets following dataset-specific preprocessing. All
preprocessing steps were performed in either Nipype (Gorgolewski et al., 2011) with calls to
FSL utilities, or AFNI (for multi-echo preprocessing).

Dataset Specific Preprocessing

For the ME-REST, ME-TASK and ME-TASK-CUE datasets, more comprehensive
preprocessing details are provided in Goodale et al. (2021). Briefly, the EPI-BOLD
preprocessing pipeline consisted of the following steps: the first 7 volumes were removed,
six-parameter rigid body motion correction and slice timing correction with 3dvolreg and 3dTshift
in AFNI (https://afni.nimh.nih.gov/), Multi-Echo ICA denoising and optimal combination of echos
using Tedana software (DuPre et al., 2020), non-linear registration to the MNI152 template
using SPM software (https://www.fil.ion.ucl.ac.uk/spm/), removal of spikes (outliers) from the
time courses using 3dDespike in AFNI, and spatial smoothing with a gaussian kernel
(FWHM=3mm) in AFNI.

For the HCP-REST dataset, we used EPI-BOLD scans previously preprocessed with the
HCP’s ICA-based artifact removal process (Smith et al., 2013) to minimize effects of spatially
structured noise in our analysis. EPI scans were previously motion-corrected, registered to the
MNI152 template, and intensity normalized. Comprehensive details of the HCP preprocessing
pipeline are described in Glasser et al. (2013) .
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The NKI-REST, NKI-TASK, YALE-REST, NATVIEW-REST and clamped CO2 datasets
shared a largely similar set of preprocessing steps. First, the first N volumes (~10s) of the
NKI-REST (7), NKI-TASK (7), YALE-REST (10), and clamped CO2 (26) EPI BOLD scans were
dropped to remove non-steady state time points. For the NATVIEW-REST dataset, the last 2
volumes were dropped to align with the EEG and pupillometry recordings (no volumes were
dropped from the start of the scan). Slice timing correction was applied to the EPI-BOLD scans
of the NATVIEW-REST dataset using the FSL slicetimer utility due to its longer TR acquisition
(TR=2.1s). Second, EPI-BOLD scans from all datasets were motion corrected with
six-parameter rigid body alignment with FSL MCFLIRT. EPI-BOLD scans were then non-linearly
registered to the MNI152 template using FSL’s FMRIB’s Nonlinear Image Registration Tool
(FNIRT) (Andersson et al., 2010).

For the ME-REST-SUPP dataset, EPI-BOLD scans went through the following
preprocessing steps: motion and slice time correction using 3dvolreg and 3dTshift in AFNI,
respectively, Multi-Echo ICA denoising and optimal combination of echos using Tedana software
(DuPre et al., 2020), and non-linear registration to the MNI152 template using FSL’s FNIRT.

Common Preprocessing

Following dataset-specific preprocessing, all datasets were then resampled to 3mm
(isotropic) MNI152 space. Excluding the ME-REST, ME-TASK, ME-TASK-CUE and HCP-REST
datasets, this resampling step occurred during FNIRT registration. For the clamped CO2
dataset, fMRI volumes were resampled to 4mm (isotropic) MNI152 space to more closely match
its spatial sampling. Following resampling, fMRI volumes were spatially smoothed with a
gaussian kernel (FWHM=5mm) using FSL and temporally filtered with a fifth-order Butterworth
bandpass zero-phase filter (0.01-0.1Hz). For all datasets, voxels were extracted with a dilated
MNI152 brain mask, so as to pick up voxel time courses in large dural venous sinuses and CSF
compartments.

EEG Preprocessing

Preprocessing of EEG recordings in the ME-REST, ME-TASK and ME-TASK-CUE
datasets are described in (Goodale et al., 2021). Briefly, channel time courses were first
corrected for gradient artifacts through the average artifact subtraction method (Allen et al.,
2000). Ballistocardiogram artifacts were removed by subtraction of an average artifact template
locked to cardiac R-peaks, followed by independent component analysis (ICA) of the
template-subtracted time courses. The scalp EEG channel time courses were referenced to
channel FCz for analysis.These EEG preprocessing steps were performed with the BrainVision
Analyzer software.

Preprocessing of EEG recordings for the NATVIEW-REST dataset was performed with
custom EEGLAB MATLAB scripts provided by the authors of the dataset
(https://github.com/NathanKlineInstitute/NATVIEW_EEGFMRI) and are described in (Telesford
et al., 2023). Briefly, the preprocessing steps included 1) gradient artifact removal with the
FASTR utility from the EEGLAB FMRIB Plugin, 2) QRS/heartbeat detection using the ECG
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channel, followed by pulse artifact correction with a template subtraction method, and 3)
bandpass filtered between 0.3 to 50Hz using a Hamming windowed sinc FIR filter. Scalp EEG
time courses were referenced to the common average for analysis.

Physiological and EEG Feature Extraction

Six physiological signals were extracted from the raw PPG, respiration belt, skin
conductance, and pupil diameter recordings. Heart rate variability, systolic peak amplitude (PPG
pulse amplitude) and low-frequency (0.01-0.1Hz) PPG signals were extracted from raw PPG
recordings. Respiratory volume (Harrison et al., 2021) was extracted from the raw respiration
belt recordings. Low-frequency (0.01-0.1Hz) tonic skin conductance was extracted from the raw
skin conductance signals. We used minimally-preprocessed pupil diameter signals extracted
from eye-tracking recordings provided by the authors for the NATVIEW-REST and YALE-REST
datasets. For comparison with BOLD fMRI signals, the extracted physiological signals were
clipped at five standard deviations from the mean (for outlier removal), resampled to the length
of the functional MRI scan and filtered using a fifth-order Butterworth bandpass filter
(0.01-0.1Hz) excluding the low-frequency PPG and tonic skin conductance signals that were
already filtered. Note: the minimally-preprocessed pupil diameter signals from the YALE-REST
dataset were already resampled to the length of the functional scan. Details of the
preprocessing for each physiological signal are provided below. The preprocessing pipeline for
the physiological signals (and EEG signals) is illustrated in Supplementary Figure 7.

Heart rate variability time courses were extracted from PPG time courses using the
NeuroKit2 package (https://neuropsychology.github.io/NeuroKit/index.html) in Python. For
calculation of HR, the raw PPG time course was first filtered with a third-order Butterworth
bandpass filter (0.5 - 8Hz) followed by systolic peak detection using the method by Elgendi et al.
(2013). Heart rate was calculated from the period of time between peaks and interpolated to the
same length of the raw signal with monotone cubic interpolation (Fritsch & Butland, 1984). For
extraction of PPG pulse amplitude signals, the amplitude of the systolic peaks (previously
identified by the peak detection method) were interpolated with monotone cubic interpolation.

Work by Tong et al. (2012) found that widespread brain hemodynamics were correlated
with low-frequency (0.01 - 0.1Hz) oxygenation signals in the periphery measured by
near-infrared spectroscopy (NIRS). We assessed whether a similar peripheral low-frequency
oxygenation signal was present in the PPG time courses recorded in our datasets. Inspection of
the power spectral density estimates of the PPG time courses revealed a detectable,
low-frequency signal in the 0.01 - 0.1 Hz range with varying degrees of amplitude across
datasets (Supplementary Figure 5). For the comparison of this signal with BOLD time courses,
we filtered the PPG time courses with a fifth-order Butterworth bandpass filter (0.01-0.1Hz).
Low-frequency PPG signals were attenuated in the HCP-REST and ME-REST-SUPP dataset,
though detectable (Supplementary Figure 5).
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For the NKI-REST and NKI-TASK dataset, skin conductance (SC) signals were collected
from the hand. SC time courses consist of a low-frequency tonic and high-frequency phasic
component (Lykken & Venables, 1971). The tonic component reflects the slowly-varying
component of the skin conductance signal, and has previously been studied in the context of
fMRI (Nagai et al., 2004). We extracted a narrowband tonic SC signal matching the frequency
content of spontaneous resting-state BOLD signals (0.01-0.1Hz) with a fifth-order Butterworth
bandpass filter (0.01-0.1Hz).

For the YALE-REST dataset, we used minimally preprocessed pupillometry signals
provided by the authors (https://openneuro.org/datasets/ds003673/versions/2.0.1). The minimal
preprocessing pipeline consisted of 4-point spline interpolation of eye blinks, low-pass filtering
with a Butterworth filter (< 0.5 Hz), removal of the first 10 seconds of recordings (to match the
length of the functional scan), and resampling to the sampling frequency of the functional scan
(1 Hz). We also used minimally preprocessed pupillometry signals for the NATVIEW-REST
dataset. The minimal preprocessing pipeline consisted of linear interpolation of eye blinks,
median filter of 0.2 secs width, and resampling to the frequency of the functional scan (0.47Hz).

Respiratory volume (RV) was calculated from respiration belt time courses using a
recently developed Hilbert-based method (Harrison et al., 2021), implemented in NeuroKit2.
High-frequency noise was first removed from the respiratory belt time courses with a
Butterworth tenth-order low-pass filter (< 0.75Hz). Amplitude and phase components were then
extracted from the filtered signal via the Hilbert Transform. Following an iterated linear
interpolation procedure of the phase time courses, RV was calculated as the product of the
derivative of the interpolated phase time course (i.e. the instantaneous breathing rate) with the
signal amplitude (breathing depth/amplitude).

EEG power and vigilance fluctuations were extracted from averaged parietal and
occipital lobe EEG channel time courses (ME-REST/TASK: P3, P4, Pz, O1, O2, Oz;
NATVIEW-REST: P3,P4, P7, P8, Pz, POz, P1, P2, PO3, PO4, P5, P6, PO7, PO8, O1, O2, Oz)
using the MNE-Python package (Gramfort et al., 2013) (https://mne.tools/stable/index.html).
Time-frequency EEG power was extracted via Morlet wavelet filters (number of cycles = 15) to
construct a filter bank ranging from 2 to 20Hz (spanning Delta, Theta and Alpha oscillation
bands). For the ME-REST and NATVIEW-REST dataset, power was extracted from each signal
in the filter bank and was cross-correlated with time courses from the first principal component
of the fMRI data (see below). Alpha power signals were computed through band-pass FIR
filtering (Hamming window; 8 - 12Hz) of the average channel time course, followed by extraction
of instantaneous amplitude via the Hilbert Transform. For comparison with fMRI time courses in
the ME-REST and NATVIEW-REST dataset, EEG power time courses were resampled to the
length of the fMRI scan.

K-Complex Annotation

Event-related averaging of fMRI and physiological signals around K-complex onsets was
performed on a subset (N=7) of participants from the ME-REST dataset who fell asleep during
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their scanning session. K-complex annotations were performed in a semi-automated fashion.
First, EEG time courses from frontal and central channels were automatically sleep staged using
the yasa package in Python (https://github.com/raphaelvallat/yasa; Vallat & Walker, 2021) with
default parameters. Following automated sleep-staging, EEG time courses from sleep stage II
were manually annotated for K-complex onsets according to AASM criteria (Berry et al., 2017)
using a custom bipolar montage. Separate K-complexes that occurred within a window of ~30s
were removed before event-related averaging to avoid overlapping responses.

Principal Component Analysis

As in Bolt et al. (2022), the zero-lag and time-lag structure of the global BOLD signal was
modeled with principal component analysis (PCA) and complex principal component analysis
(CPCA), respectively. As shown in Bolt et al. (2022), the first principal component of both PCA
and CPCA extract a pattern of global BOLD fluctuations that is closely correlated (in time) with
the global mean time course. Standard PCA was used to extract the simultaneous statistical
dependence between cortical areas of global BOLD fluctuations, CPCA was used to extract
time-lag statistical dependence (i.e. traveling wave or propagatory behavior). In this study, we
analyze the properties of the first principal component in volume space, including signals from
subcortical structures, ventricles and cerebral sinuses.

CPCA involves the application of PCA to complex-valued time courses generated by the
Hilbert transform. We extracted the first complex principal component using CPCA on the
complex-valued (bandpassed to 0.01-0.1Hz) BOLD time courses temporally-concatenated
across subjects. Time-lag information can be extracted from the phase representation of the
complex-valued PC (via Euler’s Identity). The phase representation encodes the time-delay
between voxels (in radians) within the first complex PC. The time-lag information can also be
visualized over selected time points via a temporal reconstruction (Supplementary Movie 1).
Comprehensive details are provided in Bolt et al. (2022). Briefly, we first divided the temporal
phase time courses of the first complex PC into equally-spaced bins (N=30). We then projected
the complex PC back into voxel space to derive voxel time courses. Finally, we averaged the
real-valued voxel time courses within the time points indexed by the equally-spaced phase bins.
This resulted in a 30-volume ‘movie’ that visualizes the temporal evolution of a component. Both
PCA and CPCA solutions were computed using a fast randomized SVD algorithm developed by
Facebook (https://github.com/facebookarchive/fbpca). More details of the CPCA algorithm can
be found in Bolt et al. (2022).

Cross-Correlation Analyses

For the ME-REST, HCP-REST, ME-REST-SUPP, NKI-REST and YALE-REST datasets,
cross-correlation analyses were conducted between the electrophysiological time courses and
the first principal component (PC1) time course. Product-moment cross-correlations were
computed at the subject-level and group-average cross-correlations were computed by the
mean of the subject-level cross-correlations. For comparability across datasets with different
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sampling rates, we interpolated subject and group-average cross-correlation functions with a
cubic spline from -30s to 30s (time-lag).

Impulse Response Modeling of Physiological Signals

To summarize the temporal dynamics of all recorded physiological signals in response to
fluctuations in global BOLD signals (i.e. PC1), we implemented a linear systems modeling
approach as described in Chang et al. (2009). Impulse response functions were estimated
separately for each physiological signal through deconvolution of the physiological signal using
a Gaussian Process prior. A Gaussian Process prior is used to capture the underlying
smoothness of the physiological signal. The deconvolved physiological signal is estimated from
the maximum a posteriori (MAP) of the posterior distribution. As no single dataset contained all
physiological signals, we superimposed the deconvolved physiological impulse responses from
three separate datasets: ME-REST (PPG signals, Alpha EEG power, and respiratory volume),
NATVIEW-REST (pupil), and NKI-REST datasets (skin conductance). The length scale and
kernel variance hyperparameters of the Gaussian Process, were set to 3 and 1, respectively.
Negative shifts of the signal were included to ensure that physiological responses before the
peak of the global BOLD signal were captured.

Multi-Set Canonical Correlation Analysis

To estimate the joint fluctuations between physiological and the first principal component
time courses, we implemented a multi-set canonical correlation analysis (MCCA) on the full set
of signals in each dataset (Kettenring, 1971). Each ‘set’ was formed from time lags of a single
physiological signal. Inclusion of all potential time lags out to a window size N leads to potential
collinearity and risks overfitting. Instead, we implement a generalized additive distributed lag
approach (Gasparrini et al., 2010; Zanobetti et al., 2000), where time-lagged predictors for each
physiological signal were generated via a linear combination of time-lagged copies of the signal
with a natural cubic spline basis with three splines distributed across the time window (from 0 to
10s; number of time points varied for each dataset due to different sampling rates). The
resulting time-lagged predictor is represented by three linear-weighted versions of the original
signal encoding a smooth curve across the time window.

The objective of MCCA is to find a linear-weighted combination of the time-lagged copies
of each signal that maximizes the pairwise correlations between all signals. MCCA was
performed at the group-level by group-wise temporal concatenation. The number of ‘sets’ in the
MCCA analysis varied across datasets due to the differing number of physiological signals
recorded across datasets. We extract the first canonical component from the MCCA algorithm,
corresponding to the linear weighted combination of all signals that produces the maximum
pairwise correlation between signals. The MCCA algorithm was implemented in the cca-zoo
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Python package (https://github.com/jameschapman19/cca_zoo). Illustration of the MCCA
approach used in our study is provided in Supplementary Figure 8.

Statistical significance testing of the average pairwise correlation of the first canonical
component was performed using block-wise permutation of subject time courses before
temporal concatenation across subjects. Specifically, physiological signals were randomly
shuffled across subjects before temporal concatenation, effectively removing cross-signal
couplings while preserving the autocorrelation structure within each signal. For example, one
permutation may align signal A in subject 1, with signal B in subject 7, and so forth. For each
permutation (N=1000), the average pairwise correlation between all permuted time courses of
the first canonical component was extracted to construct a null distribution.

Event-Related Averages

Event-related averaging of the ME-TASK, NKI-TASK and ME-REST datasets was
performed to examine the hemodynamic and physiological response to deep breaths, breath
holds and spontaneous K-complex onsets, respectively. A group-level response function for
each physiological signal was generated by averaging across all trials and subjects within a
window starting from onset out to ~29s. Standard error plots for each group-level response
function were generated via cluster bootstrapping, where trials within each subject were
randomly resampled with replacement (N = 100) before averaging.

For the ME-TASK dataset, event-related EEG power fluctuations were examined for
each subject by averaging Wavelet filter bank power signals (i.e. time-frequency spectral power
in 2-20Hz frequencies; see above) within a 20s window post breath-onset across trials. Baseline
log-ratio normalization (i.e. decibels) was applied to the subject-averaged time courses with the
time span 1s before up until stimulus onset as the baseline. A group event-related average was
constructed from averaging across event-related subject averages.

For the ME-TASK-CUE dataset, event-related averaging of physiological and EEG
power time courses was conducted using the same procedure as the ME-TASK dataset. Some
inter-trial intervals between auditory cues were shorter for this task, on average (range: ~8 to 89
secs), relative to to the ME-TASK dataset. Trials separated by less than 30s were excluded. In
addition, trials with a non-response (i.e. no button response) were excluded.
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